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Exaggerated Risk Perception 
of  Low-Dose Exposures to 
Asbestos: Cui Bono?

factors that are toxic at higher doses. The screening has obviously 
contributed to the enhanced detection rate of mesothelioma and 
lung cancer in asbestos-exposed populations. Bias is not infrequent 
in asbestos research, e.g. attributing to asbestos of malignancies in 
the presence of fibres, although a cause-effect relationship remains 
unproven. Some studies rely on work or residence histories and 
interviews with relatives of questionable reliability [10]. 

Malignant pleural mesothelioma (MPM)

The unchanging or increasing incidence of MPM in the countries 
applying asbestos bans is caused, at least in part, by the growing 
public awareness, improvement of diagnostics, screening effect in 
exposed populations and some overdiagnosis in view of the unclear 
demarcation of MPM as an entity. Apart from asbestos, potential 
etiologic factors of MPM include various mineral and artificial fibres, 
virus SV40, ionizing radiation, chronic inflammation (empyema, 
tuberculosis) and genetic predisposition [11-16]. For example, 
erionite is regarded to be a more potent carcinogen than asbestos. 
Human activities result in dispersal of erionite and other potentially 
carcinogenic fibres into populated areas [6,11]. Certain types of 
carbon nanotubes have been classified as possible human carcinogens 
[17]. 

Furthermore, there are indications that the virus SV40 has 
contributed to the worldwide incidence increase of mesothelioma in 
recent decades. The incidence increase of MPM in the 1960s coincided 
with human exposure to the virus in the period 1955-1963 (and later 
in some countries) when poliovaccines were contaminated with 
viable SV40 [18,19]. The virus continues circulating independently 
from contaminated vaccines [19-21]. SV40-like DNA sequences and 
viral oncoprotein were found in MPMs of different histological types 
while some investigators reported negative data; reviewed in [19,20]. 
Antibodies against SV40 were detected in sera of MPM patients in 
34% vs. 20% in healthy subjects (odds ratio 2.049, CI 95% 1.32-3.22). 
These results indicate that SV40 is linked to a large fraction of MPM 
and also that the virus circulates in human population [20]. After a 
laser microdissection, SV40 was demonstrated in MPM cells but not in 
nearby stromal cells [18]. SV40 is oncogenic in experimental animals 
[21]. When it was injected via the intracardiac or intraperitoneal 
routes, ≥50% of hamsters developed mesothelial tumors; 100% of 
hamsters injected into the pleural space developed mesotheliomas 
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Abstract
Asbestos is a known carcinogen. Asbestos-related risks have 

been estimated on the basis of data from the past, when professional 
exposures were higher than today. Fibres are present in the environment 
due to erosion of surface deposits and human activities unrelated to 
asbestos industry. If searched for, asbestos fibres are often found post 
mortem. Bias can be encountered in asbestos research e.g. attributing 
of mesothelioma or lung cancer to asbestos if fibres are found, although 
cause-effect relationships remain unproven. Some studies rely on work 
or residence histories of questionable reliability. It can be reasonably 
assumed that the non-use of asbestos-containing brakes, fireproofing 
and insulation has increased the damage and numbers of victims of 
traffic accidents, fires and armed conflicts. Today, when a probability 
of conflicts seems to be enhanced, the attitude to asbestos should be 
changed. Asbestos is banned in some countries, while others continue 
production and exports. Some anti-asbestos activists have apparently 
served certain governments or companies. The same is partly true for 
the anti-nuclear activism. Different asbestos types have their technical 
advantages and preferred application areas. Reliable information 
about toxicity of fibres can be obtained in lifelong bioassays.

Introduction
Asbestos is a proven carcinogen. Health risks from asbestos have 

been evaluated on the basis of data from the past, when workers’ 
exposures were higher than today. The linear no-threshold model 
has been applied to asbestos-related risks although its applicability 
is unproven and remains arguable both for pleural and lung tumors 
[1-3]. There is an opinion that a large part of asbestos exposure in 
developed countries ended ~40 years ago and that exposures from 
new asbestos-containing products are insignificant [3]. Asbestos 
fibres are present in the natural environment due to erosion of surface 
deposits. Naturally occurring asbestos has been commonly found in 
populated areas [4]. The natural emission contributes to a dispersion 
of chrysotile and amphibole asbestos fibres. Presumably, natural 
releases dwarf anthropogenic contributions to the atmospheric 
dispersion of the above-named fibres [4,5]. Air, soil and water may 
be contaminated by asbestos and other potentially harmful fibres due 
to human activities unrelated to asbestos e.g. land excavation, slopes 
reprofiling and tunneling [6,7]. In one study, asbestos fibres were 
found in 35 of 55 (63.6%) autopsy cases from the general population 
[8]. At autopsies of exposed people, pulmonary and pleural tissues 
are sampled more abundantly and examined more thoroughly, hence 
the higher probability to find fibres and to diagnose pathological 
conditions. The presence of fibres by itself proves neither professional 
exposure nor asbestos-related disease. Inhalation and discharge 
of fibres are in a dynamic balance [8,9]. By analogy with other 
substances in the natural environment, it can be assumed that there 
is a harmless (threshold) fibre concentration in the ambient air. The 
concept “one fibre can kill” may have as little relevance to reality as 
it is for environmental levels of numerous substances and physical 
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[22]. Systemic injections caused mesothelioma in ~60% of hamsters 
[11]. It can be assumed that invasive manipulations e.g. bronchoscopy 
used with above-average frequency in people exposed to asbestos 
contributed to dissemination of SV40, resulting in additional MPM 
cases. In the former Soviet Union (SU), bronchoscopy and bronchial 
biopsy were recommended and performed in patients with asbestos-
related bronchitis [23,24]. Due to the ageing population and because 
some people are predisposed to MPM, given various mutations and 
carcinogens, the majority of mesotheliomas in future are expected to 
be unrelated to asbestos [3]. 

MPM is not clearly demarcated from other cancers. 
Histologically, MPM can resemble different cancers while the lack 
of specific biomarkers makes the diagnosis difficult. Tumors can 
undergo de-differentiation, becoming histologically similar to MPM. 
The differential diagnosis varies depending on the MPM subtype. 
Spindle cell tumors of pleura are especially difficult to diagnose while 
immunohistochemistry is of limited help [15,25]. The differential 
diagnosis of MPM is a known problem; revisions of histological 
archives regularly found misclassified cases [25,26]. In one study, the 
initial diagnosis was confirmed in 67% of cases, ruled out in 13%, and 
remained uncertain in the rest [27]. Another expert panel changed 
the diagnosis in 14% of 5258 mesotheliomas [11]. According to an 
estimate, ~10% of MPMs in the United States were misdiagnosed 
[26]. Among reasons of the diagnostic uncertainty is an unclear 
demarcation of MPM from other cancers and insufficient experience 
due to the rarity of MPM [25,26]. On the contrary to the general 
population, in asbestos-exposed people the well-aimed search for 
MPM is performed by experts. Accordingly, more MPMs are found, 
questionable or borderline cases being sometimes classified as MPM. 
Litigation might also contribute to misattribution of cases to asbestos 
[10].

The lack of reliable biomarkers makes the diagnosis of MPM 
challenging [18]. Mesothelin has been discussed as one of the most 
promising markers. However, it is not sufficiently sensitive, being 
overexpressed in different cancers [11,12,28-30]. On the other hand, 
mesothelin it is often negative in sarcomatoid and epithelioid MPMs 
[25]. Osteopontin has been a promising marker but the data are 
inconsistent. Similar to mesothelin, the clinical utility of osteopontin 
and fibulin-3 is limited due to low sensitivity [30]. The microRNA 
down-regulation in MPM compared to lung cancer was regarded 
to be a promising marker; but diagnostic accuracy is moderate as 
microRNAs are deregulated also in some other malignancies [31,32]. 
Chromosomal aberrations in MPM are heterogenous [16,33]. The 
information on the molecular basis of MPM is insufficient [34]. 
According to the Helsinki Criteria, established for attribution of 
mesothelioma to asbestos, no specific recommendations can be given 
for the use of markers in the screening for MPM [35,36]. Moreover, 
MPM may exhibit various molecular setups in different areas i.e. 
intra-tumoral heterogeneity and subclonality [37]. Contrary to other 
malignancies, driver mutations have not been clearly determined 
in MPM. There are no strong genetic markers [38,39]. Diagnosis 
of MPM on cytomorphological grounds is challenging, especially 
when reactive atypical mesothelial cells are present. Notwithstanding 
the plethora of markers, none has been sufficiently specific [36,40]. 
A tumor diagnosed as MPM using algorithms and panels is not 
always biologically different from other cancers. The above explains 
enhanced yield of the screening in exposed populations.

Russian science on asbestos

Asbestos-related diseases have been extensively studied in 
the former SU. The prevailing opinion has been that, if necessary 
precautions are taken, modern technologies of asbestos production 
and processing are safe, while bans applied in some countries are 
excessive. Health hazards from low fibre concentrations are unproven. 
No enhanced risks have been demonstrated in residents near modern 
asbestos-processing plants. Epidemiological studies indicate a 
threshold [41,42]. Genetic adaptation to a certain level of asbestos 
fibre inhalation is deemed possible [43]. In the former SU, corrugated 
asbestos sheets have been broadly used for roofing. The fibre emission 
from roofing materials during construction and use of buildings is 
negligible. Fibre concentrations in the indoor air are an order of 
magnitude below the permissible level [44]. Asbestos-cement pipes 
have been broadly used for drinking water distribution and deemed 
safe as no risks from oral intake of fibres have been proven, the more 
so as fibres are modified by aggregation with cement [45]. Studies 
show that the use of asbestos-cement pipes does not impair the quality 
of drinking water and their use has been approved by the Ministry of 
Health [46]. Asbestos-containing broken-stone ballast – a by-product 
of chrysotile enrichment - has been used for the gravelling of railroad 
embankments while enhanced concentration of airborne fibres 
was noticed both in trains and in nearby townships [47]. Similarly 
to asbestos-cement, carcinogenicity of fibres in asbestos board is 
decreased due to aggregation with cellulose. There is no considerable 
air pollution by fibres from car brakes, while the traffic is safer 
with asbestos-containing linings [48,49]. In the process of braking, 
asbestos is transformed to forsterite that is practically harmless 
[50,51]. Asbestos-containing materials (flat sheets, millboard, paper, 
clothing, gaskets, etc.) are broadly used now as before. Installation 
and repair without processing of asbestos-containing parts is deemed 
safe [49]. No increase in the registered incidence of mesothelioma has 
been found either among asbestos workers or residents of the areas 
with modern asbestos industry [52]. It was concluded on the basis 
of 3576 MPM cases that asbestos is neither a leading nor obligate 
causative factor [53]. 

Asbestos produced in Russia is almost exclusively chrysotile; it 
is broadly used and exported to the countries where it is not banned 
[54]. The low toxicity of chrysotile compared to amphiboles is often 
stressed in the Russian literature e.g. “Chrysotile fibres are easily 
dissolved and discharged” [55]. The author does not intend to say that 
papers biased in favor of chrysitile come only from Russia. Chrysotile 
was produced also in other countries, for example Canada and 
Italy; some papers of questionable objectivity are discussed below. 
However, in both latter countries asbestos is banned, whereas Russia 
continues production and exports. The message of this article is that 
the non-use of asbestos-containing brakes, fireproofing and insulation 
probably has augmented the damage and numbers of victims of traffic 
accidents, fires, terrorist attacks and international conflicts. Today, as 
the probability of armed conflicts seems to be enhanced, the attitude 
to asbestos should be changed. Most importantly, asbestos-related 
research must be separated from economical and political interests. 
Some Russian experts admitted that the concept of much higher 
toxicity of inhaled amphibole fibres compared to chrysotile has not 
been sufficiently founded [56]. Carcino-, fibro-, mutagenicity and 
cytotoxicity of chrysotile was confirmed both in experiments and 
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epidemiological studies [57]. In some experiments, carcinogenicity 
of chrysotile did not differ significantly from that of amphiboles [58]. 

Chrysotile vs. amphiboles

Numerous studies indicated that serpentine (chrysotile) is less 
toxic than amphibole (actinolite, amosite, anthophyllite, crocidolite, 
tremolite) asbestos but there are discrepancies between human 
(epidemiological) and experimental data. All asbestos-related diseases 
have been found in workers exposed to chrysotile [59]. As mentioned 
above, there is a strong economic interest to support chrysotile in 
Russia and some other countries. The differences in toxicity must 
be tested and quantified by research independent of industrial 
interests. Statements by the leading Russian expert Nikolai Izmerov 
(1927-2016) that chrysotile is “easily dissolved and discharged” [55] 
and those by David Bernstein “Chrysotile fibres are rapidly cleared 
from the lung in marked contrast to amphibole fibres which persist” 
[60] sound similarly. Moreover: “Following short-term exposure 
the longer chrysotile fibres rapidly clear from the lung and are not 
observed in the pleural cavity. In contrast, short-term exposure to 
amphibole asbestos results quickly in the initiation of a pathological 
response in the lung and the pleural cavity” [61]. Given the possibility 
of a post-depositional translocation of chrysotile fibres from the lung 
to pleura [62-66], the rate of asbestos retention cannot be determined 
only by evaluation of fibre contents in pulmonary tissues. In 
accordance with the concept of fibre migration to the pleura, primary 
foci of asbestos-related mesothelioma are more often located in the 
parietal rather than visceral pleura [67]. Conclusions by Bernstein 
et al. about low biopersistence of chrysotile were supported by self-
references [61,68]. However, results of their experiments can be 
explained by a chemical pre-treatment of fibres, inducing hydration, 
fragility and breaking [69]. “Bernstein’s study protocol induces a 
very short fibre half-life, from which he concludes weak chrysotile 
carcinogenicity. Bernstein’s findings contradict results obtained by 
independent scientists. Bernstein’s results can only be explained by an 
aggressive pre-treatment of fibres, inducing many faults and fragility 
in the fibres’ structure, leading to rapid hydration and breaking of 
long fibres in the lungs” [69]. The decomposition by acids does not 
prove solubility in living tissues. The dissolution at neutral and acid 
(~4.5) pH is often incongruent [70]. In leaching tests using acid (pH = 
4) “artificial lysosomal fluid” (ALF), the dissolution rate of chrysotile 
was indeed faster than that of amphiboles [54]. The pH value of ALF 
is usually ~4.5 [71,72]. In the study [73], various fibres were tested 
in the Gamble’s solution imitating pulmonary interstitial fluid. This 
solution is a mixture of salts with pH ~7.4 [71,72]. Both chrysotile and 
crocidolite manifested very low solubility in the Gamble’s solution 
[73]. The dissolution ranged from a few nanograms of dissolved 
silicon per cm2 of fibre surface (chrysotile and crocidolite) to several 
thousand ng/cm2 (glass wool). Aramide and carbon fibres were 
practically insoluble [73]. The latter study was referenced but not 
discussed by Bernstein et al. [68]. 

The accelerated clearance of chrysotile from the lung can be 
partly attributed to the longitudinal splitting of fibres into thin fibrils 
that can evade detection. As a result, the total number of fibrils 
would increase possibly together with the carcinogenic potency 
[62,64,66,74-76]. Presumably, the thinner a fibre, the higher would 
be its carcinogenicity, as it can penetrate tissues more efficiently [77]. 
Asbestos fibres are found in the pleura post mortem, chrysotile being 

the predominant fibre in pleural plaques and pleural tissues in general 
[63,65,78,79]. The concept of fibre migration to the pleura agrees 
with the fact that a primary tumor of asbestos-related mesothelioma 
is more often located in the parietal rather than visceral pleura [67]. 
Moreover, “Bernstein and colleagues completely ignored the human 
lung burden studies that refute their conclusion about the short 
biopersistence of chrysotile” [80]. Numerous relevant publications, 
unsupportive of Bernstein’s conclusions, were not cited in his 
reviews; more details and references are in [2]. It was reasonably 
concluded that by failing to analyze or even mention contradicting 
data, Bernstein et al. did not provide an objective analysis, and have 
created impression that they published a document to support the 
interests of chrysotile producers [69,80].

The incidence of mesothelioma is enhanced after exposures to 
pure chrysotile [59,81]. The relatively high frequency of mesothelioma 
among workers having contact with amphiboles was explained by 
averagely higher exposures [82]. As mentioned above, there are 
discrepancies between animal and human data. The evidence for 
a difference in the potency between chrysotile and amphiboles 
in inducting lung cancer is “weak at best” [83]. In certain animal 
experiments, the carcinogenic potency of amphiboles and chrysotile 
was found to be nearly equal for induction of both mesothelioma and 
lung cancer [75,84-88]. Chrysotile was even more carcinogenic than 
amphiboles in a study, whereas it was pointed out: “There was no 
evidence of either less carcinogenicity or less asbestosis in the groups 
exposed to chrysotile than those exposed to the amphiboles” [86]. 
Technical details of the latter study were discussed by Bernstein et 
al. [68] but not this conclusion. In one rat study, chrysotile induced 
more lung tumors and fibrosis than amphiboles, which was explained 
by a large fraction of fibres longer than 20 μm in the used chrysotile 
preparation [89]. Chrysotile induced chromosomal aberrations and 
pre-neoplastic transformations of cells in vitro [84,90].

In humans, the lung cancer risk difference between chrysotile vs. 
amosite and crocidolite was estimated in the range 1:10 to 1:50. The 
risk ratio of mesothelioma was estimated, respectively, as 1:100:500 
[1], cited in reviews [27,91]. In a later publication, another ratio 
(1:5:10) was suggested [92]. The same researchers noticed that, 
in view of the fact that different asbestos types produced a similar 
harvest of lung tumors in animal experiments, it is problematic to 
reconcile animal and human data. The proposed explanation was 
that “in humans chrysotile (cleared in months) might have less effect 
than the amphibole fibres (cleared in years)” [1]. However, there 
are no reasons to suppose substantial interspecies differences in the 
fibre clearance. As mentioned above, chrysotile clearance from the 
lung may partly result from the fibre splitting and movement to the 
pleura. As for epidemiological studies, some of them are biased due 
to the screening effect with over diagnosis in exposed populations, 
unclear demarcation of MPM from other cancers, imprecise exposure 
histories and, last but not least, conflict of interest in researchers 
associated with the chrysotile industry. 

The toxicity of fibres is generally determined by the three “D’s”: 
dose, dimension and durability (biopersistence). The biopersistence 
being equal, differences in carcinogenicity are associated with the 
length and thickness of fibres [93]. Long fibres of chrysotile were 
found to possess a relatively high toxicity as they cannot be efficiently 
engulfed and cleared by macrophages [94,95]. Agglomeration of 
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technical advantages. Amphiboles (crocidolite, anthophyllite and 
others) are acid-resistant, thermo-stabile and durable [105]. Asbestos 
is a low-cost material and an excellent reinforcing fibre. The traffic 
is safer with asbestos-containing linings. Asbestos cement (fibrolite) 
constructions are sturdy and inexpensive; their extensive use started 
during the World War II. The fireproofing properties of asbestos are 
well known. It can be reasonably assumed that the non-use of asbestos-
containing brakes, fireproofing and insulation laggings has augmented 
the numbers of victims of traffic accidents, fires and armed conflicts. 
Nowadays, when a probability of conflicts seems to be enhanced, 
the attitude to asbestos should be changed. Most importantly, 
asbestos-related science must be separated from industrial interests. 
Asbestos bans have been partly based on the research influenced by 
industrial and political interests. Some anti-asbestos activists may 
have conflicts of interest related to the manufacturing of chrysotile 
or asbestos substitutes, lawyers’ earnings from litigation, or interests 
of construction firms performing asbestos removal with exposures 
of abatement workers. It was noticed that “grassroots intimidated 
governments into approving more restrictive regulations” [106]. 
Apparently, some anti-asbestos activists served certain companies or 
governments. Asbestos is banned in some countries, while others are 
increasing production and exports. The same considerations pertain 
also to the anti-nuclear activism and Green movement in general. 
In view of the growing international tensions, their unconstructive 
and defeatist role is becoming obvious. Psychological mechanisms 
seem to be exploited: repression (Verdrängung) of real dangers and 
redirection of public anxiety and protests against surrogate targets. 
Cui bono? Citizens should be aware that their best intentions may be 
misused to disadvantage their own countries. 
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