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Abstract
Nodulation is a process of organogenesis that results from a 

symbiotic relationship between legume plants and soil-dwelling, 
nitrogen-fixing bacteria, called rhizobia. The rhizobia are housed 
in newly formed structures on the host roots, called nodules. Within 
nodules, the rhizobia fix atmospheric N2 into useable forms of nitrogen 
for the plant. This process is highly important to agriculture, as nitrogen 
is critical for plant growth and development and is typically the main 
component of fertilizers. Although fertilizers are effective, they are 
expensive and often pollute, making biological alternatives, such 
as legume nodulation, attractive for use in agriculture. Nodulation 
is regulated by the auto regulation of nodulation (AON) pathway, 
which enables the host plant to balance its needs between nitrogen 
acquisition and energy expenditure. Current research is elucidating 
the nodule development and AON signalling networks. Recent 
technological advances, such as RNA-sequencing, are revolutionizing 
the discovery of genes that are critical to nodulation. The discovery 
of such genes not only enhances our knowledge of the nodulation 
signalling network, but may help to underpin future work to isolate 
superior legume crops via modern breeding and engineering 
practices. Here, recent advances using the cutting-edge technique 
of RNA sequencing to identify new nodulation genes in soybean are 
discussed.

Global Use of Nitrogen Fertiliser 
Approximately half of the world’s population is directly reliant 

upon nitrogen fertiliser use in agriculture for their food supply [1-
3]. Taking into account nitrogen fertiliser manufacture, transport 
and application, the fossil fuel consumed accounts for 50% of fossil 
fuel use in agriculture, and 5% of the global natural gas consumption 
annually [4,5]. With the rising cost of fossil fuels, the use of nitrogen 
fertiliser is becoming increasingly costly for farmers and is often 
too expensive in developing regions of the world [6]. Not only are 
nitrogen fertilisers expensive, they are inefficient, with 30-50% of 
nitrogen fertiliser typically lost to leaching. This run off can cause 
the eutrophication of waterways and other significant environmental 
problems [7]. Nitrogen contaminated drinking water can also cause 
methemoglobinaemia, or “Blue-baby syndrome”, a potentially fatal 
condition in infants [8,9]. 

The global use of nitrogen fertiliser has been steadily increasing in 
most continents (Figure 1). Worryingly, this also means an increase 
in NOx gases, which are released when nitrogen fertiliser is broken 
down. These gases contribute to the formation of ground-level ozone, 
which causes yield reductions. Nitrous oxide (N2O) is also emitted 
by breakdown of nitrogen fertilisers [7,10] and is 292 times more 

active as a greenhouse gas than CO2 [4]. Agriculture was the main 
source of anthropogenic N2O emissions in 2005, making up 60% of 
the global total [11]. The majority of these emissions resulted from 
the application of nitrogen fertiliser [11]. By 2050 it is estimated that 
global nitrogen fertiliser use will increase by 50% in an attempt to 
boost food production and support a rising population [10]. These 
numbers have experts calling for agricultural reform to diminish 
nitrogen fertiliser use. 

Legume Crops as a Safe Alternative to Nitrogen 
Fertiliser

One safe alternative to the use of nitrogen-based fertilisers is to 
take advantage of biologically-fixed nitrogen. Legumes are able to 
form a relationship with specialised nitrogen-fixing soil bacteria, 
called rhizobia. The rhizobia convert atmospheric di-nitrogen into 
usable forms of nitrogen for the plant, whilst being housed in novel 
root organs, called nodules. The use of legumes as rotation crops is 
an important agricultural practice that many experts argue must be 
increased to help curb nitrogen fertiliser use [2,6,10]. Optimizing 
biological nitrogen fixation processes, such as nodulation, has the 
potential to increase crop yields and enhance soil fertility whilst 
simultaneously reducing farming costs and harmful environmental 
impacts [1,5,6,12]. However, it is only with an increase in our 
knowledge of nodulation processes and its genetic basis that we can 
fully reach this goal.

Nodule Organogenesis 
The most common entry point for rhizobia invasion is the 

region of root where the root hairs are developing, called the Zone 
of Nodulation (ZON) [13-16]. Rhizobia attach to the root hair, 
triggering root hair deformation and curling [13,14,17]. This process 
involves the rearrangement of underlying microtubules which allow 
bacterial entry and the establishment of tubular structures called the 
infection threads (IT) [18,19]. 

Occurring in parallel to rhizobia invasion are inner cellular 
changes which lead to nodule primordia formation [19]. The ITs full 
of rhizobia progress towards the nodule primordia. The convergence 
of the rhizobia in the ITs and the nodule primordia is essential for 
successful nodule formation. Once the rhizobia reach the developing 
nodule, they are released from the ITs into specialised structures 
called symbiosomes, in which they differentiate into bacteroids. Using 
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their nitrogenase enzyme complex, the rhizobia bacteroids catalyses 
atmospheric N2 into ammonia, which can be used by the plant [20]. 

There are two different morphological types of legume nodules: 
indeterminate and determinate. Indeterminate nodules are initiated 
by inner cortical cell divisions, followed by divisions in the endodermis 
and pericycle, and develop persistent meristems [21-24]. Determinate 
nodules initially arise from cell division of the outer cortex and have 
transient meristems [15,24-26]. 

Signalling in Nodulation 
Nodule formation is initiated via a highly-specific signal 

exchange between compatible rhizobia bacteria and legume plants 
[19,27,28]. Flavonoids are released into the soil by the plant, attracting 
compatible rhizobia species to the host plant. They also trigger the 
expression of rhizobia nodulation (Nod) genes, which leads to the 
production of novel Nod Factor (NF) signals that are recognized by 
the host plant [29]. Additional rhizobia-produced factors, such as 
exopolysaccharides (EPS) and lipopolysaccharides (LPS), are also 
known to be important for nodulation and in determining rhizobia-
plant specificity.

Following perception of compatible partners, two main pathways 
are triggered within the plant: one involved in bacterial entry and 
infection and the other involved in cell divisions that lead to the 
formation of the nodule primordia [19]. Formation of a functional 
nodule requires synchronisation between these different signalling 
pathways. Many of the genes known to act in early nodulation are 
conserved between different legume species, but in many cases these 
orthologous genes have different names.

At the plant root periphery, LysM receptor kinases (Lotus 
japonicus Nod Factor Receptor 1 and 5; LjNFR1 and LjNFR5; 
soybean, Glycine max NFR1α/β and GmNFR5α/β; Medicago 
truncatula MtLYK3, MtLYK4 and MtNFP; and pea, Pisum sativum 
SYM2A and PsSYM10), perceive NF from compatible rhizobia [30-

35]. These receptors are reported to associate with remorin proteins 
(MtSYMREM1), which may help in assembling a specialised NF 
receptor complex [36]. Other factors, such as LjROP6, a Rho-like 
small GTPase, have also been found to interact with LjNFR5 [37]. 

An additional receptor kinase (MsNORK/LjSYMRK/MtDMI2/
PsSYM19) also associates with SYMREM1 and appears to be involved 
in downstream signalling and possibly also the perception of NF [36]. 
This receptor interacts with additional nodulation factors, including a 
coiled-coil protein (MtRPG; [38]), a transcription factor (LjSIP1; [39]) 
and a 3-hydroxy-3-methylglutaryl coenzyme reductase (MtHMGR1), 
which is involved in isoprenoid synthesis [40]. However, the precise 
roles for these factors in nodulation are not yet known.

Perception of NF triggers Ca2+ fluxes, followed by the Ca2+ spiking, 
in root hair cells. The oscillation of Ca2+ in these cells is thought to 
initiate downstream signalling events [41-43]. Ca2+ spiking events 
require putative potassium ion-channels (MtDMI1, LjCASTOR 
and LjPOLLUX; [44-46]), and two nucleoporins (LjNUP133 and 
LjNUP85; [47,48]). Acting downstream of the Ca2+ spiking, and likely 
perceiving the Ca2+ signal, is a calcium and calmodulin-dependent 
protein kinase (CCaMK; MtDMI3/PsSYM9; [49-52]). Novel proteins 
shown to interact with CCaMK include LjCIP73, which belongs to 
the ubiquitin superfamily [53], and MtIPD3/LjCYCLOPS, which 
regulates expression of NSP1 [54-56]. Following activation of 
CCaMK, a number of transcription factors, including Nodulation 
Signalling Pathways 1 (MtNSP1) and MtNSP2 [54,57], Ets2 repressor 
factor (ERF), ERF required for nodulation (MtERN; [58]), and Nodule 
Inception (Lj/PsNIN; [59,60]) are activated. These transcription 
factors work in combination to activate the expression of the early 
nodulation (ENOD) genes in the epidermis (e.g. MtENOD11; [61]). 

CCaMK activation is also believed to trigger the increase in 
cytokinin level in these cells. Hormonal changes are detected by the 
cytokinin receptor, LjLHK1/MtCRE1, on the cortical cell membrane 
[62,63]. Activation of LjLHK1/MtCRE1 is thought to activate 
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Figure 1: Global consumption of nitrogen fertiliser displayed per continent over a forty five year period, 1965-2010 (consumption in nutrients; tonnes; FAOSTAT, 
2013). Data obtained from FAOSTAT.

ISSN: 2331-8996



Citation: van Hameren B, Hayashi S, Gresshoff PM, Ferguson BJ. Advances in the Identification of Novel Factors Required in Soybean Nodulation, 
a Process Critical to Sustainable Agriculture and Food Security. J Plant Biol Soil Health. 2013;1(1): 6.

J Plant Biol Soil Health 1(1): 6 (2013) Page - 03

signalling within the cortical cells to initiate the cortical cell divisions 
required for the formation of the nodule [62,63]. 

Other components that are essential for nodule development 
include SCAR/WAVE proteins that appear to have roles in root hair 
deformation and rhizobia infection (LjNAP1/MtRIT1 and LjPIR1; 
[64,65]) and flotillin proteins that initiate the production of ITs for 
bacterial progression in the root (MtFLOT 2 and 4; [66]). An ankyrin 
protein that may have a role in IT development (MtVAPYRIN) is 
also required [67], in addition to a number of transcription factors 
(e.g. MtERF1 and EFD), U-box proteins (e.g. LjCERBERUS/MtLIN 
and MtPUB1) and early nodulin proteins of unknown function (e.g. 
ENOD11 and ENOD40 (reviewed in Ferguson et al. [19]). Further, 
a subunit of a signal peptidase complex (MtDNF1) that has a role 
in the processing of nodule specific cysteine-rich (NCR) proteins is 
an essential factor for rhizobia differentiation into nitrogen-fixing 
bacteroids in M. truncatula [68].

Autoregulation of Nodulation
The formation and maintenance of nodules is an energy-intensive 

process. As such, the plant strictly regulates the number of nodules it 
forms, regardless of rhizobia availability, through the Autoregulation 
of Nodulation (AON). AON acts systemically, following nodule 
development. Root-derived CLV3/ESR-related (CLE) peptide 
hormones are synthesised, called GmRIC1 and GmRIC2 in soybean, 
LjCLE-RS1 in Lotus and MtCLE12/13 in Medicago [69-73]. These 
signals are predicted to travel to the shoot, presumably via the xylem 
[72,74], where they are thought to be perceived by an LRR receptor 
kinase, GmNARK/LjHAR1/MtSUNN/PsSYM29 [75-78]. Mutants 
lacking a functional version of GmNARK/LjHAR1/MtSUNN/
PsSYM29 are unable to regulate their nodule numbers and exhibit a 
super- or hyper-nodulating phenotype (Figure 2). It is possible that 
this receptor acts in conjunction with other receptor components, such 
as Lj/PsCLAVATA2 and/or LjKLAVIER [79,80]. Three additional 
factors, two Kinase-Associated Protein Phosphatases, GmKAPP1 
and GmKAPP2 [81] and a putative Ubiquitin Fusion Degradation 
protein, GmUFD1a [82] have also been shown to possibly interact 
with GmNARK as part of the AON pathway. 

Once the root-derived CLE peptide signal has been perceived, 
a novel Shoot-Derived Inhibitor (SDI) is produced which travels 
to the roots, presumably via the phloem, where it inhibits further 
nodulation [19,83]. Although SDI has yet to be identified, it has been 
shown to be NF dependent, heat stable, small (<1KDa) and unlikely 
to be a protein or RNA [84,85]. 

Nodulation is not only regulated by the number of nodulation 
events, but also in response to environmental factors such as stress 
(e.g. ethylene), soil acidity and soil nitrate (e.g. [86-92]). This gives 
the host plant the ability to regulate nodule development in response 
to its surrounding environment, thus optimizing nodulation and 
nitrogen-fixation under a variety of growing conditions.

The New Generation of Gene Discovery: RNA-seq 
The identification of factors acting in the development and control 

of legume nodules has considerably increased our understanding of 
these processes. Moreover, it has provided novel targets for breeding 
and engineering programs dedicated to generating superior crop 
species. Recent technological advances have significantly increased 
the speed and efficiency with which new molecular components 
can be discovered. This includes new, high-throughput sequencing 
technology that has enabled the genomes of many legume species 
to be assembled in recent years, including soybean, L. japonicus, 
M. truncatula, chickpea and pigeon pea [93-97]. Similarly, next-
generation RNA-sequencing (RNA-seq) technology enables the 
complete transcriptome of a given plant sample to be determined. 
This includes establishing the expression of both known and unknown 
genes in a sample. This cannot be achieved using other techniques, 
such as microarrays.

Soybean is one legume species that has recently been subjected to 
a number of RNA-seq studies seeking to identify new factors required 
for nodulation within its transcriptome. Indeed, soybean is often used 
as a model legume species [92,98], as it has had its complete genome 
sequenced [94], with gene atlases and gene expression databases also 
being publically available [99-101]. It is also amenable to a number of 
molecular approaches, including Agrobacterium rhizogenes-mediated 
transformation (e.g., [102,103]), that are essential for follow-up 
research aimed at confirming and functionally characterising the role 
of candidate genes in nodulation. In addition, a number of mutant 
and TILLING populations are also available, which can considerably 
assist genetic studies [86,104-106]. Physiologically, soybeans are also 
excellent for scientific purposes, being fast growing, high yielding, 
amenable to grafting and of appropriate size for most field and 
laboratory studies [6]. 

Soybean research is highly applicable to other legume crops 
including pea, lentil, chickpea, bean, peanut, lucerne, clover and faba 
bean [107]. Soybean is also an important crop in its own right, with 
production of ~250 million tonnes globally in 2011, accounting for 
50% of the world’s oilseed production. It generates 200 kg N ha-1 

in aboveground biomass each growing season with 58-68% of its 
nitrogen content resulting from symbiotic nitrogen fixation [1,2,108]. 
As a rotation crop, or “green manure”, soybean can be ploughed 
back into the soil whether their seed has been harvested or not. This 
provides farmers with some flexibility and helps to replenish the 
soil nitrogen content, as in addition to the aboveground biomass, 
the roots and nodules contain 30-60% of the overall plant nitrogen 
content [109,110].

Three separate studies have reported using RNA-seq to identify 
differentially-expressed genes in the transcriptome of rhizobia-
inoculated soybean roots [16,99,111]. The genes identified represent 
candidates required for nodule development. An additional study 
used RNA-seq to determine the transcriptome of soybean leaves to 
identify differentially-expressed gene candidates acting in AON [82]. 

Figure 2: Root systems of wild-type (WT) and supernodulating mutant 
(nod++) soybean plants exhibiting mature nodule structures as a result of a 
symbiotic relationship with Bradyrhizobium japonicum.
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The work of both Libault et al. [99] and Hayashi et al. [16] focused 
on the early stages of nodulation, with samples harvested 48 hours 
post inoculation. Libault et al. [99] focused on root hairs and stripped 
roots, enabling a tissue-specific analysis to be conducted. In contrast, 
Hayashi et al. [16] focused on the ZON of the tap root, enabling 
nodulation-specific transcripts to be concentrated by removing 
transcripts found throughout the remaining portion of the root 
system that are not specifically nodulation related. These studies both 
identified a number of new nodulation gene candidates. One such 
candidate, GmNMNa, has already been followed up and confirmed to 
be involved in the regulation of rhizobia infection [112].  

Barros de Carvalho et al. [111] also investigated the transcriptome 
of soybean root tissue; however, these authors focused their study 
on whole root systems harvested 10 days after rhizobia inoculation. 
The expression data from these samples showcase genes involved 
later in the nodulation pathway, including those involved in nodule 
maturation and growth.  

To identify novel components functioning in the AON pathway, 
Reid et al. [82] used RNA-seq to determine the transcriptome of 
soybean leaves. Leaf tissue was collected from soybean shoots fed with 
xylem sap taken from soybean plants that were either nodulating or 
non-nodulating. This led to the identification of the putative ubiquitin 
fusion degradation protein, GmUFD1a, whose product may interact 
with GmNARK in the regulation of legume nodulation. 

Conclusion
Collectively, the four abovementioned datasets have led to the 

identification of numerous new gene candidates potentially having 
roles in the development and regulation of soybean nodules. The 
confirmation and subsequent functional characterization of these 
genes aids in the understanding of the signalling mechanisms 
involved in legume nodulation. Moreover, the identification of 
critical nodulation genes could one day help to benefit the isolation of 
superior cultivars for use in agriculture and help to reduce the over-
application of nitrogen fertilisers in agriculture.
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