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Abstract

Lactobacillus rhamnosus is an important bacterium from a health
and industry perspective. Cytoplasmic proteomes of L. rhamnosus
ATCC2773 were studied to elucidate the specific growth condition
variations and the changes occurring in the protein expression patterns
of this bacterium when cultivated in a standard rich medium under two
different pH conditions (pH 6.4 and 5.5). A total of 220 proteins were
identified and compared by quantitative proteomic analysis using
iTRAQ LC-MS/MS. A functional classification of the cytoplasmic proteins
of L. rhamnosus revealed translation and carbohydrate metabolism
associated proteins as the major groups. A comparison of proteome
data showed that the majority of proteins (89%) have similar expression
patterns in cells grown in pH 6.5 and 5.5. The key differences observed
in the proteomes of L. rhamnosus grown in pH 6.5 and 5.5 were: 19
proteins were present at pH 5.5 but not expressed at pH 6.5 and six
proteins were expressed at pH 6.5 but not at pH 5.5. Specific proteins
were induced by each condition: 14 and 23 proteins in response to pH
6.5 and pH 5.5, respectively. This study illustrated the impact of culture
conditions on the proteome of L. rhamnosus.

Abbreviations

GI: Gastrointestinal; LAB: Lactic Acid Bacteria; iTRAQ:
Isobaric Tags for Relative and Absolute Quantitation; MRS: Mann
Rogosa Sharpe; SCX: Strong Cation Exchange; LC-MS: Liquid
Chromatography-Mass Spectrometry; NCBI: National Center for
Biotechnology Information

Introduction

Lactobacilli are members of the microbial community associated
with the human gastrointestinal (GI) tract. There is documented
evidence that lactobacilli are beneficial for their host due to their
ability to inhibit the growth of potential harmful bacteria in the GI
tract [1-4]. One of the most commonly marketed probioticlactobacilli
is Lactobacillus rhamnosus GG. L. rhamnosus is frequently isolated
from a large variety of ecological niches that include fermented food
products, the human gastrointestinal tract and oral and vaginal
cavities. It is classified as a facultatively hetero-fermentative lactic
acid bacterium (LAB). Several strains of L. rhamnosus (GG, HN001,
ATCC53103) demonstrate probiotic effects. L. rhamnosus GG and
HNO001 are the most prominent probiotic strains [5-9] and have
been extensively studied. The use of bacteria in an expanding array of
microbial applications creates stressful conditions for their survival,
thus, bacteria like L. rhamnosus have developed various metabolic
responses to cope with these conditions. A significant amount of
research has focused on bacterial stress responses. Accordingly, L.
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rhamnosus has been shown to respond to stress factors such as heat
shock [10,11], presence of lactic acid [12], bile [13,14] and low pH
[15].

Proteomics is considered to be a new technology-driven approach
dedicated to the identification of proteins on a genome-wide scale
[16]. The latest high-throughput proteomic approaches offer new
options to study probiotic bacteria from a different perspective. This
technique allows not only the identification of proteins but also the
extensive characterisation of their primary structures (maturation,
post-translational modifications and degradation), topology
(structural proteomics), interaction networks (interactomics),
function (chemical proteomics), regulation (quantitative proteomics)
and turnover [17]. Proteomics is an emerging field in probiotic
research. The first important application of proteomics is to obtain a
proteome map, or overview, of the bacterial protein content; secondly,
understanding the adaptation to gut conditions, such as low pH and
bile acids, is an important research theme; thirdly, proteomics is a
tool to answer important questions about the molecular biology of
potential probiotic bacteria. Previous reviews have discussed the
proteomics of LAB in general [18-20] but only a few have focused on
the proteomics of probiotic bacteria [21,22] are available.

In a recent study, Savijoki et al. compared the proteomes of two L.
rhamnosus strains, GG and Lc705 [23]. The GG strain is a well-known
for probioticapplicationsand strain Lc705 is used by the dairy industry.
Proteomics analysis resulted in the identification of more than 1600
proteins in each strain. The identified proteins make up nearly 60%
of the predicted proteomes of L. rhamnosus. Comparative analysis
revealed that the expression of more than 90 and 150 proteins were
uniquely present in GG and Lc705, respectively. Differences were in
the proteins with functionalities in biofilm formation, phage-related
functions, reshaping the bacterial cell wall and immunomodulation.
These differences did not come as a surprise, as lactobacilli such as
L. casie, L. plantarum and L. rhamnosus have diverse habitats and,
thus, the variation in the protein expression patterns of different
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strains adapted to diverse ecological niches is natural. However, more
detailed information on the dynamics of global protein expression
patterns during the growth of these microorganism is needed
and, more importantly, studies are required to detect the specific
differences under different physiological conditions.

In this work, we investigated growth-related variations in the
cytoplasmic proteome of L. rhamnosus strain ATCC27773, a strain
with potential uses as a probiotic research and in industry applications.
This strain has been applied in microbiological assays to determine
folate in serum and red cells [24,25]. L. rhamnosus ATCC27773 also
showed a positive effect as a probiotic for the treatment of functional
dyspepsia [26]. In order to achieve a better understanding of strain-
specific differences in the protein expression patterns of industrial
strains adapted to specific applications, we report on the cytoplasmic
proteome of L. rhamnosus and differences seen in the proteomes of
cells grown in two pH conditions (6.4 and 5.5).

Material and Methods
Bacteria and growth conditions

L. rhamnosus ATCC27773 was procured from the New Zealand
Reference Culture Collection (ESR Ltd New Zealand) and long-term
stock was maintained in 50% MRS-glycerol at -80 °C. An overnight
culture was prepared by inoculatingl0 mL of Mann Rogosa Sharpe
(MRS) broth (Oxoid) and incubating at 37 °C under anaerobic
conditions. Harvested cells were transferred into a modified MRS
broth [27] prepared using 0.3 M phosphate buffer to maintain the
required pH (5.5 and 6.5) during the incubation period. The starting
OD,,,.. of the cultures was adjusted to ~0.2. All cultures were
incubated at 37 °C for 8 h under anaerobic conditions. The cells were
then harvested by centrifugation at 10,000 x g for 10 min at 4 °C and
washed twice with 40 mM Tris-buffer (pH 7.0) before re-suspending
them in appropriate volumes of 40 mM Tris buffer to achieve a final
OD,,,,.. of 20. Bacterial cell suspensions were stored at -80 °C until

further use. Each growth condition was tested in duplicate and the
experiments were repeated at least twice.

Cytosolic protein samples preparation

The frozen bacterial suspensions were thawed and lysed using a
mini-bead beater. Half a gram of sterile zirconium beads (0.1 mm)
were mixed with 0.5 ml of cell suspension before mechanically lysing
the cells through four beating cycles, e.g. one x 90 s cycle was followed
by three beating cycles of 60 s each (with a five minute cooling on ice
between each beating cycle). The cytosolic protein rich supernatant
was collected after removing the cell debris by centrifugation at
13,000 x g for 30 min at 4 °C. Cytosolic protein samples were stored at
-80 °C until used for proteomic analysis.

iTRAQ labelling of the protein sample

Eighty micrograms of cytosolic proteins from each sample were
mixed with ten pg of trypsin for digestion and then incubated at 37
°C overnight. The trypsin digests were dried and suspended each in
20 ul 0.5M TEAB and labeled using an iTRAQ reagents-8plex k it (AB
SciexPte. Ltd) according to the manufacturer’s instructions. Every
sample was labeled twice and the aliquots of iTRAQ were combined
with peptide mixtures from different samples, and incubated at room
temperature for 1 h.

Identification of proteins through LC-MS/MS and data
analysis

The iTRAQ labeled peptides were fractionated through a 5 uM
BioX-SCX column (Dionex, Auckland, New Zealand) into 10 fractions
with 0, 1, 5, 10, 20, 40, 60, 80, 100% 2 M ammonium formate in 2%.
The SCX fractionation was performed using high-pressure liquid
chromatography. For LC-MS/MS analysis, two microlitres of sample
were loaded on a C18AQ nano trap (Bruker, 75 um x 2 cm, C18AQ,
3 um particles, 200 A pore size) using nanoAdvance UPLC coupled
to a maXis impact mass spectrometer equipped with a CaptiveSpray
source (Bruker Daltonik, Bremen, Germany). The column oven was
heated to 50 °C. Elution was with a gradient from 0% to 40% B in 90
min at a flow rate of 800 nl/min. Solvent A was LCMS-grade water
with 0.1% FA and 1% ACN; solvent B was LCMS-grade ACN with
0.1% FA and 1% water. Samples were measured in the auto MS/MS
mode, with a mass range of m/z 50-2200, followed by one full MS
scan, the 10 most abundant ions were subjected to MS/MS analysis.
The acquisition speed was maintained at 2 Hz in MS and 10 or 5 Hz
in MS/MS mode depending on precursor intensity. Precursors were
selected in the m/z 400-1400 range, with charge states of 2-5 (single
charge ions were excluded) and active exclusion was activated after 1
spectrum for 0.3 min.

Data analysis was conducted by submitting peak list files (mgf
format) to an in-house Mascot server (v2.4) (Matrix Science, UK).
The search parameters included: taxonomy Lactobacillus rhamnosus;
enzyme semi trypsin; cysteine modification carbamidomethyl;
MS tolerance 0.02 Da; MS/MS tolerance 0.1 Da; 1 missed cleavage;
instrument specificity ESI-QUAD-TOF. Mascot iTRAQ parameters
included variable iTRAQ8plex (N-term, K, Y), with reporter ions
defined as appropriate for the experiment. Peptides with a score below
20, and proteins with fewer than two peptides were discarded. Only
unique peptides were used for this quantification. Normalisation
was based on division by channel sum. Protein functionalities were
searched in several online proteomics databases (http://www.ncbi.
nlm.nih.gov/; http://www.matrixscience.com/; http://www.uniprot.
org/) and appropriate literature. Proteins were classified into different
groups through manual processing.

Results and Discussion

The gel free proteomics technique, iTRAQ LC-MS/MS analysis,
was used to identify constitutively expressed proteins in the cytosolic
extract of L. rhamnosus grown in MRS broth under anaerobic
conditions. This study also described the dynamics of the cytosolic
proteome of L. rhamnosus in response to two pH conditions (5.5 and
6.5). An increase of 1.5-fold or more in the relative expression of a
protein was considered for differential expression.

Cytosolic proteome of L. rhamnosus

In this study, a total of 220 different proteins were identified in
the cytosolic proteome of L. rhamnosus (Supplementary Table). The
identified proteins were grouped according to their functionalities
(Figure 1). Functional grouping revealed the distribution of the
proteins: translation (n=46, 21.60%), carbohydrate metabolism
(n=27, 12.68%), general and unclassified proteins (n=22,12.68%),
unknown proteins (n=17, 10.33%), transcription and regulation
(n=14, 6.57%), cell division and growth (n=11 5.16%), transport,
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Figure 1: Functional grouping of 231 proteins identified in the cytosolic fraction of L. rhamnosus ATCC27773 cells using iTRAQ analysis.

(n=11,5.16%), protein biosynthesis (n=10, 4.69%), energy metabolism
(n=10, 4.96%), other biosynthesis (n=8, 3.76%), amino acids (n=8,
3.76%), nucleotides (n=8, 3.76%), other metabolisms (n=7, 3.29%),
folding and stress (n=6, 2.82%), proteolysis (n=4, 1.88%) and lipid
metabolism (n=4, 1.88%). This study showed that proteins involved in
translation and carbohydrate metabolism were the major functional
groups in the cytoplasmic proteome of L. rhamnosus ATCC 27773.
Koskenniemi et al. reported that growth of L. rhamnosus LGG
in a laboratory medium (MRS broth) increased the expression of
translation proteins [24].

Overall, the assessment of the cytosolic proteomes generated
from the cells cultured in MRS broth adjusted and maintained at two
different pH conditions (6.5 and 5.5) showed noticeable variations
(Figure 2). There were proteins with varying degrees of expression
with a 1.50- to 4.27-fold relative increase, or some proteins were
absent in the cells grown at a particular pH (6.5 or 5.5). Nineteen
proteins were expressed only in the cells grown at pH 6.5 and were
not detected in the cells harvested from cultures at pH5.5. Similarly,
six proteins were only present in the cytosolic proteome of the cells
grown at pH 5.5. Around 89% proteins were commonly expressed in
both cytosolic proteomes. However, fourteen proteins were expressed
in greater quantities in the cells grown at pH 6.5 rather than at pH
5.5. Similarly, 23 proteins were induced in the cells in response to pH
5.5. Changes to the homeostatic environment of bacteria (including
pH) causes the bacteria to adjust their metabolism, growth, and
translational and transcriptional biochemistry by producing enzymes
(proteins) to help them adjust to changes in their environments [28-
30].

It has been shown from the literature that the growth pattern of
lactobacilli and biomass yield was influenced by pH and temperature.
There were noticeable differences between different species and strains
in their response to pH conditions. Reports suggested that a lower
pH of fermentation (pH 5 vs pH 6) produced cells with diverse and
robust physiological attributes [31]. In this study, induction of higher
numbers of proteins in pH 5.5 compared to pH 6.5 was observed,
which clearly demonstrated a stronger physiological response of L.

rhamnosus cells at the lower pH. Deepika et al. evaluated the effect of
fermentation conditions (pH 5, 5.5, 6, 6.5 and temperature 25, 30 and
37 °C) on the surface properties of L. rhamnosus GG and its adhesion
to Caco-2 cells [32]. The rationale to compare optimal growth
conditions (pH 6.5 and temperature 37 °C) to suboptimal conditions
(pH <6 and temperature <37 °C) was that important changes could
take place when growing the cells in such environments.

Proteins induced at pH 6.5

Fourteen proteins were induced in response to pH 6.4 and five
of them had an induction factor in the range of 2.02 - 4.27 (Table
1). Among the highly expressed proteins were: acyl carrier protein,
a transport protein, was expressed 4.27-fold; cell division protein
GpsB (homology with L. rhamnosus LRHMDP2) increased 3.14
times; a transcriptional protein of the MarR family had a 3.08-fold
increase; a cysteine synthase protein and a glycine cleavage system
protein H were over-expressed 2.10- and 2.02-fold, respectively.
Other differentially expressed proteins (increased 1.56 to 1.92 times)
were phosphotransacetylase, a lysine transporter protein, uracil
phosphoribosyltransferase, lipoate-protein ligase A, HPrkinase/
phosporylase, a cell division ATPase protein, glycerol-3-phosphate
oxidase, L-lactate dehydrogenase and phosphocarrier protein HPr.

Nineteen proteins were detected in the cells of L. rhamnosus
grown at pH 6.5 that were not present in cultures of L. rhamnosus
grown at pH 5.5. These proteins included pyruvate oxidase, adenyl
succinate synthase, carbamoyl-phosphate synthase, isoleucyl-tRNA
synthase, glutamine synthetase repressor, thiamine biosynthesis ATP
pyrophosphatase, ribonuclease P protein component, iron-binding
alcohol dehydrogenase, Hsp33-like chaperonin, 3-oxoacyl (acyl
carrier protein) synthase III, cell division protein sepF partial, MutT/
nudix family phosphohydrolase, RNA ribosyltransferase-isomerase
Que A, phage-related tail-host specificity protein, phosphohistidine-
sugar phosphotransferase, ATP/GTP hydrolase, putative extracellular
matrix binding protein, a conserved hypothetical protein and
preprotein translocate subunit YajC.

Most of the proteins produced and/or expressed by the cells at
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Figure 2: Map of protein expression changes in cytosolic proteomes of L. rhamnosus ATCC27773 cells grown at pH 5.5 and 6.5. Legends: Red colour, up-
regulated protein; Green colour, down-regulated protein; White colour, protein absent in a particular condition; Matching colour, similar expression pattern.
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Table 1: The identity and expression of proteins induced by pH 5.5 and 6.5 in Lactobacillus rhamnosus ATCC27773.

Protein name [Homology match] zl;t:t?::c RatisvERgRoE Accession no. ?AD?)S Fold change
pH 6.5

Acyl carrier protein [Lactobacillus rhamnosus HN0O1] Fatty acid metabolism gi|199597462 8957 +4.27
Phosphotransacetylase [Lactobacillus rhamnosus HN0O1] Pyruvate and propanoate metabolism gi|199597298 35204 +1.72
Uracil phosphoribosyltransferase [Lactobacillus rhamnosus HNOO1] Transport gi|199597583 22780 +1.60
Cysteine synthase [Lactobacillus rhamnosus LMS2-1] Signal transduction gi|229553598 32586 +2.10
Glycine cleavage system protein H [Lactobacillus rhamnosus GG] Amino acid metabolism gi|258508188 10787 +2.02
Glycerol-3-phosphate oxidase [Lactobacillus rhamnosus LMS2-1] Glycerolphospholipid metabolism gi|229553666 67070 +1.67
Phosphocarrier protein HPr [Lactobacillus casei ATCC 334] Carbohydrate metabolism gi|116495240 9248 +1.92
Cell division protein GpsB [Lactobacillus rhamnosus LRHMDP2] Cell growth and death gi|421770856 15147 +3.14
HPr kinase/phosphorylase [Lactobacillus rhamnosus HNOO1] Carbohydrate metabolism gi|199597253 35325 +1.64
Cell division ATPase [Lactobacillus rhamnosus HNOO1] Cell growth gi|199597237 25493 +1.80
L-lactate dehydrogenase [Lactobacillus casei ATCC 334] Carbohydrate metabolism gi|116495980 35508 +1.56
Lipoate-protein ligase A [Lactobacillus rhamnosus HN0OO1] Protein lipoylation gi|199598387 38434 +1.54
MarR family transcriptional regulator [Lactobacillus rhamnosus GG] Transcription gi|258509122 18863 +3.08
Lysine transporter protein [Lactobacillus rhamnosus GG] Transport gi|385827176 49813 +1.61
pH 5.5

DNA mismatch repair protein [Lactobacillus rhamnosus HNOO1] Replication and repair gi|199597366 71751 +2.41
Galactose-1-phosphate uridylyltransferase [Lactobacillus rhamnosus HNOO1]  Galactose metabolism gi|199596969 54599 +3.53
Peptidylprolyl isomerase [Lactobacillus rhamnosus LMS2-1] Protein folding gi|229552580 33583 +2.02
Diguanylate cyclase [Lactobacillus rhamnosus R0011] Biofilm formation gi|418072587 44802 +1.61
Hypothetical protein LRH_00422 [Lactobacillus rhamnosus HNOO1] Unknown gi|199598119 12182 +1.86
Hypothetical protein LRH_10752 [Lactobacillus rhamnosus HNOO1] Unknown gi|199598624 18734 +1.63
Proline dipeptidase [Lactobacillus rhamnosus LRHMDP2] Cellular process gi|421770354 40557 +1.56
Ribosomal protein S15P/S13E [Lactobacillus rhamnosus HN0O1] Translation gi|199598193 10307 +3.68
508 ribosomal protein L19 [Lactobacillus rhamnosus LMS2-1] Translation gi|229552441 14555 +2.57
E'\a/lcst;l:if]l cell division membrane protein FtsW [Lactobacillus rhamnosus Cell growth gi[229551987 46222 +1.69
g);\:)As-zd]irected RNA polymerase, beta' subunit [Lactobacillus rhamnosus ATCC Transcription gi[423078557 135986 +1.50
Predicted phosphosugar isomerase [Lactobacillus rhamnosus HN0OO1] Carbohydrate metabolism gi|199599301 43041 +2.20
Preprotein translocase subunit SecA [Lactobacillus rhamnosus HNO01] Protein transport gi|199597235 89455 +1.63
Cell division protein FtsH [Lactobacillus rhamnosus LRHMDP2] Cell growth and death gi|421770643 78161 +1.50
Adenylate kinase [Lactobacillus rhamnosus LMS2-1] Nucleotide metabolism gi|229552729 23339 +1.50
Fructose/tagatose bisphosphate aldolase [Lactobacillus rhamnosus HNOO1] Carbohydrate metabolism gi|199597065 31686 +1.50
Tuf [Lactobacillus rhamnosus] GTP catabolic process gi|38488993 25919 +2.86
FOF1-type ATP synthase subunit beta [Lactobacillus rhamnosus GG] Energy metabolism gi|385827851 56680 +1.50
Mannitol-1-phosphate 5-dehydrogenase [Lactobacillus rhamnosus LMS2-1] Energy metabolism gi|229551152 42605 +1.60
30S ribosomal protein S19 [Lactobacillus rhamnosus ATCC 8530] Translation gi|385836313 10552 +1.50
Pyruvate carboxylase [Lactobacillus rhamnosus Lc 705] Pyruvate carboxylase gi|258539534 125248 +1.62
HflX subfamily GTP-binding protein [Lactobacillus rhamnosus R0011] GTP binding gil418072452 48214 +1.51
Ribose-phosphate diphosphokinase [Lactobacillus rhamnosus LMS2-1] Nucleotide biosynthesis 0i|229551493 35478 +1.50
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pH 6.5 were associated with cell growth and active metabolic cellular
processes. Previous studies showed that pH 6.5 and 37 °C were the
best conditions for L. rhamnosus GG cells’ adhesion ability [32].
Our observations on the basis of proteomics data supported that
cells produced a range of enzymes required for vigorous growth and
normal cell activities at pH 6.5 and 37 °C. Induction of protein-related
stress factors or cellular damage was not seen under these conditions.

Proteins induced at pH 5.5

Twenty three proteins were up-regulated at pH 5.5 with the
increase ranging from1.50- to 3.68-fold; seven of these proteins had
a differential expression value of >2-fold. These highly expressed
proteins included a DNA mismatch repair protein (2.41-fold),
galactose-1-phosphate uridylytransferase (3.53-fold), ribosomal
protein S15P/S13E (3.68-fold), 50S ribosomal protein L19 (2.57-
fold), predicted phosphosugar isomerase protein (2.20-fold) and Tuf
protein (2.86-fold). Preprotein translocase subunit SecA, fructose/
tagatose bisphosphate aldolase, ribose-phosphate diphosphokinase,
mannitol-1-phosphate 5-dehydrogenase, bacterial cell division
membrane protein FtsW, diguanylate cyclase, prolinedipeptidase
protein, cell division protein FtsH, 30S ribosomal protein S19,
HfIX subfamily GTP-binding protein, pyruvate carboxylase protein,
hypothetical proteins LRH_0042 and LRH_10752 were also detected
in relatively higher amounts in the cells growth at pH 5.5. Six proteins
expressed at pH 5.5 but not at pH 6.5 included: DegV family protein,
ribose-5-phosphate isomerase A, GMP synthase, hypothetical protein
LC705_01627, adhesion exoprotein and translation initiation protein.

Cells grown at the relatively suboptimal pH (5.5) had a higher
expression of proteins involved in DNA repair, translation, protein
folding and transport, biofilm formation and adhesion abilities.
Induction of hypothetical proteins was also seen in cells grown at
lower pH. The pH conditions used in this study were harsh enough to
impose acidic stress on bacterial cells as generally used by other authors
[33]; thus discussion on acid stress responses will be irrelevant. This
proteomic study was to identify and characterize protein expression
in L. rhamnosus in two different growth conditions, which were
important to understand its functionality and characteristics when
used as a probiotic and industrial microorganism. Further proteomics
work is needed to develop better understanding of protein expression
differences in different Lactobacillus strains in relation to specific
growth conditions.

Conclusions

This study was initiated to construct the cytosolic proteome of L.
rhamnosus ATCC27773 and evaluate the impact of culture conditions
(pH) on the proteomic profile of cells. This present cytosolic
proteome is the first study to catalogue L. rhamnosus ATCC27773
proteins to date. The temperature and the pH of cultures influenced
several physiological and technological properties such as growth,
mass yield, surface composition, metabolic by-products and the level
of adhesion of lactobacilli. Comparison of changes in the cytosolic
proteomes of cells grown at pH 6.5 and 5.5 clearly showed that
the strain had difference in their proteomics expression under the
different culture conditions. Suboptimal growth conditions generally
improved physiological responses as shown by the expression of
greater numbers of proteins seen in the case of pH 5.5. This attribute

was thought to increase the robustness and technological properties
of the cells. In conclusion, this study provided a detailed cytosolic
proteome of a lactobacilli strain and paved the way to understand its
functionality and characteristics for industrial use.
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