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Abstract
Detection of small peripheral ground-glass opacity nodules 

has increased due to the advances in imaging modalities and the 
widespread use of computed tomography screening. Pathologic 
examination of these nodules revealed that they have a pure lepidic 
or replacement growth pattern such as atypical adenomatous 
hyperplasia or adenocarcinoma in situ (formerly known as 
bronchioloalveolar carcinoma). When untreated, ground-glass 
opacity nodules gradually develop a solid component. The greater 
the solid component or the invasive component, the less favorable 
outcomes after treatment for patients with ground-glass opacity 
nodules. Based on the clinical, radiologic and pathologic findings, 
the concept of multistep progression from preinvasive atypical 
adenomatous hyperplasia through noninvasive adenocarcinoma 
in situ to invasive adenocarcinoma has been postulated. Recently, 
evidence has accumulated explaining this putative concept by 
molecular alterations, including activating mutation of oncogenes 
and inactivation of tumor suppressor genes by epigenetic changes 
or loss of heterozygosity. This review 1) comprehensively outlines the 
accumulated knowledge regarding radiologic and pathologic 
features of adenocarcinoma and its precursor which presents as 
ground-glass opacity and 2) summarizes the molecular basis of 
the multistep progression to lung adenocarcinoma. As a result, we 
believe identification of undiscovered molecular markers involved in 
the progression of lung adenocarcinoma is critical for early detection 
of lung cancer and the development of targeted therapeutic and 
chemoprevention strategies.

Abbreviations
AAH: Atypical Adenomatous Hyperplasia; ADC: 

Adenocarcinoma; AIS: Adenocarcinoma in situ; BAC: 
Bronchioloalveolar Carcinoma; CT: Computed Tomography; 
GGO: Ground-Glass Opacity; LOH: Loss of Heterozygosity; MIA: 
Minimally Invasive Adenocarcinoma; NGS: Next Generation 
Sequencing; NSCLC: Non-Small Cell Lung Cancer; PET: Positron 
Emission Tomography; WHO: World Health Organization

Introduction
Lung cancer is the leading cause of cancer deaths in the United 

States and worldwide with over 1.3 million deaths in 2008 [1-3]. 
Despite the fact that enormous resources have been spent on research 

involving molecular and therapeutic aspects of lung adenocarcinoma 
(ADC), there has been no significant improvement in the mortality 
associated with lung cancer for the past 25 years. This can be attributed 
in part to untimely diagnosis at advanced stages or recurrence 
occurring even after optimal treatment at early stages. About 70% 
of patients are diagnosed with lung cancer at advanced stages when 
there is little chance to cure [4]. Although patients diagnosed at early 
stages receive curative-intent complete resection by surgery, about 
20% of them will not survive due to recurrence within 5 years [5-12]. 
One cause may be that patients already have microscopic systemic 
metastases in other distant organs at the time of surgery. In order 
to reduce the mortality and eventually to overcome lung cancer, 
understanding carcinogenesis and tumor progression is paramount. 

ADC is the most common histologic type of non-small cell lung 
cancer (NSCLC) in the United States, accounting for almost half of all 
lung cancers [13,14]. ADC tends to develop distant organ metastases 
easily even in early stage compared to squamous cell carcinoma, 
underscoring the need for early detection methods. A multistep 
progression concept from a precursor lesion (atypical adenomatous 
hyperplasia, AAH) through noninvasive tumor (bronchioloalveolar 
carcinoma, BAC; BAC is currently renamed adenocarcinoma in 
situ (AIS), but the term BAC from published articles remained 
unchanged in this review) to invasive ADC has been postulated based 
on a variety of clinical, pathologic, and molecular studies [15-18]. It 
was reported that AAH was frequently detected at the periphery of 
invasive ADC in surgically resected lungs for pulmonary carcinoma 
[17,19]. Other reports showed the multistep progression of lung ADC 
with ground-glass opacity (GGO) features by performing a long-term 
follow-up with regular CT scans in the same patient [20,21]. This 
concept appears to be consistent with radiologic-pathologic features 
and molecular events.

A clear understanding of biological events during the progression 
of lung ADC will be critical for identifying molecular biomarkers 
related to carcinogenesis and tumor progression. Ultimately, it will 
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facilitate early detection of lung cancer, contribute the development 
of targeted therapeutic strategies, and ideally widen the scope of 
chemoprevention. This review comprehensively summarizes the 
accumulated knowledge regarding (1) radiologic features of the 
preinvasive lesion or early-stage ADC, (2) pathologic findings 
of AAH, BAC (AIS) or ADC, and (3) genetic and (4) epigenetic 
alterations associated with the concept of multistep progression of 
ADC to provide a better understanding of carcinogenesis in a subset 
of lung ADC.

Radiologic and Pathologic Features
With recent advances in diagnostic imaging modalities, small 

indeterminate nodules such as GGO lesions have been increasingly 
detected on high-resolution computed tomography (CT) scans [22-
25]. In addition, the introduction of low-dose helical CT scanning 
for lung cancer screening has further increased the detection rate of 
small GGO lesions. Recently, the observation from the National Lung 
Screening Trial that low-dose CT screening can reduce mortality 
from lung cancer obviously justified the use of CT screening in clinical 
practices and it is anticipated that GGO lesions will be detected more 
commonly [26]. 

GGO is defined as hazy opacity with increased lung attenuation 
that does not obscure underlying bronchial structures or pulmonary 
vessels at high-resolution CT [27] (Figure 1). Since GGO only 
refers to a morphologic finding on CT scans, nodules with GGO 
morphology may represent various pathologic entities such as 
inflammation, alveolar hemorrhage, eosinophilic lung disease, 
pulmonary lymphoproliferative disorder, organizing pneumonia, 
and neoplasm [28]. When GGO nodules are transiently observed and 
disappear thereafter, they are more likely to have been inflammation 
or hemorrhage. In contrast, GGO nodules that persist for more than 
several months could be a sign of early-stage ADC or its precursor [29-
35]. Nakata et al. reported that GGO nodules persistently observed 
for several months turned out to be early-stage ADC such as BAC 
(AIS) or AAH [29]. The appeal of predicting the pathologic diagnoses 
based on noninvasive tests like CT scans led numerous attempts to 
elucidate the histopathologic findings of GGO nodules and correlate 
them with CT findings [29,31-33]. 

Prior to the introduction of such an ‘attractive’ high-resolution 
CT scanning, Noguchi et al. first conducted a large systematic 
study regarding the histologic features of small peripheral lung 

ADC measuring 2 cm or less in diameter and then classified them 
into six subtypes [34] Type A corresponds to localized BAC; type 
B, localized BAC with foci of collapsed alveolar structures; type C, 
localized BAC with foci of active fibroblastic proliferation; type D, 
poorly differentiated ADC; type E, tubular ADC; and type F, papillary 
ADC with evidence of compressive and destructive growth. Types A, 
B, and C (“replacement” early ADC), unlike types D, E, and F (“non-
replacement” invasive ADC), represent a distinct group, because 
they show a lepidic growth pattern, which is characterized by tumor 
cell growth replacing normal alveolar lining cells. These tumors with 
replacement or lepidic growth pattern appear radiographically as a 
localized GGO lesion at high-resolution CT scans.

Since Noguchi et al. first proposed this novel classification, 
significant changes have been made in the World Health 
Organization (WHO) classification of lung ADC, which reflects our 
better understanding of the histopathologic features [36]. A major 
change made in the 1999 WHO classification and maintained in the 
2004 WHO classification was the addition of AAH as a premalignant 
lesion [36]. AAH is defined as a localized proliferation of mildly 
to moderately atypical type II pneumocytes and/or Clara cells 
lining alveolar walls and sometimes, respiratory bronchioles when 
underlying interstitial inflammation and fibrosis are absent (Figure 
2). The proliferation results in focal lesions of the peripheral lung, 
usually less than 5 mm in diameter [37]. On the other hand, BAC 
is a localized noninvasive ADC with a pure lepidic growth pattern 
restricted to neoplastic cells along preexisting alveolar structures and 
no evidence of stromal, pleural, or vascular invasion [36,38] (Figure 
2). By definition, BAC corresponds to Noguchi type A and B lesions. 
Numerous clinical studies on solitary small (<2 or 3cm) lung ADC 
with a pure lepidic growth, that is, BAC have shown 100% disease-
free survival after a curative-intent surgical resection [34,39-45].

However, if a GGO nodule (pathologically AAH or BAC) is 
not surgically resected and merely followed up by repeated CT 
scans without treatment, it increases in size and a solid component 
within the lesion tends to appear and increase in extent [46,47]. 
Takashima et al. conducted a serial CT follow-up study on the 
natural course of lung ADCs with GGO components and showed 
that GGO subsequently increased in size in 75% of patients, 17% 
of patients developed solid components within the nodule, and the 
solid portions increased in 23% patients [46]. Such a GGO nodule 
containing the solid component in it is called mixed GGO (part-
solid nodule), whereas a GGO nodule without any solid component 
is called pure GGO (non-solid nodule) [32,48] (Figure 1). Solid 
components within GGO nodules pathologically represent areas of 
collapsed alveoli or fibroblastic proliferation and these mixed GGO 
nodules correspond to Noguchi type B and C lesions [34,46,49,50]. 
Greater the solid component corresponds with greater possibility of 
an invasive growth component [51-53]. Kodama et al. demonstrated 
that radiologic GGO components correlated with BAC components 
in pathologic specimens of ADC [54]. In the same context, AAH and 
BAC are manifested by pure GGO, whereas invasive ADCs include 
a greater solid component within GGO on CT scans. There have 
been several reports that lung cancer patients with smaller solid 
component had a much better prognosis than those with greater solid 
component [39,54,55]. For this reason, the diagnosis of BAC is based 
upon a premise that the entire tumor has no areas of invasion upon 
pathologic examination. It is therefore highly controversial to make a 
final diagnosis of BAC based on a small biopsy or cytology specimen 

A) B)

Figure 1: Images of ground-glass opacity (GGO) nodules on high-resolution 
computed tomography (HRCT) scans. GGO is defined as hazy opacity 
with increased lung attenuation that does not obscure underlying bronchial 
structures or pulmonary vessels at HRCT. When untreated, GGO nodules 
can gradually develop a solid component. Such a GGO nodule without any 
solid component is called pure GGO (non-solid nodule, A), whereas a GGO 
nodule containing the solid component in it is called mixed GGO (part-solid 
nodule, B).
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alone. However, it should be noted that identification of small GGO 
nodules at CT in fact may lead to overdiagnosis and unnecessary 
treatment [56]. The question can be raised whether surgical resection 
is really needed for such a small pure GGO lesion, considering the 
fact that it grows very slowly or not at all during follow-up when 
untreated. In the same context, many surgeons demonstrated 
that limited surgical resection such as wedge resection rather than 
lobectomy is enough for small pure GGO lesions [57-59].

Nonetheless, many researchers and clinicians still use the term 
BAC for a broad spectrum of tumors from solitary small noninvasive 
lung tumors with a 100% 5-year survival [34] to invasive ADCs 
with minimal invasion that also have almost 100% 5-year survival 
[60,61] or mixed subtype invasive ADCs [62,63], creating great 
confusion in both clinical and research fields. Recently, new lung 
ADC classifications have been proposed by the European Respiratory 
Society, International Association for the Study of Lung Cancer, and 
American Thoracic Society [18]. The proposal strongly recommended 
discontinuing the use of the term BAC and instead recommended 
that the term ‘AIS’ should be used for small (≤3cm), solitary ADCs 
with pure lepidic growth to define patients who should have 100% 
disease-specific survival upon complete resection. When small 
(≤3cm), solitary ADCs have predominant lepidic growth and small 
foci of invasion measuring 0.5 cm or less, a new concept of ‘minimally 
invasive adenocarcinoma (MIA)’ is proposed to define patients who 
should have nearly 100% disease-specific survival upon complete 
resection. For invasive ADCs, comprehensive histological subtyping 

should be used to assess histologic patterns semiquantitatively in 5% 
increments, choosing a single predominant pattern.

Concept of Multistep Progression
Based on clinical implications and pathologic findings, many 

researchers proposed a hypothesis of multistep carcinogenesis in 
which some lung ADCs arise from preneoplastic lesions called AAH, 
which progress to AIS, eventually developing into invasive ADC 
[15-18]. This concept was initially proposed in the field of colorectal 
cancer, in which colorectal carcinogenesis involves a multistep process 
from normal mucosa and inflammation, through early and late 
adenomas to invasive carcinoma [64,65]. If specimens for histologic 
analysis could easily be obtained repeatedly over time in the same 
patient, it would be an ideal method to elucidate the natural history 
of cancer. In colon cancer, this longitudinal study can be performed 
because it is relatively easy to obtain colon cancer specimens via an 
endoscopic approach. However, in lung cancer, such a procedure is 
more challenging especially in peripheral lung cancer, because it is 
rarely accessible via an endoscopic approach. Furthermore, it is much 
more difficult to obtain specimens if the lesion of interest is at an 
early stage such as AAH [66]. Although serial morphologic changes 
in imaging tests such as CT or positron emission tomography (PET) 
can be an alternative way to demonstrate the multistep progression of 
lung ADC [20,21], it cannot be guaranteed that radiographic features 
are equivalent to pathologic findings. Otherwise, it cannot help but 
compare individual lesions from different patients and a temporal 
assumption is inevitable in this cross-sectional method, which should 
be interpreted with caution. It should also be noted that the time 
point at which genetic or epigenetic alterations occur might differ 
from patient to patient, since it is still difficult to tell exactly when 
these alterations first occur. In addition, genes affected in a specific 
pathway might vary from tumor to tumor, because not all molecular 
changes will be fully penetrant and only a portion of tumors will gain 
a specific molecular change [67]. Furthermore, since lung ADC can 
no longer be considered a single type of tumor but rather a group 
of distinct subsets that arise from different molecular pathways, the 
concept of multistep progression carcinogenesis is not necessarily 
applicable to all ADCs [68]. 

In spite of all these limitations regarding the concept of multistep 
progression of lung ADC, there is sufficient pathologic and molecular 
evidence to substantiate this putative hypothesis of multistep 
carcinogenesis in lung ADC. First, AAH is frequently detected 
at the periphery of invasive ADC in lung cancer patients [17,19]. 
This phenomenon is relevant to the histopathological similarity 
between AAH and AIS [69-71]. Second, numerous molecular 
studies demonstrate that specific genetic alterations occur at similar 
frequencies in AAH and ADC, which reinforce the concept of AAH-
AIS-ADC progression [66]. Multiple studies demonstrated close 
association between AAH and lung ADC including clonality [72,73], 
K-ras mutations [74,75], K-ras polymorphisms [76], epidermal 
growth factor receptor (EGFR) mutations [77], p53 expressions 
[78], loss of heterozygosities [79], methylations [80], telomerase 
overexpressions [81], eukaryotic initiation factor 4E expressions [82], 
epigenetic alterations in the Wnt pathway [83], and FHIT expressions 
[84]. For example, activating K-ras mutations are found with similar 
frequency in AAH and ADC [75,85] and the mutually exclusive 
features of EGFR and K-ras mutations observed in lung ADC are 
also found in AAH [74]. In addition, loss of heterozygosity events at 
specific chromosomal regions are detected at similar frequencies in 

A) B)

C) D)

E)

Figure 2: Photomicrograph (Hematoxylin-Eosin stain; original magnification, 
x 100) of normal lung structure (A), adenocarcinoma and its precursors 
(B to E). Atypical adenomatous hyperplasia (B) is a localized proliferation 
of mildly to moderately atypical type II pneumocytes and/or Clara cells 
lining alveolar walls, usually less than 5 mm in diameter. Adenocarcinoma 
in situ (C, formerly known as bronchioloalveolar carcinoma) is a localized 
noninvasive adenocarcinoma with a pure lepidic growth pattern restricted 
to neoplastic cells along preexisting alveolar structures and no evidence of 
stromal, pleural, or vascular invasion. Minimally invasive adenocarcinoma (D) 
has a predominant lepidic growth and small foci of invasion measuring 0.5 cm 
or less. When foci of invasion are greater than 0.5 cm, it should be classified 
into invasive adenocarcinoma with lepidic predominant (E).
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AAH and ADC [79,86]. Third, the postulated progression of AAH 
to AIS and then ADC is supported by conditional oncogenic mouse 
models in which EGFR or K-ras genes are activated. In both types of 
mice, AAH-like lesions are detected before ADCs develop, implying 
AAH as a precursor of ADC [87,88].

Genetic Alteration
Lung ADC arises from the accumulation of enormous genetic and 

epigenetic changes, giving advantages to neoplastic cells in cellular 
growth and/or survival with progression depending mainly on the 
balance between oncogene activation and tumor suppressor gene 
inactivation [89]. To date, over 100 oncogenes have been identified 
such as ras and tyrosine kinase receptors (EGFR, c-erb-B2 (HER-2 
⁄neu)). Many of these behave dominatly in that only one allele needs 
to be overexpressed to have effect [77]. In contrast, tumor suppressor 
genes behave as recessive genes and thus both alleles need to be 
inactivated either by epigenetic modifications (predominantly by 
promoter methylation), allelic deletion or mutation [71]. 

EGFR

Many AAH and AIS cases have been found to harbor EGFR gene 
mutation and these findings suggest that EGFR mutation has a critical 
role in the pathogenesis of lung ADC [75,77,90-93]. Furthermore, 
transgenic mouse models expressing mutated EGFR genes in type 
II pneumocytes develop AAH, BAC, and invasive ADC with a 
nonmucinous BAC component in the lung in a time-dependent 
manner [87,94]. Ligand binding to EGFR leads to receptor tyrosine 
kinase activation and a series of downstream signaling activation 
mediates increased cellular proliferation, migration, invasion and 
suppression of apoptosis [95]. Mutations responsible for its oncogenic 
activation and depending on the ligand (EGF, transforming growth 
factor-alpha, insulin-like growth factor-1, platelet-derived growth 
factor, amphiregulin) favor deregulated proliferation, differentiation, 
apoptosis and angiogenesis [71]. Somatic mutations of EGFR are 
characterized by two major hotspots, in-frame deletions in exon 
19 and a specific missense mutation in exon 21 (ie, L858R), which 
constitute almost 90% of the EGFR mutations in lung ADC [90-
95]. ADCs with these mutations have been reported in certain 
demographic populations, including female gender, never or light 
smoking status and East Asian ethnicity [101,102]. Histologically, 
they tend to be associated with ADC especially with nonmucinous 
BAC component [101,102]. More Importantly, patients with lung 
ADC harboring these mutations are responsive to EGFR tyrosine 
kinase inhibitors such as gefitinib and erlotinib [96-101]. 

Based on these clinical circumstances, many investigators tried 
to elucidate the evidence of multistep progression from noninvasive 
to invasive tumors by comparing the incidence of EGFR mutation 
between AAH and AIS or MIA. The incidence of EGFR mutations 
in AAH varies from 3% to 44% [77,90,103]. Kozuki et al. reported 
that EGFR mutations were detected in 44% of AAHs (four of nine 
cases) [103], whereas Yoshida et al. showed that the incidence of 
EGFR mutation in AAH was only 3% (one out of 35 cases) [77]. 
The differences in these frequencies might be due to the sensitivity 
of the assays to detect EGFR mutations as there were fewer AAH 
cells than in the surrounding normal cells. Although the refinement 
of microdissection techniques coupled with improvements in PCR 
amplification has made it possible to study AAH lesions at the 
molecular genetic level [19], it remains technically challenging 
to conduct a molecular analysis for AAHs due to their small size. 
Nonetheless, the fact that EGFR mutations are detected even in AAH 

is undeniable and this suggests that EGFR mutations occur early in 
the development of lung ADC before progression to invasive tumors 
(Figure 3).

In contrast, the incidence of EGFR mutations in invasive ADC 
ranged from 23% to 50%, which seems to be relatively higher than that 
of AAHs [77,90,91,103]. Sakuma et al. reported that 15 of 17 (88%) 
pure nonmucinous BAC (AIS) and 49 of 65 (75%) invasive ADC with 
a nonmucinous BAC component had EGFR mutations [92]. These 
results imply that persistent EGFR signaling from activating EGFR 
mutations would be essential for the development and maintenance 
in lung ADCs with a nonmucinous BAC component [92]. Apart 
from these dissimilar frequencies of EGFR mutations based on the 
invasiveness of lung ADCs, the findings that EGFR mutations are 
detected in noninvasive tumors as well as invasive tumors indicate 
that EGFR mutation is an early event in the pathogenesis of lung 
ADCs [70,104-106].

While many researchers reported that EGFR mutation is an 
early event during the multistep progression of lung ADCs, EGFR 
amplification is considered to be a late event. Soh et al. found that 
EGFR mutations were present in 39.5% of noninvasive tumors and 
50% of invasive tumors, while EGFR copy number was increased in 
7.9% and 31.8% of noninvasive and invasive tumors, respectively 
[70]. They concluded that EGFR mutations occur early during the 
multistage pathogenesis of lung ADCs, but increased EGFR copy 
number is a late event during tumor development and plays a role in 
the progression of lung ADC independent of the initiating molecular 
events. This finding is in line with other reports that demonstrate 
EGFR mutations preceding amplification, with amplification favoring 
the mutant allele [107].

Like EGFR mutations, c-erb-B2 mutations are found most 
commonly in female Asian non-smokers with adenocarcinoma and 
are mutually exclusive with KRAS mutations [108]. HER2 protein 
expression was reported in 7% of AAH whereas up to 67% of lung 
ADC showed positive staining for HER2 protein [109,110]. HER2 
overexpression in AAH and BAC suggests that the tyrosine kinase 
signaling pathway is altered by a variety of mechanisms before 
adenocarcinoma reaches its invasive stage. HER2 protein staining 
is also related to increased cellularity and pleomorphism of AAH. 
Therefore, it has been speculated that AAH is premalignant and 
abnormal c-erb-B2 proto-oncogene expression may occur in the later 
carcinogenic sequence [109].

K-ras

K-ras is a member of the ras family of oncogenes, and is 
located downstream of the EGFR surface receptor pathway. K-ras 
gene encodes a membrane-associated guanine nucleotide-binding 
protein of approximately 21 kD in size, designated p21-ras and 
activation of K-ras genes by mutations may contribute to malignant 
transformation [111-115]. K-ras mutations are found in 10 to 30% in 
NSCLC, especially ADCs, and over 90% of the mutations occurred 
in codon 12, occasionally in codon 13, and rarely in codon 61 [116-
120]. Like EGFR mutation, K-ras mutation has also been detected in 
certain demographic populations, including non-East Asian male 
and ever smokers. Histologically, tumors tend to be associated with 
wild-type EGFR and contain mucinous BAC component features 
[102,117,118,121-123]. More importantly, K-ras mutations are found 
more frequently in patients who are resistant to therapy with EGFR 
tyrosine kinase inhibitors [124].
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Initial studies mainly focused on the K-ras proto-oncogene as 
a likely target of mutational activation for several reasons [19]: (1) 
activating mutations of K-ras are detected in 24-50% of lung ADCs, 
but they are much less frequent in other subtypes of lung cancer 
[117,125]; (2) K-ras mutations are easy to detect because they 
involve straightforward base substitutions that predictably target 
codon 12 [117]; and (3) models of lung tumorigenesis addressing 
the chronological sequence of mutational events predict that 
K-ras activation is an early event that precedes malignant growth 
[85,126,127]. Therefore, K-ras mutations are the most extensively 
investigated genetic alterations in AAH and previous reports 
demonstrate that K-ras mutations are found in 15-50% of AAH 
[15,75,93,128,129]. These findings indicate that K-ras mutation 
is also an early event in the multistep carcinogenesis of lung ADC 
[15,75,93,128] (Figure 3).

Although K-ras mutation is frequently found in AAH, its 
incidence is relatively less frequent than that of EGFR mutations in 
AAH. K-ras mutations in AAH or in ADCs with a nonmucinous 
BAC feature were much less frequent than those with a mucinous 
BAC component [130]. Moreover, AAHs are strikingly similar to 
nonmucinous BAC, but quite different from mucinous BAC in 
histopathologic features. These observations suggest that AAH do 
progress sequentially to nonmucinous BAC, but not to mucinous 
BAC [130]. 

TP53

Mutation of the TP53 gene is one of the most frequent genetic 
alterations in lung cancer. TP53 is a tumor suppressor gene and its 
protein product is considered to play an important role in the control 
of cell cycle, DNA repair, apoptosis, and cell differentiation [131]. It 
reduces Rb phosphorylation and induces a G1-S checkpoint arrest to 
allow DNA repair or to drive cells to apoptosis mediated by Bax/Bcl-
2 [71]. Its funtion is lost by mutation or inhibition of p53 pathway. 
Abnormalities of the TP53 gene, mainly missense mutations, result 

in an impairment of the normal functions of the TP53 gene [131]. 
Since TP53 mutations lead to intranuclear accumulation of non-
functional, stabilized p53 protein, immunohistochemical detection 
of p53 protein is an indirect measurement of TP53 gene mutations. 
Using this method, the expresion of p53 protein in AAH, BAC and 
ADC has been studied by several researchers. Kerr et al. demonstrated 
that p53 protein was detected in 28% and 53% of AAH and ADC, 
respectively [109]. Kitamura et al. showed p53 expression in 5% 
to 8% of AAH lesions and 8% to 62% of BAC [78]. These findings 
indicate that the frequency of p53 nuclear accumulation sequentially 
increases from AAH to BAC and ADC. Therefore, this suggests that 
p53 overexpression might not be common even in the earliest stage 
of lung ADC and thus might be related to invasivenss in the tumor 
progression of lung ADC rather than initiation of tumor.

Loss of heterozygosity (LOH)

Inactivation of tumor suppressor genes is also an important factor 
in lung carcinogenesis. Loss of function of a specific gene occurs 
mainly by aberrant DNA methylation of its promoter region (will be 
described in the next section) and/or loss of heterozygosity (LOH) of 
the chromosomal region on which the gene is located. Many reports 
demonstrate that tumor and adjacent normal tissue from lung cancer 
patients contain LOH at distint regions of chromosomes [132-136]. 
Deletions on chromosomal arms 3p, 2p, 12p, 9p, 8p, and 17p have 
been found to be widespread throughout the lungs of smokers even 
in the absence of overt histopathologic changes, suggesting that these 
alterations occur during the earliest stages of lung tumorigenesis 
[132-138].

LOH accumulates in crucial chromosomal regions in a stepwise 
manner during the multistep sequential progression of lung ADC 
[139]. When compared to histologically normal adjacent lung, 
AAH shows LOH of distinct regions of chromosomes 3p (18%), 
9p (p16INK4a, 13%), 9q (53%), 16p, 17q, and 17p (TP53, 6%), and 
these are changes also frequently detected in lung ADCs [140-143]. 

Figure 3: A summary of genetic and epigenetic alterations in multistep progression of lung cancer. Serial genetic (mutation and LOH) and epigenetic (aberrant 
methylation) changes from AAH through ADC are shown. 
AAH: Atypical Adenomatous Hyperplasia; AIS: Adenocarcinoma in situ; MIA: Minimally Invasive Adenocarcinoma; LOH: Loss of Heterozygosity; ADC: 
Adenocarcinoma
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A detailed investigation of loci related to LOH in BACs and small 
ADCs, showed localized loss of 5q(APC), 9p(CDKN2A), 13q(RB1), 
17p(TP53) and 18q(SMAD4) in BAC, while LOH of 3p(FHIT) and 
11q(INT2) did not become prominent until invasion [139]. This 
finding is consistent with the observed persistence of FHIT protein 
expression in AAH and BAC but loss of expression in invasive disease 
[84]. FHIT is a member of the histidine triad gene family involved in 
purine metabolism and it is known to work as a tumor suppressor 
gene. This late loss of FHIT is a very interesting finding in light of 
the observation of methylation of this locus in lavage fluid from 
cancer-negative cases [144], suggesting that genes become inactivated 
by different mechanisms at different times. Similarly, in the case of 
CDKN2A (p16INK4a), biallelic inactivation through LOH combined 
with hypermethylation was seen in 22% of ADCs, providing a 
mechanism for progressive CDKN2A deregulation [145]. The p16 
gene encodes cell cycle proteins (inhibitor of CDK4 and CDK6) 
and negatively regulates cyclin D-dependent phosphorylation of the 
Rb gene product, thereby inhibiting cell cycle progression from G1 
to S-phase by sequestration of E2F [146,147]. These observations 
imply that deletions at chromosomal loci 5q, 9p, 11q, and 13q are 
relatively early events, which suggests that inactivation of the APC, 
p16 (CDKN2A), INT2, and Rb genes might be functionally associated 
with the pathogenesis of lung ADC and also indicate that deletions 
of 3p, 17p, 18q, and 22q increase significantly during the course of 
malignant progression (Figure 3).

Epigenetic Alteration
Silencing of various tumor suppressor genes by epigenetic 

alteration is also an important mechanism in human carcinogenesis 
[148]. Epigenetic changes in one allele and LOH or another epigenetic 
changes of the remaining allele can also result in biallelic inactivation 
of tumor suppressor genes [149-152]. Aberrant DNA methylation 
is a typical epigenetic change that has been extensively detected in 
nearly all types of cancer [153-158], including lung cancer [156-158]. 
DNA hypermethylation mainly occurs in the CpG islands located in 
the promoter regions of tumor suppressor genes, effectively silencing 
the gene without any accompanying alterations in the DNA sequence 
[153]. This phenomenon is very widely observed in lung ADC, which 
suggests that DNA hypermethylation plays a critical role in the 
pathogenesis of lung ADC.

Although DNA methylation is common in lung ADC, it is still 
unknown how frequently a specific gene is methylated at different 
steps during the multistep cancer progression. This is partly because 
AAH lesions provide little DNA due to their limited size. Nonetheless, 
many researchers have tried to determine the biological implication 
of DNA hypermethylation in the multistep tumor progression by 
comparing the frequencies at which loci are aberrantly methylated 
between noninvasive and invasive tumors. Licchesi et al. observed 
significant increase of hypermethylation of p16INK4a, DAPK, MGMT, 
RAR, RASSF1A, and hTERT genes in the histologic progression 
from normal to AAH, with low grade or high grade atypia and 
finally adenocaricnoma [80]. Tanaka et al. reported that the aberrant 
methylation of p16INK4a was significantly more frequent in invasive 
tumors (Noguchi type C) than in noninvasive tumors (Noguchi type 
A or B) [159]. Kubo el al. showed that the aberrant hypermethylation 
of p16INK4a, RASSF1A and CDH13 was significantly more frequent 
in invasive tumors (Noguchi type C) than in noninvasive tumors 
(Noguchi type A or B) using a methylation-specific PCR assay and 
this finding suggests that methylation of these genes play roles in the 

development of late-stage lung ADC, especially the acquirement of 
invasiveness [160]. 

Recently, Chung et al. showed that aberrant methylation of 
HOXA1, TMEFF2 and RARB occurred in noninvasive stages (AAH 
and AIS) and aberrant methylation of PENK, BCL2, RUNX3, DLEC1, 
MT1G, GRIN2B, CDH13, CCND2, and HOXA10 was more closely 
associated with the invasive stage than the noninvasive stage. These 
findings suggest that promoter CpG island hypermethylation occurs 
at an early stage of multistep pulmonary ADC (ADC) development 
and accumulates to the progression of ADC [161]. Selamat et al. 
performed a more comprehensive analysis for DNA methylation 
levels of histologically normal adjacent non-tumor lung, AAH, AIS, 
and invasive ADC at 15 CpG islands that are frequently affected in 
lung ADC using sensitive real-time PCR [162]. Loci in which DNA 
hypermethylation occurred in AAH (CDKN2A and PTPRN2) 
were different from those in AIS (2C35, EYA4, HOXA1, HOXA11, 
NEUROD1, NEUROD2 and TMEFF2) and invasive ADC (CDH13, 
CDX2, OPCML, RASSF1, SFRP1 and TWIST1) (Figure 3). This 
finding suggests that DNA hypermethylation of distinct loci develops 
at different time points during the development of lung ADC. 
Moreover, the fact that the number of methylated loci gradually 
increased from AAH to AIS and invasive ADC supports a model in 
which AAH and AIS are precursor lesions of a subset of lung ADCs. 

Future Direction
Since the concept of multistep development and progression 

of lung ADC was postulated, supporting evidence has been 
accumulating in clinical, radiologic, pathologic and molecular studies. 
As mentioned earlier, however, a critical challenge that researchers 
are still facing in studying the molecular basis of this concept is 
limited availability of tissue samples. This is mainly due to the limited 
size of these early lesions like AAH, which are by definition smaller 
than 5mm and contain few cells from their alveolar structure [17]. 
Another reason is related to the fact that clinicians are reluctant to 
perform a surgery for early indolent nodules with GGO features. A 
possible solution to overcome this limitation is to find an alternative 
way of obtaining tissue samples by AAH or AIS-derived cell lines. 
This interesting approach was done by Shimada and coworkers, who 
compared a cell line derived from an AAH lesion (PL16T) with its 
normal counterpart (PL16B) [163]. Although there is still concern 
whether these cells maintain their AAH or AIS characteristics [66], 
this alternative method will potentially shed light on how to study 
the molecular alterations occurring during the development and 
progression from AAH to AIS and ADC. Another way to solve the 
limited specimen issue is to make better use of it by high-throughput 
technologies such as next generation sequencing (NGS) and tissue 
microarray. Data generated by high-throughput experiments need to 
be further analyzed by bioinformatics methods. 

Apart from understanding the molecular basis of carcinogenesis, 
this effort to elucidate the concept of multistep progression can be used 
to develop a new biomarker specific for the different developmental 
stages of lung ADC. Moreover, considering that some epigenetic hits 
might be reversible in principle, newly-detected molecular alterations 
can be utilized to function as a potential therapeutic target or a great 
guide to chemoprevention.
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