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Functional Links Between 
Glucocorticoids and Cytokines In 
DBA

Abstract
Diamond Blackfan anaemia (DBA) is a red blood cell aplasia 

characterized by erythropoietic defects as well as congenital 
anomalies. Forty percent of patients with DBA are treated with 
glucocorticoid steroids, which remain the mainstay of treatment 
in DBA. Many advances in the understanding of the physiological 
role of the glucocorticoid receptor have been made since the first 
introduction of glucocorticoids to the clinic, but their mechanism of 
action in the treatment of DBA is still under investigation. This review 
is intended to summarize the mechanism of glucocorticoid action 
specifically as related to erythropoiesis, focusing on the functional links 
between glucocorticoids and cytokines.

Introduction
Diamond Blackfan anemia (DBA) was first described as a disorder 

of impaired red blood cell production in children [1,2]. While most 
of the DBA cases are diagnosed in early infancy, a recent case report 
reveals that DBA can occur during fetal development. This suggests 
that severely affected DBA fetus likely die to hydrops fetalis and result 
in undiagnosed miscarriages [3]. This disorder results from a cellular 
defect in which erythroid progenitors are highly sensitive to death by 
apoptosis, leading to erythropoietic failure [4]. The etiology of DBA 
has been the subject of continuous discussions, and while the early 
success of treatment with glucocorticoids (GCs) in 1951 [5] led to the 
idea that the pathogenesis of DBA could have an immunologic basis 
[6], it is now accepted that DBA is in fact a member of a rare group 
of genetic disorders.

Approximately 50% of DBA patients have a single mutation in 
a gene encoding a ribosomal protein, which indicates that DBA is 
associated with a disorder of ribosome biogenesis and/or function 
[4]. The pronounced erythroid defect suggests that erythroid 
progenitors may express specific mRNAs that are hypersensitive to 
the decreased translation capacity [7]. Twenty-five percent of patients 
have a mutation in the ribosomal protein S19 (RPS19) gene [8], and 
two independent studies have demonstrated that over expression of 
the RPS19 transgene increases the number of erythroid colonies in 
RPS19 deficient hematopoietic progenitor cells in vitro [9,10]. In a 
mouse model of DBA, a high expression of RPS19 can rescue the 
erythroid development, and the corrected DBA cells show a survival 
advantage in vivo [11]. As zebrafish hematopoietic regulation is 
conserved with mammals, zebrafish models have also been reported 
to be useful in studying DBA [12-14], recapitulating many aspects 
of the DBA phenotype, including hematopoietic specific defects 
and p53 activation [14]. The list of genes that are mutated in DBA 
has been updated in 2013, to include ten ribosomal genes and one 
transcriptional regulator: RPS19, RPS24, RPS17, RPL35A, RPL5, 
RPL11, RPS7, RPS10, RPS26, RPL26, and GATA1 [15].

More than 50 years after their introduction to the clinic, GCs 
are still the most effective drugs used in DBA. Nevertheless, the 
reported side effects of GCs include decreased growth velocity in 

infants, neuromotor dysfunction in toddlers, and significant immune 
suppression, rendering GCs an unsuitable therapeutic choice for 
children under the age of one [4]. Today, the only curative treatment 
for DBA is hematopoietic stem cell transplantation, a treatment 
that relies on the availability of an HLA-matched related donor [4]. 
To reduce the side effects of GCs and increase their efficacy, the 
mechanism of action of GCs has been – and still is – the subject of 
intensive research.

This short review will therefore focus on (a) the molecular 
mechanisms of GCs reported in erythropoiesis, and (b) the 
relationship between GCs and cytokines, where cytokines will be 
discussed as new potential drug targets in DBA treatment. 

Molecular mechanism of Glucocorticoids

Glucocorticoids (GCs) have pleiotropic effects on hematopoietic 
cells. They have been shown to induce apoptosis in lymphoid cells [16], 
prevent apoptosis in granulocytes [17], and drive the proliferation of 
erythroid progenitors [18,19].

Endogenous GCs

GCs play a pivotal role in several critical biologic processes 
including growth, reproduction, intermediary metabolism, immune 
and inflammatory reactions and they also have specific functions in 
the central nervous and cardiovascular systems [20,21]. The principal 
endogenous GCs are the hormones cortisol and corticosterone. 
Cortisol and corticosterone are both synthesized from cholesterol 
in cells of the zona fasciculate of the adrenal cortex (cortisol is the 
predominant GC in human, whereas rodents produce mainly 
corticosterone). The release of both GCs into the blood is pulsatile and 
varies according to a distinct circadian pattern. Additional secretions 
can occur independent of circadian tone in response to physical and/
or emotional trauma [22]. 

In vitro, GCs enhance the formation of murine erythroid colonies 
[23] and increase proliferation of erythroid cells in the presence of 
limiting amounts of erythropoietin (Epo) [24]. Interestingly, GCs 
also stimulate erythropoiesis indirectly by increasing Epo production 
in the kidney [25]. 

Other studies have shown a direct correlation between GCs 
concentration and erythropoiesis by studying individuals that 
have pathological changes in the production of GCs. For example, 

Yoan Konto-Ghiorghi*
Department of Pediatrics, Stanford University School of Medicine, 
Stanford University, Stanford, California,USA

Address for Correspondence
Yoan Konto-Ghiorghi, Department of Pediatrics, Stanford University 
School of Medicine, CCSR Building, Room 1210, 269 Campus Drive, 
Stanford University, Stanford, California, 94305-5162 USA, Email: yoan. 
konto@gmail.com

Submission: 02 April 2013
Accepted: 29 April 2013
Published: 30 April 2013

Journal of

Pediatrics &
Child Care

Review ArticleOpen Access

Nicole Y.K. Li 1 *, Hossein K. Heris2 *, Luc Mongeau2


Citation: Konto-Ghiorghi Y. Functional Links Between Glucocorticoids and Cytokines In DBA. J Pediatrics Child Care. 2013;1(1): 5.

J Pediatrics Child Care 1(1): 5 (2013) Page - 02

Addison’s disease, a disorder caused by insufficient corticosteroid 
production, is associated with anemia, whereas increased red blood 
cell count, hemoglobin, and hematocrit values are observed in 
Cushing’s syndrome, a disease characterized by elevated GCs levels 
[26].

The human glucocorticoid receptors

The glucocorticoid receptor (GR) is an intracellular receptor. It 
is the first member of the subfamily of steroid hormone receptors, 
is widely distributed in the body, and has a variety of functions that 
are essential for survival. Genetically modified mice lacking the GR 
die at birth and reveal impaired development of several organs [27]. 
Cell responsiveness to GCs depends not only on the presence of 
the GR but also on its concentration – which is known to fluctuate 
during development and the cell cycle, and following disturbances 
in endocrine status [28]. The human GR (hGR) gene consists of nine 
exons and is located on chromosome 5. Alternative splicing of the 
hGR gene in exon 9 generates two highly homologous isoforms of 
the receptor, termed α and β [29]. The GRα binds and is activated by 
corticosteroids, whereas the unique structure of the GRβ impairs the 
ligand-binding domain and induces nuclear retention [30]. The GRβ 
has been implicated in steroid resistance in asthma [31], and observed 
to exert dominant-negative effects on the GRα [32,33]. The belief 
that the GRβ is a general negative modulator of GRα function was 
challenged by cotransfection studies in COS-7 cells, where the GRβ 
was not observed to inhibit the effects of dexamethasone-activated 
GRα on a glucocorticoid-responsive reporter gene [34]. Most actions 
of GCs are mediated by the GR, and several polymorphisms in the 
hGR gene are associated with altered GC sensitivity [35]. As there is 
currently no reliable way to predict steroid responsiveness in DBA 
patients [4], these polymorphisms very likely affect the response of 
patients to GC in the treatment of DBA and represent another reason 
for the development of non GC-based DBA drugs.

Activation and targets of glucocorticoid receptor

Activation of the glucocorticoid receptor (GR) leads to subsequent 
intracellular signaling. Heat Shock Protein 90 (HSP90) regulates 
ligand binding and cytoplasmic retention of the GRα by exposing 
the ligand-binding site and masking the two nuclear localization 
sequences [36]. Upon ligand-induced activation, the GR undergoes 
a conformational change, resulting in its dissociation from a multi-
protein complex that includes HSP90 and its translocation into the 
nucleus.

Within the nucleus, the GR binds as a homodimer to 
Glucocorticoid Response Elements (GREs) in the promoter region 
of target genes, regulating their expression positively or negatively 
depending on the GRE sequence and promoter context [37]. 
Alternatively, the ligand-activated GRα can interact as a monomer 
with other transcription factors, modulating their transcriptional 
activity through direct protein-protein interaction, independent of 
direct DNA binding [38].

DNA-independent actions of GR: transrepression

The suppression of transactivation of other transcription factors 
through protein-protein interactions is particularly important in the 
suppression of immune function and inflammation by GCs [39]. 
Most of the effects of GCs on the immune system may be mediated by 
the interaction between GR and NF-κB, AP-1, and signal transducers 
and activators of transcription (STATs) [40-43].

The example of transrepression of the proinflammatory 
transcription factor AP-1 is particularly interesting since DNA-
binding inactive mutants of the GR are fully capable of AP-1 
transrepression [44]. In erythroid progenitors, several members 
of NF-κB family are also expressed and it has been suggested that 
NF-κB factors could function to regulate specific genes involved 
in erythropoiesis. [45]. However, since induction of proliferation 
of erythroid progenitors by GCs requires DNA binding by the GR 
[18,46], the transrepression action has appeared not to be essential to 
the function of the GR in erythroid progenitors.

Transcriptional activation by GR: transactivation

DNA-dependent transactivation by the GR requires dimerization 
of the receptor [21,46]. Mice carrying a point mutation in the GR, 
which prevents receptor dimerization (GRdim/dim), are viable 
[46] and GRdim/dim mice display normal erythrocyte numbers 
in peripheral blood [47]. GRdim/dim mice were then challenged 
either by drug-induced hemolytic anemia or by hypoxia to address 
the question of whether or not the GR would be important for stress 
erythropoiesis. In both cases, wild-type mice responded with strongly 
increased numbers of colony-forming units–erythroid (CFU-Es) in 
their spleens, whereas GRdim/dim mice showed no response. GR-
dependent expansion upon stress was restricted to a specific erythroid 
compartment [47]. In vitro, erythroid cells from fetal livers GRdim/
dim mice fail to undergo sustained proliferation in contrast to wild-
type cells [47].

Genes differentially regulated by GCs

Upon hormone binding, the GR associates with high affinity to 
genomic GR binding sequence, typically an imperfect palindromic 
hexameric half site, separated by 3-base pair spacers [48,49]. Genome-
wide in silico identification of GR binding sequences could thus be 
a powerful method to reveal the transcriptional regulatory network 
of GCs. However, focusing on the role of the GC dexamethasone 
(Dex) in erythropoiesis, the Dex-induced genes are not enriched for 
GR binding sites in their promoter regions but instead for hypoxia-
inducible factor 1α (HIF1α), suggesting that HIF1α activation 
would enhance the biologic function of GR activation [50]. Another 
oligonucleotide microarray study to survey gene expression in RPS19-
deficient CD34+ cells showed that Dex decreases the expression 
of 3 cytokine genes: interleukin-1 beta (IL-1B), lymphotoxin-beta 
(LTB), and macrophage inflammatory protein-1-alpha (MIP-1α, 
CC chemokine ligand 3 [CCL3]) [51]. All of these cytokines are 
active in myeloid lineage cells, and Mip-1α is a cytokine that blocks 
proliferation of hematopoietic stem cells [52].

Targets of the GR include genes involved in proliferation of 
erythroblasts such as the SCF receptor Kit and the transcription 
factor Myb [18,53], and cytokines have been shown to modulate 
GCs function. In absence of the cytokines Epo and SCF, activation 
of the GR in erythroid progenitors causes cell cycle arrest [18,54]. 
Dex treatment leads to up-regulation of the antiproliferative genes 
Btg1 and GilZ [55]. In 3T3 fibroblasts, Btg1 expression is maximal 
in the G0/G1 phases of the cell cycle and is down-regulated when 
cells progress throughout G1, suggesting the existence of a functional 
link between Btg1 and cell cycle progression [56]. GilZ is known to 
interfere with signaling-controlled activity of NF-κB, AP-1 and the 
tyrosine kinase JAK2 inihibitor CIS [57,58]. In erythroid progenitors, 
GilZ is up-regulated by Dex alone, down-regulated by Epo and 
Epo/SCF, while coregulation by Epo, SCF, and Dex abolishes Epo-
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dependent down-regulation [55]. These conclusions show that Dex 
is able to attenuate the effect of Epo and/or SCF. Furthermore, CXC 
chemokine receptor 4 (CXCR4) is up-regulated in the presence of 
Dex plus Epo/SCF, and CXCR4 is down regulated in GRdim/dim 
when compared with wt erythroid progenitors, thus confirming an 
activation of CXCR4 expression by GCs [55].

Suppressor of cytokine signaling 1 (SOCS1) up-regulation by 
Dex in erythroid progenitors has been confirmed by three different 
groups [50,55,59]. Mice lacking SOCS1 have been shown to have a 
subnormal hematocrit and an accumulation of immature red blood 
cells [60]. Furthermore, SOCS1 is associated with the phosphorylated 
form of JAK2 (pJAK2) [61] and dysregulation of pJAK2 degradation is 
involved in polycythemia [62]. Polycythemia is characterized by a net 
increase in the total number of red blood cells, and can arise when an 
intrinsic defect in erythroid progenitors render them hypersensitive 
or independent of erythropoietin stimulation [63]. These reports 
suggest that SOCS1 might be one of the GCs targets in DBA.

Other mechanisms of action of GCs

The effects of GCs on inflammation occur in a time-frame of 
30 minutes to 18 hours [64]. However, the previously described 
mechanisms cannot explain the rapid effects observed within 
minutes or seconds following administration. As reported in several 
other cellular systems [65],  the GR can activate a rapid membrane-
associated signaling in erythroid cells. In human erythroblasts, growth 
factors stimulation induces association of the GR on the membrane, 
where the GR forms a complex with the EPO receptor to antagonize 
its ability to phosphorylate STAT5 [66]. This reveals that GCs are 
able to inhibit erythroid maturation through a rapid membrane-
associated pathway that interferes with EPO receptor signaling.

Another mechanism is based on a direct interaction of the GR 
with mRNA. Whereas some RNA-binding proteins (RBPs) such as 
ubiquitous HuR mainly act as a positive regulator of mRNA stability, 
others such as the GCs-induced zinc finger RBP tristetraprolin (TTP) 
limit the inflammatory response by accelerating the mRNA decay of 
its targets [67]. Interacting directly with the chemokines (C-C motif) 
ligand 2 and 7 (CCL2 and CCL7) mRNAs in human airway epithelial 
cell line BEAS-2B, the GR accelerates the decay of their respective 
mRNA [68]. The identification of GR-mediated acceleration of 
chemokine mRNA decay and of this additional function of GR in 
the cytoplasmic compartment opens a new paradigm in the GCs 
mechanism of action. Human CD34+ cells and hematopoietic 
precursors secrete numerous regulatory molecules that form the 
basis of intercellular cross-talk networks and regulate in an autocrine 
and/or a paracrine manner the various stages of normal human 
hematopoiesis [69]. Thus, this new role of GCs could be particularly 
relevant if specific chemokines / cytokines were found to be 
differentially expressed and affecting proliferation or differentiation 
of erythroid progenitors in DBA.

Immunomodulatory GCs-inspired drugs tested in DBA

The broad anti-inflammatory profile of GCs probably accounts 
for their marked clinical effectiveness in many types of disease 
[70]. Since the pathophysiology of DBA was first attributed to 
immune dysregulation and putative suppressor T cells [6], different 
immunomodulatory agents were tested, and showed different 
efficacy profiles: 6-mercaptopurine, cyclophosphamide, vincristine, 
intravenous immunoglobulin, and anti-thymocyte globulin were 

tried in patients and found to be largely ineffective [4]. On the other 
hand, in 10 out of 20 cases treated with a combination of cyclosporine 
and corticosteroids, transient responses were observed, whereas 
cyclosporine alone has been reported to cause a sustained response in 
2 out of 10 patients [71-78]. Interestingly, the mechanisms of action 
of the two groups of drugs are different: the drugs of the first group 
(6-mercaptopurine, cyclophosphamide, vincristine, intravenous 
immunoglobulin, and anti-thymocyte globulin) have been shown 
to directly target the T cells, inhibiting their proliferation [79-83], 
whereas cyclosporine is known to have a milder effect, and modulate 
the expression of cytokines in T-Lymphocytes and in other cell types 
[84,85].

Conclusion
Today, 40% of patients with DBA receive steroid treatment, and 

the prolonged duration of steroid therapy is associated with the risk 
of side effects [4]; thus, the identification of new compounds that can 
be used to treat DBA is a priority.

Taken together, the evidence seems to indicate that the therapeutic 
effect of GCs in DBA could also be linked to the inhibition of cytokine 
function. In this hypothesis, some cytokines are specifically produced 
and interfere with normal erythropoiesis in DBA patient erythroid 
progenitors. This cytokine-mediated hypothesis of DBA is supported 
by in vitro experiments showing that normal erythroid progenitors 
secrete cytokines/chemokines, thus regulating hematopoiesis in an 
autocrine/paracrine manner [69].

SOCS proteins are physiological suppressors of cytokine signaling 
[86]. Proliferation induction and differentiation arrest caused by the 
GR mainly depends on mechanisms involving transactivation [18], 
and by inducing SOCS1 up-regulation in erythroid progenitors 
[50,55,59], GCs could also act in favor of an inhibition of cytokine 
pathways. At the same time, this proposition does not exclude the 
possibility that transrepression (dependent on activations between 
GR and AP1 or NF-κB) also occurs when erythroid progenitors 
are subjected to GCs treatment. Since several members of NF-κB 
family are also expressed [45] in erythroid progenitors, GCs could 
then inhibit NF-κB-induced cytokines expression, as they do in 
many other types of cells [41]. Finally, the acceleration of chemokine 
mRNAs decay by direct interaction between the GR and chemokine 
mRNAs in human airway epithelial cell line BEAS-2B helps to better 
understand the rapid action of GCs [68]. This specific degradation 
of chemokine mRNAs by GCs might partially explain the beneficial 
effect of GCs treatment in DBA.

These general conclusions on the functional links between 
cytokines and glucocorticoids should thus be confirmed in the specific 
field of DBA, in order to determine if drugs targeting cytokines could 
indeed pave the way for new treatments in DBA.
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