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Abstract
Hypoxia is a commonly encountered feature of the cellular 

microenvironment in a number of processes in which programmed cell 
death (apoptosis) affects disease progression. These diseases include 
myocardial infarction, stroke, and ischemic acute kidney injury. Bone 
marrow-derived mesenchymal stem cells (MSCs) are multipotent adult 
stem cells that are able to differentiate into endothelial cells, vascular 
smooth muscle cells, or cardiac-like myocytes when transplanted into 
the ischemic heart. Both animal and clinical studies have substantiated 
that MSC transplantation can enhance cardiac function through 
possible angiogenesis and myogenesis after myocardial infarction. 
However, some studies have failed to monitor the therapeutic effects 
of MSC transplantation; therefore, there is a need for supplementary 
research on the use of MSCs and the improvement of transplantation 
techniques after MI. An important problem in stem cell therapy for 
ischemic heart diseases is the low survival of transplanted cells in 
the ischemic and infarcted sites. Most transplanted cells die within 4 
days after transplantation into the ischemic heart. Endogenous and 
environmental factors, such as hypoxia and inflammatory response, 
may contribute to cell death. Therefore, enhancing implanted cell 
survival after transplantation is vital for improving the effect and 
efficiency of stem cell therapy. In this review, we investigate whether 
hypoxia is responsible for activating apoptosis signaling in transplanted 
stem cells, and could be a potential target for enhancing the 
therapeutic effect of stem cells in treating ischemic heart diseases.

Abbreviations
NOS: Nitric Oxide Synthase; PDK: Pyruvate Dehydrogenase 

Kinase; polyp: Polyphosphate; PTP: Permeability Transition Pore; 
ROS: Reactive Oxygen Species; SDF-1: Stromal-Derived Factor-1; 
UCP: Uncoupling Protein; VEGF: Vascular Endothelial Growth 
Factor

Introduction
Hypoxia occurs when oxygen demand exceeds supply [1]. 

Hypoxia causes ATP levels to drop and inhibits maintenance of 
cellular functions; if the condition lasts for sufficient time, cells 
die. Severe hypoxia results in a high mutation rate, causing point 
mutations that may be explained by reduced DNA mismatch repair 
activity resulting from hypoxia-induced decreases in NLH1 and PMS2 
concentrations [2]. In addition, hypoxia induces genetic instability 
by the induction of fragile sites causing gene amplification [3-5]. 
Therefore, during severe hypoxia or anoxia, the cell initiates a cascade 
of events that leads to apoptotic cell death, thereby preventing the 
accumulation of cells with hypoxia-induced mutations [6]. A classic 
example of an acute hypoxic event is stroke. Although a stroke lesion 
can lead to both types of cell death (i.e., necrosis and apoptosis), it is 
typically characterized by a core of necrosis [7,8], which is a passive, 

uncontrolled type of cell death. Similar cascades are thought to occur 
during myocardial infarction, which is also characterized by a core of 
necrosis and a border zone in which cells undergo apoptosis [9,10].

Although diverse treatment for cardiac diseases has been 
developed, heart failure remains a critical disease [11] because 
regenerative ability after myocardial infarction (MI) is limited [12-
14]. Recently, therapeutic approaches have used genes, growth 
factors, or cells to enhance myocardial substitutes [15]. Given recent 
progress in restoring the ischemic heart using mesenchymal stem 
cells (MSCs), understanding the tissue microenvironment will help 
optimize the therapeutic potential of these cells [16]. However, MSCs 
transplanted into an infarcted site of the ischemic heart encounter 
severe conditions such as calcium excess, acidosis, and reactive 
oxygen species (ROS), which induce apoptotic signaling and inhibit 
survival [17-20]. Ultimately, ROS production in the injured heart 
induces apoptosis in both implanted cells and cardiomyocytes [21-
23].

Apoptosis regulatory genes have been the subject of much 
research. Apoptosis is regulated by both activators and repressors. 
The balance of these molecules determines whether apoptosis is 
initiated. Recent research has suggested that some oncogenes and 
tumor suppressor genes control programmed cell death. Bcl-2, p53, 
and c-Myc are known to be apoptosis regulatory genes [24-26]. In 
addition, Bcl-xL, Bcl-W, and Mcl-1 are well-established apoptosis 
inhibitors. In contrast, Bad, Bid, Bim, Bmf, Bik, Hrk, Noxa, and Puma 
are known to induce apoptosis [27].

In this review, we investigate whether hypoxia-induced apoptosis 
is a strong inducer of cell death of implanted MSCs in the ischemic 
heart, and whether it makes a promising target for enhancing the 
therapeutic effect of MSCs in clinical research.

Inducing Apoptosis under Hypoxia
Hypoxia induces necrosis and apoptosis [28,29]. Hypoxia-

induced apoptosis is related to increased mitochondrial permeability 
and release of cytochrome c into the cytoplasm, is caspase-9 
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dependent but caspase-8 independent, and mainly occurs by way of 
the intrinsic pathway [30]. However, many cell types endure long 
periods of hypoxic stress, often requiring additional stressors such 
as serum deprivation or acidosis for cell death to occur [31-33]. 
The ability to withstand apoptosis in settings of hypoxic stress is the 
result of a well-developed cellular response, a phenomenon that is 
important in many disease processes. The ability to adjust to varying 
levels of oxygen in the cellular environment is generally attributable 
to hypoxia-inducible factor-1 (HIF-1). Hypoxia also affects other 
transcription factors, such as HIF-2, nuclear factor kappaB (NF-κB), 
and p53, which play significant roles in the regulation of the apoptotic 
pathway. In many complex disease processes, the change in hypoxic 
phenotype has a larger effect on cell survival than the direct induction 
of apoptosis.

Apoptotic Pathways
Extrinsic pathway

Apoptosis is triggered by two signaling pathways. The extrinsic 
pathway is activated by binding of pro-apoptotic ligands to death 
receptors on the cell surface. Receptors such as CD95 or tumor necrotic 
factor receptor 1 (TNF-R1) induce formation of death-inducing 
signaling complexes (DISCs) comprised of death receptors, TNF 
receptor-associated death domain (TRADD)-containing proteins, 
Fas-associated death domain (FADD) adaptor proteins, and initiator 
caspases. Activation of the death receptor complex following ligand 
binding promotes interactions between pro-caspase-8 molecules 
within the DISC, which subsequently activatecaspase-3 and induce 
apoptosis [34-36]. TNF-R1 signaling also promotes cell survival via 
NF-κB activation, which is stimulated by the recruitment of the TNF 
receptor associated factor 2 (TRAF2) to ligand‐bound receptors. 
Interestingly, TRADD may serve as a platform for the assembly of 
TRAF2 or FADD, which determine the subsequent activation of either 
the NF-κB-induced survival pathway or the caspase-dependent pro-
apoptotic pathway, respectively. In contrast, tumor necrotic factor 
receptor 1 (TNF-R2) does not include a TRADD motif; thus, TRAF2 
can directly interact with NF-κB [37,38]. TNF-R2 also enhances cell 
survival by stimulating mitogen-activated protein kinases (MAPK).

Intrinsic pathway

In contrast to the extrinsic pathway, the intrinsic apoptotic 
pathway involves non-receptor–mediated intracellular signals. These 
signals are activated by cell stresses such as cell shrinkage, DNA 
fragmentation, and cytokine deficiency. The intrinsic pathway can 
also be activated in response to toxins such as chemotherapeutic 
agents. Intrinsic apoptosis is controlled by the Bcl-2 family of 
proteins, which are located on the mitochondrial membrane [39]. 
Members of the Bcl-2 family are classified according to their anti- or 
pro-apoptotic function. The anti-apoptotic members of this family 
include Bcl-2, Bcl-xL, Bcl-W, and Mcl-1. In contrast, Bax, Bak, and 
Bok are pro-apoptotic and Bid, Noxa, Bad, Bim, Bik, Bmf, Hrk, 
and Puma can induce the expression of apoptotic members of the 
family. Under normal conditions, the mitochondrial membrane 
is polarized such that cytochrome c and ROS are confined within 
the mitochondrial walls. Pro-apoptotic proteins of the Bcl-2 family 
stimulate the mitochondrial permeability transport pore and induce 
cytochrome c release. Once cytochrome c is in the cytoplasm, it 
binds apoptotic protease activating factor 1 and procaspase-9 to 
form an “apoptosome”. In the presence of ATP, this complex induces 

proteolytic cleavage of procaspase-3 to activated caspase-3. Bax is a 
well-known pro-apoptotic protein. During apoptosis, Mcl-1 levels 
are significantly decreased via proteasome degradation. Decreasing 
levels of Mcl-1 release Bax from the Bak hetero-complex [40,41]. 
Activated Bax and Bak act as ion channels and connector proteins, 
allowing for the intermediate release of cytochrome c. In contrast, the 
anti-apoptotic protein Bcl-2 can inhibit Bax or Bak by enhancing the 
stability of the mitochondrial membrane or by reducing the transport 
of pro-apoptotic proteins. Bad and Bid inhibit anti-apoptotic Bcl-2 
protein activity and induce pro-apoptotic protein function. Figure 1 
shows a schematic of both the extrinsic and intrinsic pathways.

Transcription Factors
Hypoxia-inducible factor

Hypoxia-inducible factor (HIF) is a transcription factor that allows 
cells to adapt to low-oxygen conditions. Hypoxic adaptation is mostly 
mediated through HIF-1α, which is degraded by prolylhydroxylase 
(PHD) under normoxic conditions [41]. At hypoxic levels, however, 
PHD enzymes are inactivated and HIF-1α proteins are free to 
bind to HIF-1α/aryl hydrocarbon nuclear translocator (ARNT) 
and p300. p300 then allows the binding of HIF with the promoter 
region of target genes in the nucleus [42,43]. This process allows for 
enhanced angiogenesis, hematopoiesis, and improved cell survival by 
enhancing intracellular ATP and oxygen levels and reducing toxic 
ROS production [41]. In addition, HIF-1α induces cell cycle arrest in 
order to reduce the cell’s workload [44]. Although HIF-2α is similar 
to HIF-1α, it differs in many important aspects. First, HIF-2 is not 
ubiquitously expressed and interacts with individual cofactors. For 
example, HIF-2 does not regulate genes involved in glycolysis, but is 
the main regulator of erythropoietin in the adult kidney. Moreover, 
HIF-2 increases cell proliferation via c-Myc [45,46].

NF-κB

Along with its role in mediating the response of the immune 
system to infection, NF-κB regulates the expression of cytokines, 

Figure 1: Extrinsic and intrinsic apoptosis pathways.  A schematic view of the 
two main apoptotic pathways: the intrinsic pathway and the extrinsic pathway.

Figure 1 
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growth factors, and anti-apoptotic factors [47]. When NF-κB is 
inactive, its subunits are segregated in the cytoplasm by the inhibitor 
of NF-κB (IκB) proteins, IκBα and IκBβ. Upon activation, IκB is 
phosphorylated, and its degradation leads to release of bound NF-
κB dimers. The free dimers translocate to the nucleus and bind to 
target promoter or enhancer sites [47]. NF-κBs are activated via both 
canonical and noncanonical pathways; however, hypoxia leads only 
to NF-κB activation via the canonical pathway [48]. More specifically, 
low levels of oxygen stimulate IκB kinase (IKK), which leads to 
the phosphorylation and degradation of IκB, and then to NF-κB 
activation and knockdown of PHD enzymes [49].

p53

HIF-1α is activated under hypoxic conditions, which may have 
functional significance for the role of the tumor suppressor p53. 
p53 is involved in the regulation of the cell cycle, DNA repair, and 
apoptosis. This molecule is induced by pro-apoptotic proteins such 
as Puma and Noxa. Accumulation of p53 under hypoxic conditions 
is probably not induced by DNA damage [1,50]. Under hypoxic 
conditions, p53 interacts with transcriptional corepressors such as 
mSin3A/histone deacetylases, inducing apoptosis via transrepression 
of α,β-tubulin [51].

Survival pathways involved in hypoxic preconditioning of 
stem cells 

Because metabolic dysfunction and glutamate excitotoxicity 
occur in ischemic brain injury, mass apoptosis is induced in 
always with extra injury from increased ROS, inflammatory 
responses, activation of apoptotic and other pathological processes. 
Preconditioning treatments for stem cells have been shown to 
improve resistance to these insults by increasing anti-apoptotic 
signals [52,53]. Many survival and defensive molecules, including 
HIF-1α [54], trophic/growth factors [55], Akt [56,57], extracellular 
signal-regulated kinase (ERK) [57], glycogen synthase kinase-3β 
(GSK-3β), matrix metalloproteinase-2 (MMP-2) [19], survivin 
[58], and Bcl-2 are engaged in reaction to preconditioning stimuli. 
Selective up-regulation of these molecules binding to improving 
defensive signaling is adequately controlled in both preconditioned 
stem cells and the cells nearby to injury sites [59].

Central roles of HIF-1 in hypoxic preconditioning

In stem cells, HIF-1 also plays a role in preconditioning and 
provides an advantage in transplantation therapy (Figure 2). HIF-
1 induces the cysteine glutamate interchange system of NSCs by 
increasing expression of the light-chain subunit xCT [60], which is 
a limit stage for brain antioxidant glutathione (GSH) production 
[61]. HIF-1 overexpression in MSCs leads to up-regulation of 
genes that contribute to cell adhesion, migration, and paracrine 
effect. Transplantation of these cells into the myocardium of rats 
after induction of MI improves revival of cardiac functions and 
angiogenesis [58,62]. Collectively, these results suggest that HIF-1 is 
a significant mediator of stem cell preconditioning (Figure 2).

Hypoxic Preconditioning Provides Therapeutic 
Benefits in Stem Cell Therapies Enhanced Cell Survival 
In Vitro and After Transplantation

The survival rate of implanted cells is a major issue once cells are 
transplanted into the ischemic heart or brain. The preconditioning 
factors mentioned here usually confer superior survival of stem cells 

and progenitors in vitro or after transplantation. Preconditioning 
using lethal hypoxia and EPO significantly increased the capacity 
of treated cells to withstand apoptotic and other stresses in vitro, as 
well as in the harsh environment of ischemic infarct sites [17,63,64]. 
MSCs and embryonic stem cell-derived neural progenitor cells (ES-
NPCs) show improved survival following lethal exposure to hypoxic 
conditions (1% O2), as well as a 40–50% decrease in apoptosis and 
caspase activation. Hypoxic preconditioning increased the secretion 
of EPO and up-regulated the expression of Bcl-2, HIF-1, EPO receptor 
(EPOR), neurofilament (NF), and synaptophysin in ES-NPCs. The 
defensive effect was decreased by blocking EPOR, and pretreatment 
of ES-NPCs with recombinant human EPO mimicked the effects of 
hypoxic preconditioning. Three days after transplantation into the 
ischemic rat brain, a 30-40% lower apoptosis was observed in hypoxic 
preconditioned ES-NPCs as compared to normoxic cells. These 
surviving ES-NPCs also showed extensive neuronal differentiation in 
the ischemic brain and improved revival of sensory motor function 
[64]. A similar survival effect of hypoxia pretreatment has been 
reported in human ES-NPCs [65]. Previous studies have shown that 
ES-NPCs have the capacity for peripheral nerve injury recovery [66]. 
Therefore, improved stem cell survival by preconditioning shows 
promise for application in cell therapies for tissue repair [67].

Increased regenerative potential of hypoxic-preconditioned 
stem and progenitor cells

Preconditioned stem cells show several improved regenerative 
abilities, including improved migration and homing to lesion sites. 
In bone marrow-derived hemangioblasts, many chemokine and 
angiogenic genes were up-regulated after hypoxic induction, which 
accelerated their differentiation toward the endothelial lineage [68]. 
Hypoxia also improves the differentiation of EPC-like attaching cells, 
which promote neovascularization [69]. Their function is dependent 
on secretion of VEGF and increased VEGF2R expression in reaction 
to hypoxia [70]. Hypoxic-preconditioned MSCs show increased 
expression of Wnt4, and induced neovascularization was observed 
in a murine model of hindlimb ischemia [71]. Another important 
signaling molecule, sonic hedgehog (SHH), may be involved in the 
EPC-mediated angiogenesis and neovascularization induced by 
VEGF, SDF-1, and angiopoietin-1 [72]. Hypoxic preconditioning 
of MSCs showed benefits for transplantation therapy for bone 
regeneration by restoring osteogenic differentiation [73]. 

Figure 2: Central roles of HIF-1 signaling pathways in stem cells. Hypoxic 
preconditioning insults increase HIF-1 expression. HIF-1 then regulates 
antioxidants, survival signals, and many other genes related to cell adhesion, 
polarization, migration, and paracrine protection. 
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Conclusion
Oxygen levels are important in the general physiology of the 

cell and in instances where cell physiology contributes to disease 
progression. A better understanding of the transcriptional response 
to hypoxia and the particular mechanisms underlying hypoxic 
apoptosis will determine our success in developing therapies that 
focus on controlling apoptosis induced by disease conditions.
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