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Abstract 

Neuroinflammation is a crucial mechanism related to many neurological diseases. Extensive studies in recent years have 

indicated that dysregulation of Glycogen Synthase Kinase 3 Beta (GSK3β) contributes to the development and progression 

of these disorders through regulating the neuroinflammation processes. Inhibitors of GSK3β have been shown to be 

beneficial in many neuroinflammatory disease models including Alzheimer’s disease, multiple sclerosis and AIDS dementia 

complex. Glial activation and elevated pro-inflammation cytokines (signs of neuroinflammation) in the spinal cord have 

been widely recognized as a pivotal mechanism underlying the development and maintenance of many types of 

pathological pain. The role of GSK3β in the pathogenesis of pain has recently emerged. In this review, we will first assess 
the GSK3β structure, regulation, and mechanisms by which GSK3β regulates inflammation. We will then describe 

neuroinflammation in general and in specific types of neurological diseases and the potential beneficial effects induced by

inhibiting GSK3β. Finally, we will provide new evidence linking aberrant levels of GSK3β in the development of pathological 

pain. 

mailto:hrweng@uga.edu
http://www.avensonline.org/
http://www.avensonline.org/pharmaceutical/pharmaceutics-pharmacology/home-27/
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Introduction

Glycogen synthase kinase 3 (GSK3) is a serine/threonine 

protein kinase, which is part of the mitogen activated protein 

(MAP) kinase family and is pivotal in many signaling cascades 

[1]. GSK3 is important in metabolism and signaling in 

development. The role of GSK3β in mediating peripheral and 

central nervous system inflammation in a multitude of

neurological disorders has been extensively studied [2-6+. 

Studies of the role of GSK3β in pathological pain have recently 

just begun [5,7]. In the brain, GSK3β is localized primarily to 

neurons *8+, but has also been shown to be in glial cells [9]. 

Inflammation of the brain has become recognized as a

common feature shared by many neurological disorders like 

Alzheimer’s disease[10-12], schizophrenia [13,14], multiple

sclerosis [15,16], and HIV induced dementia [17,18]. Aberrant

levels or activities of GSK3 play a critical role in the

development of these diseases and pharmacological inhibition

of GSK3β ameliorates these diseases *19-23]. Inflammation is

also a critical component contributing to the development and

maintenance of pathological pain induced by peripheral tissue

or nerve injury. Accumulation of inflammatory cells including

macrophages, neutrophils at the peripheral injury site and the 

dorsal root ganglion, proliferation and activation of microglia

and astrocytes in the spinal dorsal horn, as well as the release 

of pro-inflammatory cytokines and other pro-inflammatory

mediators in the injury site, the dorsal root ganglion and the 

spinal dorsal horn have all been shown to contribute to the 

development and maintenance of pathological pain [24-27]. 

Similarly, pharmacological inhibition of GSK3β has been 

recently shown to attenuate pathological pain induced by

nerve injury or formalin injection [5,7]. 

In this review, we will first briefly discuss the history,

structure, regulation, and pharmacology of GSK3β. We will

then provide an overview of neurological diseases including 

pathological pain where neuroinflammation plays a crucial role

and how GSK3β may play a role in the progression of these 

diseases. 

Brief History, Functional Properties, and Structural

Insights of GSK3

Glycogen Synthase Kinase 3 (GSK3) was first purified

from rabbit skeletal muscle in 1980 and subsequently classified

as a kinase based on its ability to phosphorylate and inactivate

Glycogen Synthase, acting as a regulator in Glycogen synthesis 

[28]. However, Glycogen Synthase was thought to exist as early 

as the 1960s [29]. This kinase was later isolated and 

characterized from rat skeletal muscle [30]. Three forms of 

Glycogen Synthase Kinase were further identified that are

referred to as Glycogen Synthase Kinase 3, Glycogen Synthase 

Kinase 4, and Glycogen Synthase Kinase 5, which regulates 

Glycogen Synthase by producing different levels of

phosphorylation [31]. Glycogen Synthase Kinase 5 is referred to

as Casein Kinase-2 (CK2), which is a primer of Glycogen 

Synthase that is phosphorylated by GSK3 [32,33]. In the early 

1990s, it was shown that there are two similar forms of GSK3, 

GSK3-alpha (GSK-3α) and GSK3-Beta (GSK-3β)*8,34]. GSK3α and 

GSK3β differ in their C and N terminals, however, they share 

98% sequence homology in their catalytic domains resulting in

84% overall sequence homology [8]. GSK3 is a serine/threonine 

kinase which is constitutively active in resting cells from a 

variety of tissues [35,36]. GSK3 has been implicated in many

cellular processes and is thought to phosphorylate over 50 

substrates [6]. In the following sections, we will mainly focus on 

GSK3β. 

Through recent advances in bioinformatic approaches,
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 we have used the web service software from pathwayLinker to 

produce   a   link   between  GSK3β  and  its  signaling  pathways 

(Figure 1) [37]. In addition to the protein signaling pathways, 

Table 1 represents signaling pathways where GSK3β is 

significantly   involved   [37].    As  can  be  seen  in  Figure 1  and 

Table 1, GSK3β is involved in a diverse range of signaling 

pathways. Some of the classic pathways involved in

inflammation and pain which are represented in Table 1 are the 

chemokine, B cell, opioid, leukocyte, and toll-like receptor 

signaling pathways.  

Figure 1: GSK3β and first neighbor interactions in Homo sapiens. The dark gray nodes represent interactions involved with proteins in non-signaling pathways. The light

gray nodes represent interactions with proteins in signaling pathways. Schematic and interactions of GSK3β were produced using PathwayLinker [37].



 J Pharmaceutics Pharmacol Volume 1 Issue 1 

Signaling pathway  Displayed proteins All proteins of pathway P-value 

Cancer (KEGG) 22 502 1.6 x 10
-30

 

WNT (KEGG)  16 229 1.2 x 10
-25

 

Prostate cancer (KEGG) 13 127 3.1 x 10
-23

 

Endometrial cancer (KEGG) 11 73 9 x 10
-22

 

INS (KEGG)  13 196 1 x 10
-20

 

Colorectal cancer (KEGG) 11 104 5.5 x 10
-20

 

SCLC (KEGG) 10 128 6.6 x 10
-17

 

NGF (Reactome) 11 211 1.6 x 10
-16

 

CML (KEGG)  9 112 1.9 x 10
-15

 

WNT (SignaLink) 9 149 2.6 x 10
-14

 

Pancreatic cancer (KEGG) 8 111 1.8 x 10
-13

 

Adhesion (KEGG) 10 312 5.3 x 10
-13

 

NSCLC (KEGG) 7 80 1.5 x 10
-12

 

AML (KEGG) 7 84 2.2 x 10
-12

 

Chemokine (KEGG) 9 243 2.2 x 10
-12

 

Glioma (KEGG) 7 97 6.1 x 10
-12

 

Apoptosis (KEGG) 7 134 6.1 x 10
-11

 

ErbB (KEGG)  7 145 1.1 x 10
-10

 

Melanogenesis (KEGG) 7 151 1.4 x 10
-10

 

Basal carcinoma (KEGG) 6 79 1.5 x 10
-10

 

MAPK (KEGG)  9 393 1.6 x 10
-10

 

Cell cycle (KEGG) 7 173 3.6 x 10
-10

 

Melanoma (KEGG) 6 95 4.7 x 10
-10

 

Tight junction (KEGG) 7 180 4.8 x 10
-10

 

B cell (KEGG) 6 118 1.8 x 10
-09

 

Opioid (Reactome) 5 79 1.4 x 10
-08

 

NT (KEGG) 6 187 2.8x10
-08

 

Adipocytokine (KEGG) 5 95 3.5x10
-08

 

VEGF (KEGG)  5 106 6.1x10
-08

 

TGF-beta (SignaLink) 6 223 7.9x10
-08

 

Adherens junction (KEGG) 5 115 9.2x10
-08

 

Fc-gamma (KEGG) 5 124 1.3x10
-07

 

Wnt (Reactome)  4 56 2.6x10
-07

 

Bladder cancer (KEGG) 4 61 3.6x10
-07

 

Thyroid cancer (KEGG) 4 62 3.9x10
-07

 

Leukocyte (KEGG) 5 156 4.2x10
-07

 

Notch (Reactome) 3 16 4.5x10
-07

 

T cell (KEGG) 5 172 6.8x10
-07

 

MTOR (KEGG) 4 78 9.8x10
-07

 

Huntington (KEGG) 5 212 1.9x10
-06

 

P53 (KEGG) 4 93 2.0x10
-06
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Fc-epsilon (KEGG) 4 101 2.8x10
-06

 

LTP (KEGG) 4 113 4.3x10
-06

 

Toll-like (KEGG)  4 145 1.2x10
-05

 

Smooth muscle (KEGG) 4 150 1.3x10
-05

 

Notch (KEGG) 3 62 2.9x10
-05

 

Notch (SignaLink) 3 64 3.2x10
-05

 

Immune (Reactome) 5 384 3.3x10
-05

 

EGF/MAPK (SignaLink) 5 388 3.5x10
-05

 

Axon (KEGG) 4 197 3.9x10
-05

 

JAK-STAT (KEGG)  4 203 4.3x10
-05

 

Ins receptor (Reactome) 3 76 5.4x10
-05

 

Alzheimer (KEGG) 4 227 6.7x10
-05

 

Hh (SignaLink) 3 85 7.5x10
-05

 

Cholerae infection (KEGG) 3 93 9.8x10
-05

 

IGF (SignaLink) 3 93 9.8x10
-05

 

Gap junction (KEGG) 3 115 1.8x10
-04

 

Oocyte (KEGG)  3 121 2.1x10
-04

 

GnRH (KEGG)  3 136 3.0x10
-04

 

Dorso-ventral (KEGG) 2 33 4.5x10
-04

 

Prion (KEGG)  2 45 8.4x10
-04

 

DNA-sensing (KEGG) 2 63 1.6x10
-03

 

E.coli infection (KEGG) 2 72 2.1x10
-03

 

Calcium (KEGG) 3 273 2.2x10
-03

 

Hedgehog (KEGG) 2 76 2.4 x 10
-03

 

Endocytosis (KEGG) 3 284 2.5 x 10
-03

 

NOD-like (KEGG) 2 83 2.8 x 10
-03

 

RIG-I-like (KEGG) 2 87 3.1 x 10
-03

 

Actin (KEGG) 3 317 3.4 x 10
-03

 

Renal cancer (KEGG) 2 99 4.0 x 10
-03

 

Depression (KEGG) 2 102 4.2 x 10
-03

 

Helicobacter infection (KEGG) 2 103 4.3 x 10
-03

 

PtdIns (KEGG) 2 111 5.0 x 10
-03

 

TGF (KEGG) 2 112 5.1 x 10
-03

 

NK cell (KEGG) 2 189 0.014 

TGF beta (Reactome)  1 15 0.014 

Table 1: GSK3β associated signaling pathways that are over expressed in Homo sapiens. Briefly, all first neighbor interactions of GSK3β and all proteins of Homo 

sapiens are queried against different signaling pathways. Overrepresentation is determined if members of the different signaling pathways are increased in the first 

neighbor interactions of GSK3β compared to all proteins. Signaling pathway indicates the signaling pathway along with the source. Displayed proteins indicate first 

neighbor interactions of GSK3β. All proteins of pathway represent the total number of proteins implicated in the signaling pathway. Pathway Linker was used to 

identify overexpressed signaling pathways [37]. 
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Multiple groups have worked at idenfifying and 

characterizing the crystal structure of GSK3β. The first 

crystallized structure of GSK3β occurred in 2001 and provided 

insight into the mechanism by which the kinase is 

phosphorylated. The initial crystallization occurred in the 

unphosphorylated (apo) form of GSK3β (PDB ID: 1I09) *38+. 

GSK3β has a two domain kinase fold where the N-terminal end 

has a β-strand domain composed of 7 anti-parallel beta strands 

and a C-terminal end with a conserved alpha helical domain 

(Figure 2A,2B).  A  few  characteristics  of  the  kinase  that  have

been determined from the crystal structure are that the kinase 

has an ATP binding site, an activation loop, and a glycine-rich

loop. However, the inhibitory phosphorylation of Serine-9 is

not present due to the lack of electron density being visible on 

the residue. The structure of GSK3β (PBD ID: 1Q5K) was later 

co-crystallized with the GSK3β inhibitor AR-A014418 in 2003, 

which provided additional insight into the mechanism of 

inhibition [39]. The mechanism for inhibition is further

discussed in the pharmacology of GSK3 selection.

Figure 2: The crystal structure of GSK3β (Protein Data Bank PDBID: 1i09 [38]. A) The secondary structure of GSK3β showing seven anti-parallel β strands at the N-

terminal end and an α-helical domain at the C-terminal end. Cyan indicates a helix, magenta indicates a loop, and red indicates a sheet. B) The overall structure of 

GSK3β. The N-terminal end is labeled green and encompasses residues 25-138, the C-terminal end is labeled blue and encompasses residues 139-343, and the 

activation loop is labeled yellow and encompasses residues 220-226 where Tyrosine-216 (red) is a phosphorylation site. C) A magnified view of Tyrosine-216, which is 

located in the activation loop. Figure was generated using PyMOL 1.4.1. 
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Regulation of GSK3

The regulation of GSK3β has been extensively studied 

and reviewed [40,41]. There are different ways of regulating 

GSK3β which occurs through phosphorylation of specific amino

acid residues, by the formation of protein complexes with

GSK3β, and with pharmacological interventions. 

The regulation of GSK3β can occur through the 

phosphorylation of specific residues and the subsequent

activation or inactivation of the kinase. Inactivation of GSK3β

can occur through phosphorylation of Serine-9 [8,42], Serine-

389 [43], Threonine-390 [43], or Threonine-43 [44], while 

activation can occur through the phosphorylation of Tyrosine- 

216 [45]. Phosphorylation of the Serine-9 residue has been 

extensively studied and is a major mechanism to regulate 

GSK3β activities by the inactivation of GSK3β. Activation of

three upstream signaling pathways are known to inhibit GSK3β 

activity through phosphorylation of the Serine-9 residue

including, the phosphatidylinositide 3-kinases (PI3K), the

mammalian target of rapamycin (mTOR), and indirectly through 

the mitogen-activated protein kinase/extracellular signal-

regulated kinases (MAPK/ERK) pathway [41]. The signals which 

lead to the downstream phosphorylation and inhibition of 

GSK3β occurs by way of a diverse group of substances including, 

but not limited to, amino acids, growth factors, esters, and 

insulin [41]. 

GSK3β pathways have drawn increased attention and

the complexity of the pathways has been heavily studied in the 

field [3,46,47]. One of the first identified modulators of GSK3β

phosphorylation was AKT, which is also termed Protein Kinase

B (PKB) and is downstream of the PI3K pathway [48]. Initially,

insulin was identified to inhibit GSK3β; however, the

mechanism and specificity were unclear [48-50]. In studies that

examined the effects of insulin on purified Glycogen Synthases, 

it was shown that the effect on glycogen metabolism was

mediated by Glycogen Synthase 3 [35,48,51]. Glycogen 

synthase kinase serine residues were later identified to be

dephosphorylated by insulin in vivo [51]. It was not until the

identification of GSK3α and GSK3β when it was determined 

that insulin negatively regulates GSK3 [52]. The importance of 

the phosphotidylinositol (PI) 3-kinase in the signaling pathway

was demonstrated by showing that inhibition of PI3K reverses

insulin induced GSK3 inhibition and that incubation with

serine/threonine phosphatases reverses insulin’s inhibitor 

effect [53]. Soon after, serine residues were identified as

phosphorylation targets that mediate the inactivation of GSK3

following insulin administration which is facilitated by PKB. The

serine residues which are phosphorylated and inactivated 

following insulin inhibition are Serine-21 for GSK3α and

Serine-9 for GSK3β [48]. 

Two signaling pathways of GSK3β that act as 

regulators of the kinase are mTOR and ERK. Glycogen synthase 

and Glycogen synthesis were first shown to be regulated 

through the mTOR pathway in human muscle cells. It was also 

shown that amino acid availability regulates glycogen synthesis 

through GSK3β Serine-9 phosphorylation independently in the 

mTOR pathway [54]. Following the identification of mTOR as a 

regulator of GSK3β, S6K was shown to be downstream of mTOR 

and to regulate GSK3β phosphorylation *55+. These studies 

show that GSK3β is regulated directly by S6K differently from 

how it is regulated in the PI3K pathway. Following the 

inhibition of AKT, S6K phosphorylates the Serine-9 residue of 

GSK-3β in vivo *55+. Another regulator of GSK3β which entails a 

different signaling pathway is the ERK pathway. This pathway is 

different from the PI3K and mTOR pathways in that ERK 

regulates GSK3β through a priming mechanism. In 

hepatocellular carcinoma, it has been shown that GSK3β is 

phosphorylated at the Threonine-43 residue following ERK
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activation. In response to threonine-43 phosphorylation, MAPK-

activated protein kinase 1 (MAPKAP-K1/p90RSK) acts to

phosphorylate the primed GSK3β kinase at serine-9 residue 

rendering it inactive [44].

Another site of phosphorylation  is the residue

Tyrosine-216, which results in an increased activity of GSK3β 

[45] (Figure 2C). This was identified by the substitution of the

tyrosine site with a phenylalanine residue showing that only 

Tyrosine-216 is phosphorylated under native conditions. In the

catalytic domain, Tyrosine-216 lies in the activation loop and

phosphorylation is needed for activity [45]. The activation loop,

where catalytic activity increases following phosphorylation of

Tyrosine-216, is highlighted in Figure 2B. In Dictyostelium, it has 

been shown that ZAK1, a tyrosine kinase, activates and

phosphorylates GSK3β in vitro [56]. Phosphorylation of Tyrosine- 

216 has been shown to be increased following nerve growth 

factor (NGF) withdrawal and protein kinase C inhibition with

staurosporine in vitro [57]. In a ratischemic model, Tyrosine-216

phosphorylation is increased [57]. Lysophosphatidic acid (LPA)

has been shown to phosphorylate Tyrosine-216 during neurite 

retraction [58]. Tyrosine-216 phosphorylation has been shown

to occur through phospholipase C activation of Protein Tyrosine

Kinase 2 Beta (Pyk2), which phosphorylates the tyrosine on 

GSK3β and microtubule-associated proteins [59]. The upstream 

signaling pathways of Tyrosine-216 phosphorylation have been 

minimally studied compared to Serine-9 inhibition, and these 

studies indicate that tyrosine activation may play a role in the

regulation of GSK3β; however, further studies are needed to 

examine the role of tyrosine phosphorylation in disease

progression.  

GSK3β can also be regulated through the formation of 

protein complexes which occurs in both the Wnt and Hedgehog 

pathways [60, 61].  The  Wnt pathway has been shown to play a 

role in tissue maintenance, cell-cell interactions, and 

dysfunction in signaling may lead to degenerative diseases [46].

Proteins which bind with GSK3β to form an active or inactive 

complex are Axin and GSK3 binding protein (GBP), respectively

[62]. In Xenopus embryos, it has been shown that the Wnt 

pathway is negatively regulated by the presence of Axin [63].

Through protein isolated from a rat cDNA library, it has been 

determined, in vitro, that the interaction between GSK3β and

beta-catenin is negatively regulated through Axin binding to

GSK3β in the Wnt pathway [62]. Axin is stabilized by the 

phosphorylation of GSK3β, which causes an increase of Axin 

[64]. Briefly, GSK3 forms a complex with Axin and adenomatous

polyposis coli (APC), both substrates of GSK3, which 

phosphorylate beta-catenin leading to degradation in the

absence of an initial Wnt ligand [65-67]. However, when a Wnt

ligand is present, GSK3 does not form a complex with Axin and 

active GSK3 inhibits phosphorylation of beta-catenin

preventing degradation of beta-catenin through the

proteasome pathway [68,69+. These studies indicate the 

importance of GSK3β complex formation in the Wnt pathway 

and the role of GSK3β inhibition on signaling [70].

The Hedgehog pathway is important in both normal 

development and the production of cancers [71,72]. GSK3 has 

been shown to be a negative regulator of the Hedgehog 

pathway in Drosophila through forming a complex with Protein 

Kinase A (PKA) for proteolytic processing of the DNA-binding 

protein, Cubutis interruptus (Ci) [61]. Briefly, a complex forms 

between PKA, GSK3, and casein kinase 1 (CK1) which binds to 

costal-2 (Cos2). Following binding to Cos2, the complex 

phosphorylates Ci causing an inhibitory effect on the pathway 

due to the phosphorylation [72]. The phosphorylation of Ci 

causes the proteolytic degradation from an active form to an 

inactive form [73]. The decrease in phosphorylation of Ci leads 

to a decrease in proteolytic processing producing an opposite 

effect  *61+.  These  studies  indicate  the  relevance  of  GSK3β  in 
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complex formations and further work is needed to study

the role in disease progression.  

Pharmacology of GSK3 

Aberrant regulation of GSK3β has been implicated and 

studied in several disorders such as Alzheimer’s disease, type 2 

diabetes, and bipolar disorder [6,74-79]. Many pharmacological 

agents have been developed due to the involvement of GSK3β 

in the different diseases with different mechanisms of action

[80]. There have been six completed clinical trials involving 

inhibitors of GSK3 in Alzheimer’s disease [81], hair loss [82], 

progressive supranuclear palsy [83,84], and bipolar 

disorder[85]. There are currently three clinical trials which are 

recruiting for bipolar disorder [86,87], spinal cord injuries and 

muscle atrophy [88]. In addition, there is a suspended clinical 

trial in patients with gliomas [89]. The broad spectrum of 

clinical trials indicates the importance of GSK3 in many 

pathological processes.  

GSK3β activity can be regulated by pharmacological 

interventions. The most extensively studied GSK3β inhibitor is

lithium chloride [90]. Within this context, lithium has been 

extensively studied as a regulator of GSK3β signaling pathways 

in bipolar disorder [91]. While lithium chloride has been shown 

to be effective in treating bipolar disorder, high concentrations

are needed for physiological and pharmacological effects [92].

Lithium was first shown to have an effect on GSK3 in the early

1990s [90]. GSK3 was identified as a target in intact cells and in 

vitro showing the potential role of GSK3 in development [92].

In  the nervous  system,  axonal  growth  has  also  shown  to be 

decreased by lithium administration [93] and in a mouse model

of degeneration [20]. Compared to other inhibitors, lithium

chloride is a noncompetitive ATP inhibitor which competes with

Mg2+ for association with the kinase and is most effective in 

vivo [94]. Lithium also has a high inhibitor constant, Ki = 2mM

[94,95]. Lithium compared to other inhibitors, at high doses can 

inhibit both GSK3β and GSK3α *96+. Also, lithium has been 

shown to indirectly activate AKT in neuronal cells which can

consequently phosphorylate kinases other than GSK3β and has 

also shown to be protective against glutamate excitotoxicity in 

vitro [97]. These studies point to the potential clinical and

therapeutic effects of lithium and the lack of specificity for

GSK3β. 

Two GSK3β inhibitors of interest that utilize a different 

mechanism of inhibition other than lithium chloride are 

SB216763 and AR-A014418 (Figure 3A and Figure 3B). For both 

inhibitors, their mechanism of action is through binding in the

ATP pocket of GSK3β *98+. SB216763 is an anilinomaleimide 

with a Ki ranging from 10nM to 30nM for GSK3α and in the 

presence of ATP inhibits GSK3β activity by up to 96% [99]. AR-

A014418 is a thiazole with a Ki of 38nM and inhibits GSK3β with 

an IC50 = 104+/-27nM. The inhibitor binds within the ATP 

pocket along the hinge/linker region where the nitro group 

engages the ATP pocket [39]. GSK3α is also inhibited by these 

small molecule inhibitors; however the focus of this review is 

on the inhibition of GSK3β. Both of these small molecule 

inhibitors are more selective and potent compared to lithium

chloride, which may help in identifying the specific role of

GSK3β in different disease pathologies. 
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Figure 3: The chemical structure of two GSK3β inhibitors. A) The chemical structure of 1-(4-methoxybenzyl)-3-(5-nitrothiazol-2-yl) urea (AR-A014418) with the 

MW=308.31. B) The chemical structure of 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione (SB216763) with the MW=371.22 [39,99].

GSK3β Inflammatory Signaling Pathways 

Glycogen Synthase Kinase 3 has been identified as a target for 

inflammatory mediated diseases [6] and plays a key role in 

mediating inflammatory responses (see Table 1 for signaling 

pathways). The role of GSK3β in inflammation was first shown 

by Martins and coworkers in 2005 [100]. They determined that 

following the development of inflammation, the kinase acts as a 

modulator for the expression of key pro-inflammatory and anti-

inflammatory cytokines derived from monocytes and other 

peripheral blood cells to dampen inflammatory responses 

[100]. The mechanism by which GSK3β attenuates 

inflammation has been hypothesized to be regulated, in part, 

through the nuclear translocation of the transcriptional factor 

CREB (cAMP Response Element-Binding Protein) [100]. GSK3 

has been shown to have an inhibitory effect on CREB regulation 

resulting in decreased nuclear translocation of CREB [101]. The 

decreased translocation of CREB into the nucleus increases the 

expression of pro-inflammatory cytokines such as Interleukin-1-

Beta (IL-1β) and Tumor Necrosis Factor -1 alpha (TNF-α). 

Inhibition of GSK3β increases CREB DNA binding activity, which 

increases the transcription and expression of anti-inflammatory 

cytokines (IL-10) [100,102,103]. In dendritic cells, GSK3β is 

involved in TNF-α and IL-6 secretion [104]. These studies 

provide evidence for the importance of GSK3 activity in 

regulating pro- and anti-inflammatory response where by an 

increase in GSK3β activity increases the production of pro-

inflammatory cytokines while a decrease in GSK3β activity 

results in the production of anti-inflammatory cytokines.  

The mechanism by which of GSK3 regulates CREB 

translocation has been further elucidated in a model for 
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intestinal inflammation. Following the development of 

inflammation, inhibition of GSK3 reduces the pro-inflammatory 

phenotype of Toll-like receptors [100]. In addition, inhibition of 

GSK3 modulates the transcriptional activity of both CREB and 

nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κB), a master regulator of inflammation, in the intestinal 

immune cells [105]. The translocation of NF-κB from the 

cytoplasm to the nucleus results in the transcription of pro-

inflammatory genes such as IL-1β, TNF-α, and IL-6 [106]. In a 

model of acute inflammation, inhibition of NF-κB in leukocytes 

decreases inflammation [107] and adenoviral infection of 

human macrophages, which inhibits NF-κB activation, 

decreases the production of TNF-α *108+. Interleukin-10, an 

anti-inflammatory cytokine, decreases the transcription of NF-

κB resulting in a decrease in the expression of pro-

inflammatory cytokines [109]. The activation of GSK3β 

modulates the nuclear translocation of both NF-κB and CREB by 

enabling     CREB     Binding     Protein     (CBP)    to     bind    both 

transcriptional factors, which facilitates nuclear translocation 

and increases the production and transcription of pro-

inflammatory cytokines. When GSK3 is inactivated, NF-kB 

translocation is decreased while CREB transcription increases 

[101]. This result in a relative increase of CREB in the nucleus 

compared to NF-κB and increases the binding of CBP to CREB. 

The increase of CBP binding to CREB produces an increase in 

the transcription of anti-inflammatory cytokines (e.g., IL-10) 

[100,103]. The importance of GSK3 in regulating anti-

inflammatory cytokines through the NF-κB pathway has been 

shown in GSK3 mouse knockouts [110]. In addition, it has been 

shown that inhibition of GSK3 can decrease NF-κB activation in 

hepatocytes *111+. It has also been shown in hepatocytes that 

the inhibition of GSK3β reduces NF-κB activity, increases CREB 

transcription factor, and attenuates TNF-α mediated apoptosis 

*101+. These studies indicate the importance of CREB and NF-κB 

transactivation through GSK3 in regulating the release of pro-

inflammatory and anti-inflammatory cytokines (Figure 4).  

Figure 4: Putative downstream pathways of GSK3β that modulate the expression of pro-inflammatory and anti-inflammatory cytokines. Following GSK3β activation, 

NF-κB istranslocated from the cytoplasm to the nucleus and binds transcriptional sites with CBP leading to an increase in the transcription of pro-inflammatory 

cytokines (IL-1β, TNF-α, and IL-6). An increase in GSK3β phosphorylation (inhibition of GSK3β) results in an increase of CREB being translocated from the cytoplasm to 

the nucleus. This results in an increase in CBP binding with CREB at transcriptional sites, which increases the transcription of anti-inflammatory cytokine (IL-10). Green 

lines indicate an increase in activation and red lines indicate a decrease in activation.
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Neuroinflammation and GSK3

Neuroinflammation is an inflammatory response that

is characterized by glial activation and the production of

inflammatory cytokines [112]. There are many diseases which 

are linked to the increased activation of glial cells and elevated 

pro-inflammatory cytokines.

Neuroinflammation has been implicated in multiple

neurological disorders of the central nervous system (CNS) such 

as acquired immune deficiency syndrome (AIDS), stroke, and

multiple sclerosis [113]. These disorders all share a common

neuroinflammatory response; however, the etiologies of these

disorders vary. GSK3β has recently been shown to be involved 

in the activation of glial cells. In rat cortical glia, GSK3β is

expressed in both astrocytes and microglia and is activated

following exposure to lipopolysaccharide (LPS) [114]. Following 

stimulation, pro-inflammatory cytokines are increased and

inhibition of GSK3β attenuate the production of pro-

inflammatory cytokines (IL-1β and TNF-α) and augments the 

production of anti-inflammatory cytokines (IL-10) in vitro [114].

In addition, GSK3 activation has been linked to the increase in 

glial cell proliferation [115].  

Inflammation of the brain is isolated from the body

through the blood brain barrier (BBB), where an increase in 

immune cell trafficking occurs following injury [116,117].

Originally, the CNS was thought to be protected from 

systematic inflammation, however, it is now established that

multiple factors can contribute to a neuroinflammatory

response [118]. The inflammatory response of the brain 

appears to be more tightly regulated than peripheral 

inflammation and regulation occurs through the activation of

glial cells [119]. In the CNS, glial cells encompass nearly 75% of 

the overall cells where the majority of glial cells are astrocytes 

and oligodendrocytes while the rest are microglia cells [120]. 

These three types of glial cells, particularly microglia and 

astrocytes act as immune responders in the CNS.  

Microglia cells were first established to be a different

cell type compared to astrocytes and oligodendrocytes in the 

early 1900s [121]. Microglia cells act as macrophages of the 

nervous system in normal conditions [122]. They are

considered to be resident macrophages even though they only 

consist of 15% of the cells in the CNS [123,124]. In the CNS, it 

has been shown that microglia cells become activated in

different pathological conditions and release pro-inflammatory

cytokines (IL-1β, IL-6, and TNF-α) and chemokines [125]. The 

role of microglia cells in facilitating the proliferation of immune

cells has also been thoroughly studied [126,127]. 

Astrocytes, in regards to neuroinflammation, act as 

scavengers of the CNS and recycle excess neurotransmitters 

and ions. Dysregulation of astrocytes has been shown to play a 

role in the development of neurological diseases [128]. Under 

normal conditions, astrocytes regulate excess glutamate in the 

synaptic cleft preventing neurotoxicity [129,130]. Following the 

accumulation of pro-inflammatory cytokines in the CNS, 

astrocytes become activated and proliferate. The increase in 

astrocytic activation causes an increase in proliferation, which 

can be identified with the increase in glial fibrillary acidic 

protein (GFAP) [131]. Although GFAP is currently used for 

immunostaining and Western blotting of astrocytes, it only 

identifies ~15% of the total volume of the astrocyte [132]. An in 

vitro model of metabolic injury shows that astrocytes release 

interleukin 1 (IL-1), IL-6, TNF-α and interferon gamma (IFN-g) 

[133]. When a neuroinflammatory response ensues, glial cells 

become activated and produce pro-inflammatory cytokines such   

a   TNF-α,  IL-1β,   and  IL-6    and   chemokines  [134,135]. 
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Microglia cells act as the first responders to injury while 

astrocytes sustain the inflammatory response.  

Neuroinflammation can be seen as both beneficial and 

detrimental. Some of the common themes involved in the 

beneficial aspects of neuroinflammation occur through 

neuroprotection and axonal regeneration. Following stroke, 

microglial cells act in response to injury to scavenge necrotic 

debris in the CNS [136]. This occurs from the release of pro-

inflammatory cytokines almost immediately [112] and 

activated glial cells, which sense and respond to ATP gradients, 

act to scavenge excess neurotransmittors and dead cells [137]. 

The increase in astrocyte activation and proliferation produces 

the formation of a glial scar, isolating the damaged area from 

the rest of the CNS [118]. Acute inflammation is advantageous 

due to the short lived nature and minimization of neuronal 

damage and toxicity resulting from the release of inflammatory 

cytokines and chemokines [138]. In a mouse genetic model for 

Alzheimer’s disease, it has been shown that neurotoxicity of β-

Amyloid deposits is reduced through bone marrow derived 

microglia activation [139]. In addition, Nitric Oxide-induced 

neuronal damage is increased in mice deficient for TNF-α and 

TNF-α is required for microglia activation following injury *140+. 

In addition, in mice IL-6 is important for glial cell activation and 

is important for neuronal protection following injury to the CNS 

[141]. Following spinal cord injury, it has been shown that the 

injection of microglial cells into the site of injury is associated 

with the regrowth of axons through immune cytochemical 

detection [142]. In a double blind study with patients with MS, 

blocking of TNF-α produces an exacerbation of the condition 

[143]. These studies indicate that cytokine production and glial 

cell activation and proliferation following injury can act 

beneficially.  

However, dysfunctional regulation of 

neuroinflammation can can also be detrimental. The chronic 

activation of glial cells and elevation of pro-inflammatory 

cytokines have been linked to multiple disorders [144]. The 

development of neuroinflammation can occur multiples ways 

with different disease etiologies. The inflammatory response 

can be induced from infection, injury, or an autoimmune 

disorder. Following the infection of human immunodeficiency 

virus type 1 (HIV), the disease progresses to Acquired Immune 

Deficiency Syndrome(AIDS) with the late onset of neurological 

dysfunction termed AIDS dementia complex (ADC) [145]. ADC is 

shown to affect roughly 80% of individuals who progress from 

HIV to AIDS [146]. The progression to ADC has similar 

mechanisms of other neurological disease through means of 

neuroinflammation mainly from the activation of glial cells in 

the CNS [147]. Microglial cells are the primary targets of HIV 

infection [148] and increases in microglial cells appear to 

associate with increased viral infection. Histological studies in 

the CNS from individuals with AIDS show an increase in the 

proliferation and activation of astrocytes and microglial cells 

leads to the increased release of IL-1β, TNF-α, and IL-6, which 

promotes the activation and proliferation of the virus [149]. 

Through in vitro HIV exposure to human and rat astrocytes, it 

has been determined that astrocytes are involved through 

voltage gate and NMDA calcium channels in the progression to 

ADC [150]. It has further been shown that following ADC, 

nonviral cells produce proinflammatory cytokines in addition to 

the viral production of cells in the CNS [151]. 

GSK3β has been studied in the context of ADC. 

Through genome wide mRNA and microRNA expression profiles 

of HIV patients with and without dementia, GSK3β expression 

is  down  regulated  in  patients with  dementia  [152].   Lithium 
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treatment of mice, in vivo, has been shown to protect the 

hippocampus from HIV induced neurotoxicity and in vitro 

lithium exposure prior to infection has shown to reduce HIV 

induced neurotoxicity [153]. In addition, low dose 

administration of lithium has been shown to improve the 

psychological impairment produced from HIV progression 

[154]. 

Injury, another inducer of neuroinflammation, can 

produce strokes (i.e., CNS ischemia), which is a common type of 

acute brain injury caused by an interruption in the blood supply 

to the brain where intracellular mechanisms such as 

inflammation can cause neuronal damage [155]. After the 

initial injury, macrophages infiltrate the BBB causing an 

additional inflammatory response to occur [113]. The 

inflammatory response causes the proliferation and activation 

of glial cells in the CNS leading to the production of cytokines 

[136]. Following a stroke, elevated levels of IL-6 and TNF-α in 

blood or cerebrospinal fluid occur with early clinical symptoms 

of deterioration [156]. In addition, it has been shown in stroke 

patients that ischemia causes an abundance of the 

proinflammatory cytokines IL-6 and TNF-α in peripheral blood 

cells [157]. Stroke patients have an elevated intrathecal 

production of proinflammatory cytokines and chemokines 

indicating there is an increase in glial cell activation [158]. 

GSK3β has also been studied in the context of stroke. 

In vivo, following focal cerebral ischemia, GSK3β inhibition has 

been shown to reduce infarct size [159]. In a rat transient 

middle cerebral artery occlusion model, pretreatment with 

lithium decreases infarct size and improves recovery through 

the increased migration of mesenchymal stem cells [160]. The 

mechanism by which lithium is beneficial to the treatment of 

stroke has been thought to occur through activation of the AKT 

pathway and subsequent phosphorylation of GSK3β, resulting 

in the attenuation of glutamate excitotoxicity [97]. In addition, 

pretreatment    with    lithium    has   shown   to   attenuate   the 

dephosphorylation of GSK3β   induced  through  hypoxia in vivo 

[161]. 

Multiple Sclerosis (MS) is an autoimmune disorder of 

the CNS that leads to neurological disability due to axonal 

deterioration and the pathogenesis of the disorder has been 

linked to inflammatory elements of MS plaques [162,163]. 

Briefly, leukocytes infiltrate the CNS through the BBB causing 

the migration of microglial cells leading towards axonal 

dysfunction [164]. In post-mortem human brain samples of 

patients with MS, it has been shown that the cytokines and 

chemokines RANTES, MCP-1, MIP-1α, and MIP1-β are 

differentially expressed in glial cells to increase inflammation 

[165]. TNF has also been shown to be in the lesions of patients 

with MS indicating an increase of proinflammatory cytokines 

[166]. Inflammation of the CNS causes the activation of 

astrocytes and microglial cells which have been targeted in MS. 

In Act1 deficient mice, it has been shown that astrocytes are 

necessary for leukocyte recruitment in the CNS in an 

autoimmune encephalomyelitis model, a model of MS [167]. 

Inflammatory genes have also been shown to be up regulated 

in MS plaques [168]. MS is different from other 

neuroinflammatory mediated diseases in that it originates from 

immune dysregulation compared to insult/injury of the CNS.  

GSK3β has also been studied in the context of MS. In 

experimental autoimmune encephalomyelitis (EAE), over 

expression of GSK3β increases disease severity, and lithium 

pretreatment suppresses clinical symptoms and microglial 

activation in the spinal cord and post treatment promoted 

partial recovery [169]. In individuals with chronic progressive 

MS, GSK3β has been shown to be over expressed *170+. 

Interleukin-17 producing cells, which have been shown to be 

increased in MS, are inhibited following GSK3 inhibition in an 

EAE   model   in   the   spinal   cord  [171]. These studies provide 
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evidence that GSK3β is important in disease progression and 

inhibition of the kinase may play a role in a potential

therapeutic.

Alzheimer’s disease (AD) is a neurodegenerative

disease involving inflammation of the CNS leading to memory 

loss followed by dementia. It has been suggested that the main

cause of AD is due to an abundance of β-Amyloid in the brain 

[172]. β-Amyloid plaques have been shown to increase the 

inflammatory response in the brain of Alzheimer’s patients. 

Glial cells are known to surround Alzheimer’s plaques and in 

vitro it has been shown that they release IL-1 and growth

factors which are components of plaques [173,174]. In 

addition, astrocytes have also been shown to surround neuritic

plaques in AD [175]. In an age-matched study, Alzheimer’s 

patients have higher levels of TNF-α in sera indicating an 

inflammatory response [176].Using a mouse model for AD, it 

has been shown that β-Amyloid plaques cause an inflammatory

response and LPS stimulation further enhances the production

of the pro-inflammatory cytokines IL-1β, TNF-α and monocyte

chemo attractant protein-1 [177].

GSK3β has been extensively studied in the context of 

Alzheimer’s disease. AD patients have been shown to have an

increase in GSK3β activity that correlates with an increase in 

neuronal death [178]. It has been shown, in vitro, that GSK3β

inhibition with lithium treatment blocks the production of β-

Amyloid [179]. In cultured rat cortical neurons, lithium protects

cells from β-Amyloid induced death and there is a decrease in 

tau phosphorylation, a process that occurs in response to β-

Amyloid accumilation [180]. This was further validated with

chronic lithium pretreatment on β-Amyloid induced cerebellar 

cell death [181]. Clinical studies have also been conducted to 

determine the benefits of lithium treatment in patients with

AD.  In  elderly  patients  with  both  AD   and   bipolar  disorder,

chronic lithium treatment has shown to decrease AD symptoms 

to that seen in the general population [182]. Furthermore, it

has been shown that chronic lithium treatment reduces the 

rate of dementia in a nationwide study [183]. These studies

indicate the importance of GSK3β in cognition and 

neuroinflammation.  

Neuroinflammation and Pathological Pain 

Glia activation and the subsequent release of proinflammatory 

cytokines play crucial roles in the development and maintenance 

of pathological pain [184-186]. Microglia and astrocytes are 

reactivated in almost every animal model of pathological pain 

[187,188], including neuropathic pain induced by nerve injury 

[189,190], inflammation induced by complete Freund’s adjuvant 

[185], surgical incision[191], and morphine tolerance [192]. 

These are accompanied with elevated levels of proinflammatory 

cytokines [193,194] and an increased expression of 

proinflammatory cytokines in microglia and astrocytes in the 

spinal dorsal horn [195-197], suggesting that the increased 

proinflammatory cytokines come from glial cells. Intrathecal 

administration of IL-1β and TNF-α in normal rats enhances both 

the acute response and the wind-up activity of dorsal horn 

neurons and mechanical allodynia and hyperalgesia [198,199]. 

Suppression of astrocyte and microglial activation with the glial 

inhibitor, propentofylline, or inhibition of microglia activation by 

minocycline, results in attenuation of hyperalgesia induced by 

nerve injury, which is associated with decreased expression of 

the cytokines IL-1β, IL-6 and TNF-α in vivo [194,200,201]. 

Similarly, treatments with antagonists of IL- 1β, IL-6 and TNF-α 

reduced hypersensitivity induced by inflammation, nerve injury 

or morphine tolerance. Besides the release pro-inflammatory 

cytokines, we and other have shown that activation of 

astrocytes is associated with dysfunction of glial glutamate 

transporters [202-204]. Down regulation of glial glutamate 

transporters     in     the     spinal    dorsal    horn    contributes   to 
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the genesis of many types of pathological pain including 

neuropathic pain induced by nerve injury [202,205,206], 

chemotherapy [207,208] and morphine tolerance [202,209]. 

We have demonstrated that impaired glutamate uptake by glial 

glutamate transporters is a key contributing factor to 

strengthening AMPA and NMDA receptor activation in the

spinal sensory neurons [206,210-213]. Deficiency in glial

glutamate uptake results in decreases in GABAergic synaptic

strength due to impairment in the GABA synthesis through the 

glutamate-glutamine cycle [214]. Hence, the integrity of glial 

GTs is critical to maintain synaptic excitatory-inhibitory

homeostasis and normal nociception in the spinal dorsal horn.

Glial glutamate transporters appear to be regulated by 

neuroinflammation processes induced by nerve injury.

Suppression of glial activation and pro-inflammatory cytokine

production with propentofylline or minocycline up-regulates

mRNA and protein expression of glial glutamate transporters in 

the spinal dorsal horn and ameliorates the nerve-injury-

induced allodynia [201,204,215,216]. Therefore, identifying

molecules that can suppress neuroinflammation has a great

potential to open a new door to alleviate pathological pain.  

Given the fact that the role of GSK3 in 

neuroinflammatory diseases in the CNS has been extensively 

studied and neuroinflammation is a crucial mechanism

underlying the genesis of pathological pain, it is surprising that 

there are only a handful of papers reporting the effects of

pharmacological inhibition of GSK3β on spinal nociceptive 

processing. 

The first report of GSK3β inhibition on spinal 

nociceptive processing has been shown in morphine-tolerant 

rats [217]. Parkitina and coworkers (2006) have shown that 

GSK3β inhibition alters the tolerance to morphine in the dorsal 

lumbar of the spinal cord. Intrathecal inhibition of GSK3β

(SB216763) has shown to decrease pharmacological tolerance 

to morphine in a dose-dependent manner whereas GSK3β 

inhibition of naïve rats has no effect determined from the tail

flick test. Tolerance to morphine is associated with an increase 

in active GSK3β where chronic intrathecal inhibitor 

administration increases phosphorylation at the Serine-9

residue of GSK3β and decreases tolerance. Intrathecal inhibitor 

administration has shown to have no effect on increasing the

phosphorylation of the Serine-9 residue or have analgesic 

effects in naïve rats [217].

The next report of GSK3β inhibition on pain processing 

has been shown in mouse models of acute nociception through

acetic acid induced abdominal constrictions and formalin

induced nociception [7]. Martins and coworkers (2009) have

shown that pharmacological inhibition of GSK3β can have 

antinociceptive effects. They have shown that intraperitoneal

pretreatment of a GSK3β inhibitor (AR-A014418) prior to acetic-

acid induced abdominal constrictions reduces writhings. They 

have also shown that pretreatment with a GSK3β inhibitor by 

intraperitoneal, intraplantar, and intrathecal injection reduces

licking frequency, a measure of nociception, following formalin

induced nociception. Lastly, through intrathecalco-

administration of the GSK3β inhibitor with glutamate, NMDA,

trans-ACPD, TNF-α, or IL-1β there is a decrease in cytokine 

induced biting [7]. This study indicates that pharmacological

inhibition of GSK3β may play a role in nociception and pain. 

The most recent report of GSK3β inhibition on pain 

processing has been shown in a mouse model of neuropathic 

pain through peripheral nerve injury [5]. Martins and 

coworkers (2012) have shown that intraperitoneal 

administration of a GSK3β inhibitor (AR-A014418) produces 

antihyperalgesic effects and decreases the proinflammatory

cytokines IL-1β and TNF-α in the lumbar portion of the spinal

cord (Lumbar 1 to Lumbar 6). They have also shown that 

following the development of mechanical hyperalgesia, a single 
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intraperitoneal administration of a GSK3β inhibitor attenuates 

mechanical and thermal hyperalgesia. In addition, they have 

shown that chronic inhibition of serotonin synthesis prior to 

GSK3β inhibition prevents the decrease in mechanical 

allodynia. While pharmacological inhibition of GSK3β has been 

shown to reduce hyperalgesia induced by nerve injury [5], it 

remains unknown if inhibition of GSK3β can prevent the 

development of allodynia following nerve injury. In an adult rat 

(Sprague Dawley) model of neuropathic pain induced by partial

sciatic nerve ligation [206], with the same inhibitor (AR-

A014418) and concentration (0.3 mg/kg), we found that chronic 

intraperitoneal administration from the day of surgery (1 

injection/day) for 8 days significantly attenuates the 

development of mechanical allodynia induced by partial sciatic 

nerve ligation (Figure 5). These data suggest that altered GSK3β 

activities may contribute to the development of neuropathic 

pain. 

Figure 5: Chronic intraperitoneal injections (IP) of a GSK3β inhibitor prevent the development of allodynia in a model of neuropathic pain. Rats were injected with the 

GSK3β inhibitor, AR-014418 (0.3mg/kg), or vehicle (saline) 1 hr prior to surgery and then daily for 8 days following surgery. A von Frey filament with 1.5g force was used 

to stimulate the plantar region of the hindpaw 10 times and the percentage of hindpaw withdrawal response to 10 time stimulations was used to indicate changes in 

nociceptive behaviors. Behavior tests wereperformed before surgery and then prior tothe daily drug administration where the examiner was blinded to the types of 

treatment given to the rats. SHAM rats represent animals where the sciatic nerve was exposed but not ligated. Green represents the SHAM rats receiving vehicle 

treatment. Blue represents the pSNL group receiving vehicle treatment. Black represents the SHAM rats receiving the GSK3βinhibitor treatment. Red represents the 

pSNL rats receiving the GSK3β inhibitor. The percentage of hindpaw withdrawal response to the von Frey filament stimulation in pSNL rats receiving the GSK3β 

inhibitor is significantly lower than that in pSNL rats receiving vehicle treatment, indicating that suppressing GSK3β activities prevents the development of allodynia 

induced by nerve injury. The asterisks denote a significant difference between the AR-014418 treated pSNL group to the vehicle treated pSNL group. (n=5 per group, 

Unpaired students t-test. *P <0.05 **P<0.01).

We further investigated possible changes of GSK3β 

activities in the spinal dorsal horn in neuropathic rats induced 

by partial sciatic nerve ligation through immune histochemical 

techniques. Eight days following peripheral nerve injury, we 

found that there is a decrease in phosphorylated GSK3β on the 

lesion side compared to the uninjured side and sham operated 

rat (Figure 6). We also demonstrated that phosphorylated and 

total GSK3β is localized to both astrocytes and neuronal cells 

(Figure 7). These data indicate that increased GSK3β activities in 

the spinal dorsal horn may contribute to the genesis of 

neuropathic pain induced by sciatic nerve injury. Together with 

findings by others, these data suggest that GSK3β may be a 

potential target for the development of analgesics for the 

treatment of neuropathic pain.  
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Figure 6: Partial sciatic nerve ligation results in a decrease in phosphorylated GSK3β expression in the injured side of the dorsal horn 8 days following surgery.There was 

no significant difference in total expression of GSK3β between the pSNL and sham operated rats. Eight days following surgery, rats were deeply anesthetized with 

pentobarbital (60 mg/kg, IP) and perfused intracardially with 200mL of heparinized 0.1 M PBS (pH=7.35) followed by 300mL of a solution containing 4% formaldehyde 
in 0.1 M PBS (pH=7.35). L4 and L5 spinal segment tissues were then fixed for 48 h at 4

o
C in the same fixative and cryoprotected for at least 24 h at 4

o
C in 30% sucrose in 

0.1 M PBS (pH=7.35). Serial transverse sections, 30-μm thick, were cut on a freezing microtome at -20
o
C and collected in 0.1M PBS and processed while free floating. 

The sections were then washed three times in 0.1 M PBS and then blocked with 10% normal goat serum plus 0.3% Triton X-100 in 0.1 M PBS (pH=7.35) for 1 h at room 

temperature. Sections were then incubated for 24 h at 4
o
C in rabbit anti-pGSK3β (1:100) or anti-GSK3β(1:200) in 4% normal goat serum plus 0.3% Triton X-100 in 0.1M 

PBS (pH=7.35). Sections were then washed 3 times and incubated with with Texas Red goat anti-rabbit antibody (1:500) in 4% normal goat serum plus 0.3% Triton 

X-100 in 0.1M PBS (pH=7.35) for 2 h at room temperature. After rinsing in 0.1 M PBS, sections were mounted onto double frosted pre-cleaned microscope slides, air-

dried, and cover slipped with UltraCruz Mounting Medium. Slides were imaged using an Olympus 1x71 Inverted Microscope with an Olympus DP72 Microscope Digital 

Camera. Images were processed using ImageJ (NIH) [218].

Figure 7: Phosphorylated and total GSK3β are colocalized with neurons and astrocytes in the spinal dorsal horn. GFAP is a marker for astrocytes and NeuN is a marker 

for neuronal cells. Sections were incubated for 24 h at 4
o
C in rabbit anti-pGSK3β (1:100) or anti-GSK3β (1:200) in 4% normal goat serum plus 0.3% Triton X-100 in 0.1M 

PBS (pH=7.35). Sections were then washed 3 times and incubated with a combination of either mouse anti-NeuN Alexa Fluor 488 conjugated antibody (1:200) or mouse 

anti-GFAP Alexa Fluor 488 conjugated antibody (1:200) with Texas Red goat anti-rabbit antibody (1:500) in 4% normal goat serum plus 0.3% Triton X-100 in 0.1M PBS 

(pH=7.35) for 2 h at room temperature. After rinsing in 0.1 M PBS, sections were mounted, air-dried, cover slipped, and images mentioned in Figure 6. 
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Conclusion 

Glycogen Synthase Kinase 3β has been linked to the 

development and progression of multiple disease entities. 

Following the initial identification of GSK3β, significant strides 

have been made in understanding the structure, regulation, 

pharmacology, and diseases linked with the kinase. GSK3β is a 

common target in inflammation of the CNS which has been 

associated with many diseases such as Alzheimer’s disease, 

AIDS dementia complex, and stroke. Inhibition of GSK3β has 

been shown to alleviate multiple symptoms and the 

progression of these diseases. 

The role of GSK3β in pathological pain has recently 

emerged. The development and maintenance of pathological 

pain is associated with changes in GSK3β activities. Inhibition of 

GSK3β activities can prevent the development and reverse the 

existence of neuropathic pain. Further studies are needed to 

understand the upstream pathways regulating GSK3β activities 

and the downstream signaling pathways used by GSK3β to alter 

spinal sensory processing, which will potentially lead to the use 

of GSK3β as a novel target for the development of analgesics. 
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