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Abstract
Knowledge of protein-protein interaction sites provides an 

important base for deciphering novel drug targets. But on account 
of biological complexity and transient forms, determination of these 
sites is a challenge in biology. Various computational approaches are 
being explored for relevant prediction based on available protein 
sequence-structure information. Here we propose a novel method 
SPRINGS (Sequence-based predictor of Protein- protein Interacting 
Sites) for identification of interaction sites based on sequences. It uses 
protein evolutionary information, averaged cumulative hydropathy 
and predicted relative solvent accessibility from amino acid chains in 
artificial neural network architecture. The performance of SPRINGS is 
observed to be promising as a complementary approach for protein-
protein interaction sites prediction in protein engineering and drug 
development.

Introduction
Proteins are key players in biological systems orchestrating 

various mechanisms of life sustenance and growth. They perform such 
vital functions by concerting interactions with each other forming a 
network of interplaying agents in regulating as well as facilitating 
various metabolic functions within and outside of the organisms [1]. 
Thus, knowledge of protein-protein interactions can provide us with 
insights into the innate metabolic machinery of living organisms. 
Further, with newer annotations of protein sequences and structures, 
mapping protein interaction network has become a coveted aspect 
of advancing towards its potential applications in proteomics and 
related fields also [2]. Since protein-protein interaction information 
allows the function of a protein to be defined by its position in a 
complex web of interacting proteins, access to such information is 
believed to have ample role in boosting biological research and drug 
discovery [3]. These insights can be utilized to develop novel agents 
for intervening and manipulating the flow of biological information 
in case of disorders and irregularities [4,5].

The identification of these protein-protein interactions was 
previously approached majorly by means of the experimental 
techniques. But these methods, may not be generally applicable to all 
proteins in all organisms, and may also be susceptible to systematic 
error [2]. 

Thus, in addition to various conventional experimental methods, 
a number of complementary computational approaches have 
been developed for the large-scale prediction of protein–protein 
interactions based on protein sequence, structure and evolutionary 
relationships in complete genomes. Computational prediction 
of protein–protein interactions consists of two main areas (i) the 
mapping of protein–protein interactions, i.e., determining whether 

two proteins are likely to interact and (ii) the understanding of the 
mechanism of protein–protein interactions and the identification of 
residues in proteins which are involved in those interactions.

Computational prediction of protein–protein interactions has 
been attempted using sequence - structure information in the past 
[6]. The structural methods predicted protein–protein interaction 
based on the structural context of proteins. Recent advances in 
complete genome sequencing have however provided a wealth of 
genomic information, opening possibilities for establishing the 
genomic context of a given gene in a complete genome [2]. A gene is 
no longer thought of as a single protein-coding entity but as part of 
a coordinated network of interacting proteins. The potential for two 
proteins to interact is not only specified by the physical and structural 
properties of their structures, but is also encoded at a genomic level. 

Machine learning approaches such as the Naïve Bayes Classifier 
[7], Neural Networks [8,9], Support Vector Machines [9], Random-
forest classifier [10] and L1-regularized logistic regression [11] have 
been widely explored for prediction of protein-protein interaction 
sites. However, scope of improvement in the prediction process still 
exists, given the biological complexities of protein and its interactions.

In this study, we have incorporated protein sequence properties 
such as evolutionary conservation, hydropathy and predicted 
structural information in an artificial neural network to predict 
protein-protein interaction sites. Our findings may help boost crucial 
target-specific drug development and other potential applications of 
protein interaction biology. 

Materials and Methods
Datasets

In this study, we have incorporated datasets comprising of 
heterodimeric non-transmembrane protein chains in complex, listed 
in Protein Data Bank (PDB) [12], with structures solved using X-ray 
Crystallography (resolution ≤ 3.0 Å). The interacting residue in the 
protein chains was defined as a residue that lost absolute solvent 
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accessibility of <1.0 Å2 on complex formation. For training the neural 
network architecture, training dataset Dset186 was used and for 
testing the performance of the trained neural network, independent 
test dataset Dtestset72 containing non-overlapping sequences with 
Dset186 (sequence identity <25%) was used. Dset186 and Dtestset72 
have been previously created and used during the development of 
PSIVER [7]. 

Besides these two (training and independent test) datasets, we 
prepared an additional dataset – PDBtestset164 [11], using newly 
annotated proteins from June 2010 to November 2013. The filters used 
on PSIVER datasets as mentioned above, i.e., Dset186 and Dtestset72, 
were applied for creating PDBtestset164 as follows: Proteins with 
X-ray Crystallography (resolution ≤ 3.0 Å) heterodimeric structures 
were included using the advanced search option available at http://
www.rcsb.org; and fragments (sequence length <50 amino acids) were 
excluded. Those protein chains listed in the REMARK 350 as dimers 
were considered. By means of UniProtKB [13] accession numbers 
only heterodimers among the considered proteins were selected and 
used. Protein complexes whose chains had the missing ratio (= the 
number of missing residues of a chain listed in REMARK465/the 
total number of residues of the chain × 100) ≥ 30% were removed. 
Also protein complexes with interface area of <500Å2 or ≥ 2500Å2 

as mentioned in PDBsum [14] and transmembrane proteins listed 
in PDBTM [15] were removed. Some of the retained structures, 
determined as dimeric, that may be part of larger oligomeric 
complexes found in other PDB entries were also removed using 
PDBsum [14]. These structures would have additional interaction 
sites that could affect the prediction performance of the method. 
To ensure non-redundant sequences among the filtered chains, we 
performed their pair-wise clustering using BLASTClust [16]. Then 
all the sequences with ≥ 25% sequence identity over 90% overlap 
were removed from within the dataset. Non redundancy of these 
sequences with Dset186 and Dtestset72 was also ensured. Overall 164 
protein chains were obtained in PDBtestset164. Software PSAIA [17] 
(Protein Structure and Interaction Analyzer) was used to identify 
protein-protein interaction sites in PDBtestset164. The following 
PDB IDs along with the mentioned interacting chains were included: 

3PH0 (A,C), 3VIQ (A,B), 4DFC (A,B), 3P8B (A,B), 4EQA (A,C), 
3Q9N (A,C), 4JOI (A,D), 4CDG (A,C), 4HOP (A,B), 2YAJ (A,B), 
2WUS (A,R), 3ZEU (D,E), 3AQB (A,B), 3OCD (A,B), 3S97 (A,C), 
4HLU (A,D), 4FOU (A,C), 4KT6 (A,B), 3UVJ (A,B), 4FQ0 (B,C), 
2YC2 (A,D), 4H3K (A,B), 2Y9W (A,C), 3MDB (A,C), 3O3M (A,B), 
3ZHE (A,B), 4E6N (A,B), 3W0L (A,B), 4BH6 (D,L), 3TGX (A,B), 
2XQR (A,B), 3OUR (A,B), 3MMY (A,B), 3VPJ (A,E), 3ZR4 (A,B), 
3B08 (A,B), 3TU3 (A,B), 3W2W (A,B), 3MP7 (A,B), 3ZYI (A,B), 2YCL 
(A,B), 4EMJ (A,B), 4KBM (A,B), 4F6U (A,B), 4ETP (A,B), 3VRD 
(A,B), 3ZKQ (A,D), 3NYB (A,B), 4M69 (A,B), 3AXJ (A,B), 3R07 
(A,C), 4E4W (A,B), 3MJ7 (A,B), 4GED (A,B), 4AWX (A,B), 3PV6 
(A,B), 3VU9 (A,B), 4JE3 (A,B), 4IU2 (A,B), 4APX (A,B), 3NW0 (A,B), 
2WD5 (A,B), 3OG6 (A,B), 3SHG (A,B), 3AYH (A,B), 3ANW (A,B), 
3VDO (A,B), 4KT3 (A,B), 3M7F (A,B), 4HFF (A,B), 3Q87 (A,B), 
3ONA (A,B), 4BI8 (A,B), 4A5U (A,B), 4EUK (A,B), 4G7X (A,B), 4GN4 
(A,B), 4G6T (A,B), 4M70 (B,H), 4BJJ (A,B), 3VZ9 (B,D), 3MCB (A,B)

Artificial neural networks

In this study, for the identification of protein-protein interaction 

sites by machine learning we used artificial neural networks (ANN). 
Neural networks are adaptive class of machine learning techniques 
and have been used successfully in various biological problems 
[18,19]. Artificial neural network originally was inspired from 
biological neural network, the brain. The most important and 
attractive feature of ANN is its capability of learning (generalizing) 
from example (extracting knowledge from data). ANN can do this 
without any pre-specified rules that define intelligence or represent 
an expert’s knowledge. We have implemented the neural network 
architecture in our study using GNU Octave (available at http://www.
gnu.org/software/octave/about.html) to identify protein-protein 
interaction sites based on distinct protein characteristics mentioned 
below.

Sequence feature vectors

Classification requires crucially informative protein properties 
as inputs for ANN learning. As per earlier reports in prediction of 
protein-protein interaction sites, characteristics of protein sequences 
such as evolutionary conservation, hydropathy and predicted 
structural properties offer important contributive influence on the 
prediction [1,20]. Therefore, we have used these three aspects of 
target residues to confer towards their identification as interacting or 
non-interacting residues. 

Prediction also depends on the window size over which residues 
are chosen during feature extraction. In this study, for a residue in 
a specific protein, a window size of nine was chosen; since previous 
studies [7,8,10,11] emphasized that a nine-residue window size would 
be optimal for protein-protein interaction prediction problems. 
For this sub-sequence of nine residues, encoding was done with a 
multidimensional vector built on the three attributes:

Evolutionary information was included using position specific 
scoring matrix (PSSM) generated by PSI-BLAST [21] with an 
E-value threshold of 0.001, for three iterations against the NCBI non-
redundant protein sequence database (using BLAST+ [22] options; 
−num_iterations 3 −db nr –inclusion_ethresh 0.001). These values 
were normalized between 0 to 1 using the sigmoid function. The 
attribute was extracted over a window with size nine and a total of 
180 (= 20×9) scores were obtained. This was followed by calculation 
of averaged cumulative hydropathy (ACH) characteristics of proteins 
under consideration.

An average of the cumulative hydrophobicity indices over a 
window size varying between 1, 3, 5, 7 and 9 gave the ACH for this 
study. Hydrophobicity index proposed by Kyte and Doolitle [23] was 
implemented using Python codes for computation and a total of five 
scores were obtained. These values were normalized between 0 to 1 
using the sigmoid function. Besides hydropathy, another aspect of the 
protein important for identification of functional sites is predicted 
relative solvent accessibility (PRSA).

Since the surface of a protein is non-trivial to define even when 
the structure is known, machine learning applications and statistical 
methods are applied to measure relative solvent accessibility which 
denotes how large a part of the van der Waal’s surface of each amino 
acid residue is exposed to the solvent surrounding the protein. In this 
study we have incorporated information on predicted relative solvent 
accessibility using Sann web server [24]. Sann stands for solvent 

http://www.rcsb.org
http://www.rcsb.org
http://www.gnu.org/software/octave/about.html
http://www.gnu.org/software/octave/about.html
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accessibility predicted by nearest neighbor method from sequence 
profiles. The method is based on a k-nearest neighbor method 
combined with Z-value distance statistics in the feature vector 
space. It predicts the discrete states (two or three states) as well as 
continuous value of the solvent accessibility (absolute and relative) of 
a target residue and is available at http://lee.kias.re.kr/~newton/sann/. 
This attribute is independent of the window size, i.e. only one PRSA 
score is extracted.

A 186D (= 20×9 + 5 +1) feature vector was thus created, for 
each positive (interacting residues) and negative (non-interacting 
residues) example.

Prediction of protein-protein interaction sites and 
performance assessment

Training of the predictor was done via multi-layer feed-
forward Neural Network incorporating selected protein properties 
of PSSM, ACH and PRSA information. To find the optimal set of 
neural network parameters, unconstrained nonlinear optimization 
method was used along with the back-propagation algorithm. 
Training dataset consisting of 186 proteins was used for the predictor 
development and tested on two independent datasets: (i) Dtestset72 
which included rigid body cases (27 protein complexes), medium 
cases (6 protein complexes) and difficult cases (3 protein complexes), 
depending upon the degree of conformational change; and (ii) 
PDBtestset164. The prediction performance was evaluated using the 
following mathematical formulae for recall or sensitivity, precision, 
specificity, accuracy, Matthew’s Correlation Coefficient (MCC) and 
F- measure as follows:

Recall or Sensitivity = TP/(TP + FN)

Precision = TP/(TP + FP)

Specificity = TN/(TN + FP)

Accuracy = (TP + TN)/ (TP + FN + TN + FP)

MCC = ((TP × TN) - (FP × FN)) / √((TP + FP)  (TP + FN) × (TN 
+ FP) × (TN + FN)

F – measure = 2 × (Precision × Recall) / (Precision + Recall)

where, TP (true positives): Residues correctly predicted as interacting, 
FP (false positives): Residues incorrectly predicted as interacting, 
TN (true negatives): Residues correctly predicted as non-interacting 
and FN (false negatives): Residues incorrectly predicted as non-
interacting.

Results
Prediction using ANN with sequence features on Dset186

Neural network was trained on Dset186 using PSSM, PRSA input 
files and ACH properties. Based on the learning process, that takes place 
within the hidden layers trained neural networks return a numerical 
value between 0 and 1 for each residue. This may be transformed to 
binary state and interpreted as interacting or non-interacting residue. 
In this study, the residues were subjected to machine learning with 
an input layer consisting of 186 units (one unit per feature) and one 
binary output unit (interacting or non-interacting). After varying the 
number of hidden layers and the number of units in it, it was found 
that a network of one hidden layer with 15 units performed the best. 

Further, to analyze the learning process outcomes we performed 
Leave One Out Cross Validation (LOOCV), repeating 186 times, a 
process of considering one of the 186 protein sequences as test data 
while remaining being used for training. We obtained the following 
results upon performance evaluation using mathematical parameters. 
Prediction showed an overall MCC value and F-measure of 0.225 and 
56.6% respectively.

Performance of SPRINGS on independent test datasets

The best performing neural network model on Dset186 obtained 
as above was named as SPRINGS (Sequence-based predictor 
of Protein- protein Interacting Sites). To gain insights into the 
predictability of protein-protein interaction sites using SPRINGS 
on sequences not related to those used in training, we screened 
previously reported Independent test dataset proteins, Dtestset72 (72 
sequences excluded from training) as a benchmark of performance 
across existing solutions in this context. SPRINGS achieved an MCC 
of 0.170 and F-measure 31.8% as shown in Table 1. MCC gives the 
correlation between the actual and predicted classes of residues, 
whereas F-measure enumerates the harmonic mean of precision and 
recall, both indicating the overall performance of SPRINGS though 
not highly promising to be encouraging.

After performance assessment on Dtestset72, SPRINGS was 
tested on PDBtestset164. SPRINGS achieved an MCC of 0.108 and 
F-measure 31.1% as shown in Table 2. PSIVER followed the results of 
SPRINGS with an MCC of 0.078 and F-measure 29.5%.

Exploring factors influencing performance of springs 

As reported in earlier research work in protein interaction biology 
and observed in this study, predicting interacting sites is indeed 
challenging. Here we have contemplated few underlying aspects of 
proteins such as sequence length, amino acid type and secondary 
structure which have not been included as sequence feature vectors in 
the study for their possible contribution in interacting site prediction. 
This influence was explored systematically and the following insights 
were obtained as summarized. Protein 1n2c(ABCD) of a total length = 
2000 residues was eliminated from our study to avoid extremity bias 
during trend analysis.

Proteins in the independent test dataset mentioned above showed 
lengths varying from 44 to 873 residues. Prediction performance 
(MCC) and potential length dependency show an overall negative 
correlation (Pearson’s correlation coefficient r = -0.2) as per our study. 
To gain more insights into the specific contribution, we grouped 
the proteins into short length (< 200 amino acid residues; 59.2% in 
Dtestset72 and 59.8% in PDBtestset164) and long length (≥ 200 amino 
acid residues; 40.8% in Dtestset72 and 40.2% in PDBtestset164) and 
analyzed their prediction performance with respect to the percentage 
of interacting residues in a given protein. Our findings suggested that 
short length proteins showed a correlation (r) -0.2 and long length 
proteins showed a correlation (r) 0.4 respectively. 

Other than the length, properties of proteins can largely be 
attributed to their innate amino acid residue composition. We 
analyzed the prediction performance of our approach in relation with 
the amino acid type as shown in Figure 1. In Dtestset72 the range of 
MCC was from 0.079 to 0.228 (F-measure 16.0% to 32.8%) and in 
PDBtestset164 the MCC values ranged from 0.012 to 0.174 (F-measure 

http://lee.kias.re.kr/~newton/sann/
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Method MCC Precision % Recall % Specificity % Accuracy % F-measure %

Rigid body (27)

SPRINGS 0.167 23.5 59.2 62.5 62.1 31.3

LORIS 0.175 23.2 63.8 60.3 60.9 32.0

PSIVER 0.127 23.9 46.5 68.8 65.5 27.3

ISIS 0.110 22.0 37.9 75.7 70.9 25.9

SPPIDER 0.087 20.4 44.7 65.2 62.9 24.4

Medium cases (6)

SPRINGS 0.197 26.2 59.1 65.6 64.9 33.7

LORIS 0.187 25.0 60.9 63.4 63.3 32.9

PSIVER 0.171 28.9 43.5 75.3 70.2 27.1

ISIS 0.050 18.4 23.0 82.6 75.2 19.0

SPPIDER 0.055 19.4 36.1 68.4 62.7 18.4

Difficult cases (3)

SPRINGS 0.143 24.9 57.7 62.3 60.3 32.8

LORIS 0.174 26.5 61.1 62.7 61.8 35.5

PSIVER 0.139 26.9 53.2 61.9 62.8 33.2

ISIS 0.002 17.8 33.5 67.7 62.4 23.0

SPPIDER 0.070 22.1 70.4 41.3 49.3 32.7

Overall average performance (72)

SPRINGS 0.170 24.1 59.0 63.0 62.4 31.8

LORIS 0.177 23.8 63.1 61.0 61.4 32.4

PSIVER 0.135 25.0 46.5 69.3 66.1 27.8

ISIS 0.091 21.0 35.0 76.2 70.6 24.5

SPPIDER 0.081 20.4 45.4 63.7 61.7 24.1

Table 1: Comparison of Predictors Tested on the Independent Validation Set (Dtestset72)a.

aClassification and prediction performances of other predictors are based on [7].

Method MCC Precision % Recall % Specificity % Accuracy % F-measure %

SPRINGS 0.108 26.8 40.7 64.8 60.6 31.1

LORIS 0.111 26.3 53.8 60.9 58.8 32.3

PSIVER 0.078 25.3 46.4 63.4 59.6 29.5

Table 2: Comparative Prediction Power of SPRINGS, LORIS and PSIVER Tested on PDBtestset164.

18.2% to 35.5%). Then, to understand if certain groups of amino acids 
were preferred over others in these sites, we grouped these residues 
under Hydrophobic (Alanine, Isoleucine, Leucine, Methionine, Valine 
and Cysteine), Polar (Asparagine, Glutamine, Serine and Threonine), 
Charged (Histidine, Lysine, Arginine, Aspartate and Glutamate) and 
Aromatic (Phenylalanine, Tryptophan and Tyrosine); and explored 
their relative prediction performance which is shown in Table 3.  

Further, as reported in earlier research studies predicted structure 
information is known to enhance prediction of protein interaction 
sites [9]. Herein, we have explored if the content of experimentally 
observed secondary structures have an influence on the prediction 
rates. 2Struc [26] was used to extract secondary structure elements 
for analyses according to a reduced three-state representation: Helix 
(encompassing H, I, G), Strand (E) and Coil (all remaining elements), 
where H, I, G and E are from their DSSP definitions [27]. Figure 2 
shows specific prediction performance for Helix, Strand and Coils. 

Comparison of SPRINGS with previously reported 
approaches

Development of an effective computational approach requires 
objective comparison of the newly proposed method with previously 
reported solutions. As already stated in these studies, on account 
of difference in datasets, definitions of problems and approaches, a 
direct comparison with the performance published in the literature 
is nearly impossible [7]. However, a purposeful performance analysis 
of various predictors for protein-protein interaction sites was done 
to gain insights into the prediction power of our developed method. 
Since, MCC is considered to be the best assessor for the overall 
performance in machine learning, representing how well predictions 
correlate with observed class labels [27] we assessed SPRINGS, 
LORIS, PSIVER, ISIS and SPPIDER based on MCC values.

The performance of SPRINGS was compared with the four above 
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Figure 1: Amino acid group type and the performance of SPRINGS on independent test datasets.

Amino acid groups
% of occurrence MCC F-measure (%)

Dtestset72 PDBtestset164 Dtestset72 PDBtestset164 Dtestset72 PDBtestset164
Hydrophobic (AILMVC) 37.8 38.2 0.138 0.085 22.5 23.1
Polar (NQST) 23.2 21.9 0.114 0.058 27.0 27.4
Charged (HKRDE) 28.9 30.0 0.127 0.082 28.8 30.4
Aromatic (FWY) 10.0 9.9 0.142 0.042 28.1 31.5

Table 3: Different amino acid groups and prediction performance of SPRINGS on independent test datasets.

mentioned servers, i.e., LORIS, PSIVER, ISIS and SPPIDER on 
Dtestset72 which was divided into three categories namely the rigid 
body cases, the medium cases and the difficult cases [7]. SPRINGS 
achieved an MCC of 0.167 and an F-measure of 31.3% in case of the 
rigid body cases; an MCC of 0.197 and an F-measure of 33.7% in 
case of medium cases; and an MCC score of 0.142 and F-measure 
of 32.8%for the difficult cases. The assessment parameters obtained 
with LORIS, PSIVER, ISIS and SPPIDER are shown in Table 1 for 
comparative analysis.

Following Dtestset72, comparative analysis of SPRINGS was 
carried out on PDBtestset164 with LORIS and PSIVER which 
outperformed other methods ISIS and SPPIDER (Table 2). The MCC 
score and F-measure obtained by SPRINGS was 0.108 and 31.1% 
whereas for LORIS and PSIVER the values were (0.111 and 32.3%) 
and (0.078 and 29.5%) respectively.

Discussion
This article presents a novel computational approach (SPRINGS) 

using artificial neural networks for predicting protein-protein 
interaction sites based on evolutionary conservation, averaged 
cumulative hydropathy and predicted relative solvent accessibility 
of protein sequences. Training of the neural networks was done on 
Dset186 containing filtered protein chains from PDB. Performance 
assessment of the trained neural network was done using LOOCV 
and then testing was performed on independent test datasets 
Dtestset72 and PDBtestset164. Summary of prediction results 
indicated that the performance of SPRINGS was encouraging with an 
overall MCC of 0.170, comparable with LORIS, and outperforming 
existing approaches such as PSIVER, SPPIDER and ISIS. Further, 
among the categories of rigid body, medium cases and difficult cases, 

the overall performance of SPRINGS closely followed LORIS but was 
observed to be better than others. Since a few residues in protein-
protein interfaces are isolated, one can filter the raw predictions by 
simply omitting isolated predictions [7,8]. It must be noted here 
that Dtestset72 and PDBtestset164 were created on the assumption 
that any residue not observed in the given complexes is treated as 
negative. Therefore, it might be possible that the selected datasets may 
still have additional protein–protein interaction sites; affecting the 
performance of the methods, overall extending scope for advanced 
research in protein interaction biology. 

However, to understand the prediction performance of SPRINGS 
at a greater depth in the current scenario, we explored few possible 
factors which might have an influence on the identification of 
interacting residues, such as protein sequence length, amino acid 
type and secondary structure in the independent test datasets. Our 
findings suggested that the length of protein sequences had no clear 
influence on the prediction. For the short length proteins, there 
was no significant bias with respect to the percentage presence of 
protein-protein interaction sites. However, for long length proteins, 
the performance of SPRINGS was positively influenced (Pearson’s 
Correlation Coefficient = 0.4). Also, there was no specific or significant 
bias noticed in the prediction performance of SPRINGS whether it 
was regarding type of amino acids or secondary structure element.

As per the existing knowledge and approaches, SPRINGS, 
following LORIS and closely followed by PSIVER could also help 
in the recognition of protein-protein interacting sites. As of now, 
the proposed method may successfully provide experimental 
biologists an aid to correctly identify potential interacting residues 
in uncharacterized proteins. This sequence based approach with 
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its unique learning process, is likely to utilize important protein 
properties such as evolutionary conservation, averaged cumulative 
hydropathy and predicted relative solvent accessibility over 
previously reported methods. Further, information on protein 
structures may be used to complement prediction of SPRINGS 
for reliable identification of protein-protein interaction sites. The 
findings of our study are likely to boost studies based on targeted 
mutation, drug development and enzymes for various profitable 
biotechnological applications. In future, the potential of introducing 
other biologically meaningful properties such as sequence order effect 
and additional physicochemical properties for prediction of protein-
protein interaction sites by SPRINGS would be an interesting area of 
research. 

Standalone package availability

Given the significance of protein interactions with other proteins 
in biological processes and growing needs for their functional 
annotations, rapid and accurate standalone softwares are desirable 

for assisting experimental studies or research applications. Based on 
our current findings, we contribute a freely available user-friendly 
package of Python codes for generation of sequence feature vectors 
and identification of interacting residues along with an easy-to-
understand user manual. The outline of our prediction approach is 
shown in Figure 3. Input files of PSSM and PRSA from sequence(s) 
of interest, the query(s), are required to be provided by the user into 
the prediction algorithm. These can be generated from softwares such 
as NCBI PSI-BLAST and Sann web server. Our execution programs 
first check for the availability of both the input files corresponding 
to a particular protein sequence of interest; followed by deriving of 
hydropathy properties from the sequence(s) using in-house Python 
codes. SPRINGS then processes these features using GNU Octave and 
offers prediction. Output files are generated in two formats: filename.
vsprings (vertical) and filename.hsprings (horizontal), to facilitate easy 
as well as detailed results interpretation.

Conclusion
The challenging problem of protein-protein interaction sites 

Figure 2: Secondary structure elements and the performance of SPRINGS on independent test datasets.

Figure 3: Overall outline of the SPRINGS standalone package.
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identification requires diverse all-encompassing approaches 
including significant properties of constituting amino acids. SPRINGS 
is a novel sequence-based method using Neural Networks, with a 
promising prediction performance in most cases of protein-protein 
interaction sites. With our findings, we hope to assist biologists in 
identifying potential interacting residues even in cases of complex 
protein-protein interactions. Our approach is available as a freely 
available user-friendly standalone package with relevant information 
at http://sites.google.com/site/predppis/. Overall, our contribution 
is targeted at offering directed solutions or at the least pointers, as a 
complementary approach for solving various fundamental challenges 
in protein interaction biology. 
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