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Development of  AD-Like 
Pathology in Skeletal Muscle

biopsy (examination for Aβ accumulation and phosphorylated tau) 
as a biomarker of AD will be discussed. 

Aging affects neuron and skeletal muscle similarly

The greatest known risk factor for AD is advancing age. An 
estimated 12 percent of people over age over 65, and nearly 50% of 
those aged over 85, are affected by this disorder in the United States 
[2]. Although it is still a mystery why AD risk rises so dramatically as 
we grow older, it is known that neurons tend to accumulate biological 
‘garbage’ during aging process, because neurons are long-lived post-
mitotic cells that lack the ability to dispose biological ‘garbage’ via cell 
division. As such, abnormal intraneuronal accumulation of damaged 
organelles and protein aggregates is a key event in the pathogenesis 
of AD [9], for instance, autophagic-lysosomal vacuoles filled with 
lipofusc in is the most prevalent of age pigments that accumulates in 
neurons [10], and neurofibrillary tangles is a result of intraneuronal 
aggregation of phosphorylated tau. Although senile plaques are 
extracellular depositions of Aβ, it has been shown that Aβ is mainly 
generated in endolysosomes following AβPP internalization and can 
be accumulated inside neurons [11].Such intraneuronal accumulation 
of Aβ plays an early and important role in the pathogenesis of AD 
preceding the appearance of Aβ plaques in extracellular space [12-
14]. 

Like neurons, skeletal muscle fibers are also long-live post-
mitotic cells. During aging, skeletal muscle fibers progressively 
accumulate damaged organelles and protein aggregates, as evidenced 
by accumulation of damaged mitochondria with aberrant function 
in aged skeletal muscle [15-17], accumulation of cytoplasmic p62–
polyubiquitin protein aggregates [18,19], and accumulation of 
lipofuscin in dysfunctional autophagic-lysosome system [20]. More 
importantly increased Aβ accumulation in skeletal muscle has been 
demonstrated in AD patients [6]. Recently it has been shown that 
phosphorylated tau is also present in peripheral tissues [8]. Although 
accumulation of phosphorylated tau in skeletal muscle has not been 
reported in AD patients, tau aggregates is present in skeletal muscle 
in a variety of protein aggregate myopathies [21,22].
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Abstract
Effective therapeutic strategy against Alzheimer’s disease 

(AD) requires early detection of AD; however, clinical diagnosis of 
Alzheimer’s disease (AD) is not precise and a definitive diagnosis of 
AD is only possible via postmortem examination for AD pathological 
hallmarks including senile plaques composed of Aβ and neuro fibrillary 
tangles composed of phosphorylated tau.  Although a variety of 
biomarker has been developed and used in clinical setting, none 
of them robustly predicts subsequent clinical course of AD. Thus, it is 
essential to identify new biomarkers that may facilitate the diagnosis 
of early stages of AD, prediction of subsequent clinical course, and 
development of new therapeutic strategies. Given that pathological 
hallmarks of AD including Aβaccumulation and the presence of 
phosphorylated tau are also detected in peripheral tissues, AD is 
considered a systemic disease. Without the protection of blood-brain 
barrier, systemic factors can affect peripheral tissues much earlier 
than neurons in brain. Here, we will discuss the development of AD-like 
pathology in skeletal muscle and the potential use of skeletal muscle 
biopsy (examination for Aβaccumulation and phosphorylated tau) as 
a biomarker for AD.

Introduction
Alzheimer’s disease (AD) is the most common neurodegenerative 

disorder of old age that results in massive health care costs in the 
United States [1,2]. Although gene mutations in amyloid beta 
precursor protein (AβPP) or γ-secretase (presenilin-1 or preseilin-2) 
can lead to relatively rare familial AD [3], the vast majority (>95%) of 
AD cases is sporadic with unknown etiology. Currently, pathogenic 
mechanisms responsible for sporadic AD remain unclear, but 
are believed to result from complex interactions between aging, 
genetic factors, and environmental factors [4]. AD is characterized 
clinically by progressive memory loss and cognitive impairment, 
and unfortunately there is no effective treatment for AD. Effective 
therapeutic strategies require the diagnosis of AD at early stage; 
however, clinical diagnosis of AD is not precise. Definite diagnosis 
requires examination of postmortem brain tissues for AD pathological 
hallmarks including senile plaques composed of amyloid beta (Aβ), 
neurofibrillary tangles composed of phosphorylated tau, and signs of 
neurodegeneration [3,5]. 

It is important to note that pathological hallmarks of AD including 
Aβ accumulation [6,7] and the presence of phosphorylated tau [8] are 
not restrict to brain, since they are also detected in peripheral tissues 
(e.g. skin and skeletal muscle) of AD human subjects. Thus, AD can be 
considered a systemic disease. Without the protection of blood-brain 
barrier, systemic factors can affect peripheral tissues much earlier 
than neurons in brain. Thus, the characterization of the phenotype 
related to peripheral tissues offers the opportunity to identify new 
biomarkers that may facilitate the diagnosis of early stages of AD, 
prediction of subsequent clinical course, and development of new 
therapeutic strategies. In this perspective, the development of AD-
like pathology in skeletal muscle and the potential use of muscle 
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In addition to age-related structural changes, progressive decline 
in muscle mass and strength (sarcopenia) is a hallmark of the aging 
process. The prevalence of sarcopenia ranged from 13 to 24% in 
persons aged 65 to 70 years and was over 50% for those older than 
80 years [23], and more recent estimates indicate that approximately 
45% of the older U.S. population is affected by sarcopenia [24]. 
Importantly, such age-related decline in muscle mass and strength 
has been linked to brain atrophy [25] and cognitive impairment 
[26]. Moreover, AD patients often exhibit loss of muscle mass and 
reduced muscle strength, and such deficits in skeletal muscle may be 
early signs of AD [25, 27, 28]. Thus, skeletal muscle deficits may help 
predict the onset and progression of AD. Although it is not known 
how such skeletal muscle deficits are developed in AD, a testable 
hypothesis is that a common pathogenic process occurs in neuron 
and skeletal muscle.

AD risk factors lead to skeletal muscle dysfunction

Given that the pathogenesis of sporadic AD is influenced by a 
variety of systemic risk factors, here we will discuss the influence of 
genetic and lifestyle-related AD risk factors on skeletal muscle and 
contribute to the development of loss of muscle mass and muscle 
strength. As shown in (Table 1), a list of genetic AD risk factors have 
been shown to lead to loss of muscle mass, muscle weakness, or the 
development of myopathy. These genetic AD risk factors include 
ApoE4 [29, 30], bridging integrator 1 (BIN1)[31,32], clusterin [33], 
and dynamin-2 [34]. Similarly, many lifestyle-related AD risk factors 
can lead to loss of muscle mass, muscle weakness, or the development 
of myopathy (Table 1). These lifestyle-related AD risk factors include 
type-2 diabetes [35,36] and type-2 diabetes-related conditions such 
as obesity [37], hyperinsulinemia [38], and metabolic syn¬drome 
[39], elevated homocysteine level [40-42], elevated levels of LDL 
cholesterol and the use of statins [43]. Due to the protection of the 
blood-brain barrier for neurons, these systemic metabolic changes 
can affect skeletal muscle earlier than neuron.

Autophagic-lysosomal dysfunction as a common pathogenesis 
for the development of AD pathological hallmarks in brain and 
skeletal muscle

As discussed above, aging affects post-mitotic cells similarly in 
neuron and in skeletal muscle. In addition, genetic life-style sporadic 
AD risk factors contribute to the loss of skeletal muscle mass and/
or muscle strength. Furthermore, pathological hallmarks of AD 
including intracellular Aβaccumulation [6,7] and tau aggregates 
[21,22] are present in skeletal muscle. Thus, a common pathogenic 
process for the development of AD may occur in neurons as well 
as skeletal muscle. Here, we postulate that autophagic-lysosomal 
dysfunction as a common pathogenic mechanism for development of 
AD pathological hallmarks in skeletal muscle and in brain.

 Long-live post-mitotic cells, like neurons and skeletal muscle, 
lack the ability to dispose biological ‘garbage’ via cell division as 
occurs in proliferating cells. However, these post-mitotic cells 
can renew themselves by degrading defective macromolecules 
and organelles into small molecules that are then either cleared or 
re-utilized. Short-lived proteins can be decomposed by cytosolic 
cysteine proteases or proteasomes; whereas most long-lived proteins, 
cytosolic protein aggregates, and all organelles including proteasome 
[44] and mitochondria [45] are degraded by lysosomes, which 
are acidic organelles that contain various lytic enzymes. As such, 
lysosomes play a key role in protein turnover and cellular homeostasis 
[46]. Substrates for degradation are delivered to lysosome by two 
general routes, namely, endocytosis and autophagy. Endocytosis 
is responsible for up-taking extracellular nutrients as well as the 
maintenance of membrane integrity. Autophagy, on the other hand, 
is responsible for removing unwanted cytosolic proteins and “worn 
out” organelles. Lysosomes are especially important for neurons and 
skeletal muscle, because they are mainly long-lived post-mitotic cells 
that require the autophagy-lysosome system in turning over cellular 
components and obsolete organelles [47,48]. Here, we will discuss 
the influence of AD risk factors on the development of autophagic-
lysosomal dysfunctions (Table 1).

AD risk factors lead to autophagic-lysosomal dysfunctions

Aging: Because neurons and skeletal muscle are post-mitotic cells 
that rely on lysosomes to dispose biological ‘garbage’, autophagy-
lysosome function tends to decline during aging in these cells 
[49,50]. As such, both skeletal muscle and neurons progressively 
accumulate damaged organelles and protein aggregates during aging, 
as evidenced by accumulation of autophagic-lysosomal vacuoles 
filled with lipofuscin [10,20], accumulation of ubiquitin-positive 
protein aggregates [18,19,51], and the accumulation of damaged 
mitochondria with aberrant function [15-17,52,53].

Genetic AD risk factors

ApoE4: ApoE-cholesterol synthesized in situ in brain is a discoidal 
shaped HDL-like particle composed of phospholipids and unesterified 
cholesterol [54,55]. Such HDL-like apoE-cholesterol supplies the 
neuronal need of cholesterol via receptor-mediated endocytosis. As 
the single strongest genetic risk factor for sporadic AD [56-59], apoE4 
has been shown to promote endocytic dysfunction [60] and apoE4 
genotype correlates intraneuronal Aβ accumulation in AD patients 
[61, 62]. In animal models, apoE4, but not apoE3, promotes lysosome 

Figure 1: Autophagic-lysosomal dysfunction contributes to the development 
of AD pathological hallmarks.

Aβ (generated in multi-vesicular bodies following AβPP internalization) 
can be degraded in lysosomes. Un-degraded Aβ can either accumulate in 
endolysosomes as intraneuronal Aβ or undergo exocytotic release to become 
extracellular Aβ. The formation of autophagosomes and fusion with late 
endosomes is critical for lysosomal degradation of aggregated tau/p-tau; un-
degraded tau can be released extracellularly.
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dysfunction and increases intracellular Aβ accumulation in enlarged 
endosome or lysosomes in neurons [63,64]. Currently, it is not known 
whether apoE4 leads to autophagic-lysosome dysfunction in skeletal 
muscle. However, apoE4 knock in mice exhibit impaired insulin 
signaling in skeletal muscle, which may link to endosome dysfunction 
and accumulation of insulin receptor in endolysosomes [65].

BIN1: As the most important genetic susceptibility locus in 
sporadic AD after APOE4 [66,67], BIN1 has been implicated in 
the process of clathrin-mediated endocytosis and intracellular 
endosome trafficking [68,69]. In addition, BIN1 is a key component 
in endocytic endosome recycling [70], and thus may be important for 
the intracellular trafficking of large molecules including proteins and 
lipids [71]. It has been shown that BIN1 level is decreased in sporadic 
AD brain [72], and brain specific knockout of BIN1 is deficient in 
endocytic protein scaffolds and synaptic vesicle recycling [73]. Because 
impaired endocytic recycling could increase the degradation load of 
lysosome and subsequent lysosome dysfunction, it is not surprising 
that BIN1 mutation could lead to intracellular protein aggregation 
in neurons [74]. Currently, no direct evidence demonstrating that 
BIN1 mutation leads to autophagic-lysosomal dysfunction in skeletal 
muscle. However, knocking down EHD1 that regulate BIN1 leads to 
lysosome dysfunction [75].

Cluster in: Also known as apolipoprotein J and the third most 
associated sporadic AD risk gene [58,59], clusterin is present in 
lipoprotein particles and regulates cholesterol and lipid metabolism 
[76]. Beside functioning as a lipid transporter, clusterin also function 
as a chaperone glycoprotein that inhibits protein aggregation [77]. 
Recently, it has been shown that AD-associated clusterin mutations 
are linked to reduced secretion of clusterin [78], and clusterin 
silencing impairs autophagy in neurons [79]. In skeletal muscle, 
clusterin has been shown to affect aggresome accumulation [33].

Dynamin 2: Dynamin-2, another genetic risk factor for AD 
[80,81], is important for membrane formation/trafficking and the 
formation and fission vesicles. Dynamin 2 mutation has been shown 

to lead to endocytic trafficking defects [82] and impaired autophagy 
[83, 84] in neurons. Dynamin 2 Mutation can also to lead to lysosome 
dysfunction in skeletal muscle [85]. 

Lifestyle-related AD risk factors

Hyperinsulinemia: An aggregated relative risk of approximately 
1.5 is estimated linking type-2 diabetes with AD, and the relative 
risk increases considerably by the presence of APOE4 positivity [86-
88]. In addition, type-2 diabetes-related conditions such as obesity 
[89,90], hyperinsulinemia [9192],and metabolic syn¬drome [93] also 
present as risks for sporadic AD. High insulin levels in the blood are a 
common feature of type-2 diabetes. Upon binding to insulin receptor 
complex, insulin leads to tyrosine phosphorylation and recruitment 
of IRS1/2 to the membrane. This leads to activation of class I PtdIns 
3-kinase activity generating PtdIns (3,4,5)P3and activating PDK1, 
Akt phosphorylation, and subsequent phosphorylation of mTOR, 
which is known to block autophagy [94].Prolonged hyperinsulinemia 
and subsequent inhibition of autophagy could lead to intracellular 
accumulation of protein aggregates and damaged organelles. Thus, 
the development of insulin resistance after chronic exposure of 
insulin and subsequent autophagy activation can be neuroprotective, 
especially when cells are faced with proteotoxic stress [95]. Similarly, 
autophagic-lysosomes dysfunction via altered insulin singling can 
occur in skeletal muscle [96].

Hyperhomocysteinemia: Homocysteine is a sulfur-containing 
amino acid and intermediate product of the methionine cycle, whose 
normal levels in the body are maintained by its re-methylation 
to methionine in a reaction that requires the availability of dietary 
folate, vitamin B6, and B12. A diet with excessive methionine, diet 
with a deficit in folate, or genetic alterations in enzymes involved in 
homocysteine re-methylation or transulfuration pathway can lead 
to hyperhomocysteinemia [97]. Epidemiological and clinical studies 
have revealed that elevated homocysteine level is associated with 
hippocampal atrophy [98] and represents a modifiable risk factor for 
developing AD [99-102]. Homocysteine has been shown to induce 

Skeletal muscle Skeletal muscle Neurons

AD risk factors
Clinical signs of muscle 
dysfunction

Autophagic-lysosomal dysfunctions Autophagic-lysosomal dysfunction

Aging
Sarcopenia [23,24] that is linked 
to brain atrophy [25]and cognitive 
impairment [26]

Accumulation of lipofuscin [10,20], protein aggregates 
[18,19,51], and damaged mitochondria[15-17,52,53].

Accumulation of lipofuscin[10], 
damaged organelles and protein 
aggregates [9]

Genetic risk factors
ApoE4 Muscle weakness [29,30] Potential endosome dysfunction involving insulin receptor [65]? Endocytic dysfunction [60-186]

BIN1
Centronuclear myopathy

Potential lysosome dysfunction involving EHD1 [75]?
BIN1 mutation leads to intracellular 
protein aggregation [74][31,32]

Clusterin Muscle weakness and myopathy [33] Aggresome accumulation[33]
Clusterin silencing impairs autophagy 
[79]

Dynamin-2 Centronuclear myopathy [34] Lysosome dysfunction [85]
Endocytic trafficking defects [82]and 
impaired autophagy [83,84]

Lifestyle risk factors

Type-2 diabetes and related conditions
Loss of muscle mass and muscle 
strength [35-37]

Autophagic-lysosomes dysfunction via altered insulin singling 
[96]

Autophagic-lysosomes dysfunction via 
altered insulin singling [95]

Hyperhomocysteinemia
Muscle atrophy and skeletal muscle 
malfunction [40-42].

Intracellular protein aggregates resulting from ER stress or derail 
autophagy [104-106].

Homocysteine inhibits autophagy via 
mTORC1[187]

Hypercholesterolemia and the use of statins Statin myopathy [43]

LDL induces endolysosome dysfunction [127]. Statins 
induce autophagy impairment [153,154], vacuolization [148], 
increase lipid droplet accumulation[152], and  Impaired protein 
degradation[155].

LDL induces endolysosome dysfunction 
[125] and  autophagy impairment  
[129,130]

Table 1: AD risk factors lead to skeletal muscle dysfunction.
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ER stress [103], which could result from enhanced ROS production 
or homocysteinylation of resident ER chaperon [42]. Upon acute 
ER stress, the unfolding protein response is activated to restore ER 
protein-folding homeostasis. A process that involves the transient 
attenuation of protein synthesis, an increase in protein folding and 
transport in the ER, an increase in ER-associated protein degradation, 
and activation of autophagy. Persistent ER stress can derail 
autophagy, which leads to protein aggregates [104,105]. Similarly, 
elevated homocysteine level can affect autophagic-lysosomal function 
in skeletal muscle [104-106].

Hypercholesterolemia: Several lines of evidence support the 
role of elevated plasma cholesterol in the pathogenesis of sporadic 
AD. First, apoE4 is clearly associated with elevated levels of LDL 
cholesterol and decreased levels of HDL cholesterol [107,108]. 
Second, elevated levels of plasma LDL cholesterol, independent 
of APOE genotypes, are linked robustly to the pathogenesis of AD 
[109-115]. Third, independent of the APOE genotype, low levels of 
HDL cholesterol are also associated with increased risk of developing 
AD [112,144,116,117]. In plasma, apoB-containing LDL is the main 
lipoprotein particle that mediates the transport of cholesterol and 
lipids into periphery tissues. LDL-cholesterol is up-taken by receptor-
mediated endocytosis, a process where lipoproteins bound to their 
receptors are internalized, transported to endolysosomes, hydrolyzed 
to free cholesterol, and from where free cholesterol is transported 
to various intracellular compartments via a mechanism involving 
the Niemann-Pick typeC (NPC) proteins type-1 (NPC1) and -2 
(NPC2) proteins [118-120].  It has been shown that apoB 100, the 
exclusive apolipoprotein of LDL, leads to cholesterol being targeted 
by the lysosome degradation pathway [121,122], thus increased 
uptake of LDL-cholesterol may lead to cholesterol accumulation 
in endolysosomes, thereby disturbing endolysosome structure 
and function [123-125], a phenomenon similar to Niemann-Pick 
type C disease, a lysosomal lipid storage disorder caused by gene 
mutations in NPC [126]. Indeed, we have shown, in skeletal muscle 
fibers from a rabbit model of sporadic AD, cholesterol-enriched 
diet abnormally enlarged endolysosomes, in which were increased 
accumulations of free cholesterol and multiple AD marker proteins 
subject to misfolding and aggregation including Aβ, phosphorylated 
tau, and ubiquitin [127]. In addition to its direct effect on lysosomes, 
hypercholesterolemia is associated with hyperactive mTORC1 
and mTORC2 signaling [128], which blocks autophagy. Indeed, 
cholesterol loading with LDL has been shown to block autophagy 
[129,130]. Based on findings that autophagy regulates intracellular 
lipid stores [131], it is anticipated that cholesterol-induced autophagy 
blockage could lead to reduced bioavailability of intracellular 
cholesterol for the maintenance of membrane integrity in plasma 
membranes or organelle membrane.

Statins, a class of HMG-CoAreductase inhibitors that block 
cholesterol biosynthesis and lower plasma cholesterol levels, have 
been proposed as potential agents for the treatment and/or prevention 
of AD [132]. Although some beneficial effects have been reported in 
some case-controlled epidemiological studies [133,134], recent data 
and meta-analysis from randomized clinical trials indicates that 
statins have little or no beneficial effects against AD [135-138]. In 
fact, adverse effects of statins on memory and cognitions have been 
reported [139-143]. Currently, it is not clear how statins might lead to 

memory and cognitive impairment. However, it is known that statins 
block cholesterol biosynthesis in the ER, and such an effect would 
decrease cholesterol transport to plasma membranes thus leading 
membrane cholesterol deficits, synaptic disruption, and inability 
to repair membranes once injured [144-146]. In addition, as a 
consequence of blocking ER cholesterol synthesis, statins increase the 
expression of LDLRs and enhanced receptor-medicated endocytosis 
of cholesterol [147]. Such an effect could increase cholesterol burden 
in endolysosomes and subsequent lysosome dysfunction, which 
could promote intraneuronal accumulate damaged organelles and 
protein aggregates. Statins also affect skeletal muscle function, and 
in fact myopathy is one of the common side effects of statins. It is 
estimated that 15% of reported adverse reactions were associated 
with objective muscle weakness in statin users [43]. Currently, it is 
not clear how statins lead to myopathy. However, it is known that by 
block cholesterol biosynthesis in the ER, statins decrease cholesterol 
transport to plasma membranes and thus decrease membrane 
cholesterol in skeletal muscle [148-150]. In addition, statins increase 
levels of LDLR and enhance LDL endocytosis in skeletal muscle [151], 
and such an effect could increase lipid droplet accumulation [152], 
autophagy impairment [153,154], vacuolization [148], and protein 
degradation impairment [155].

Autophagic-lysosomal dysfunction contributes to the development 
of AD pathological hallmarks

Senile plaque, the deposition of Aβ in brain, is a pathological 
hallmark of AD. However, Aβaccumulation is not restricted to 
brain since they are also detected in peripheral tissues (e.g. skeletal 
muscle) of AD human subjects [6,7].  Intracellular accumulation 
and extracellular deposition of Aβ starts with specific proteolytic 
cleavage of AβPP, a ubiquitously expressed type-I transmembrane 
protein with largely uncharacterized physiological functions. AβPP 
is synthesized in the endoplasmic reticulum and it is transported 
to the Golgi/trans-Golgi network apparatus where it undergoes 
post-translational modifications and maturation. Once inserted 
into plasma membranes via secretory vesicles, AβPP can traffic into 
endosomes via clathrin-dependent endocytosis, whereupon it can 
either be recycled back to the cell surface or it is delivered to lysosomes 
for possible degradation [156,157]. Endolysosomes appear to play 
a critical role in amyloidogenic processing of AβPP [156,158,159], 
in part, because the rate-limiting enzyme BACE- and γ-secretase 
are almost exclusively located in endosome where the acidic pH is 
optimum for their activities [160-163]. The fate of endosome-derived 
Aβ is further influenced by Aβ degradation catalyzed by lysosome-
resident cathepsins [164]. Once formed, Aβ can accumulate in 
endolysosomes as intraneuronal Aβ or it can undergo exocytotic 
release into extracellular spaces where diffuse Aβ plaques can form. 
Thus, Aβ generation can be enhanced by such factors as those that 
promote AβPP internalization [165], those that enhance protein 
levels and/or activities of BACE-1 and/or γ-secretase, and those that 
prevent AβPP recycling back to the cell surface [166], and those that 
impair Aβ degradation in lysosomes [167]. 

Neurofibrillary tangle composed of phosphorylated tau is another 
pathologic hallmark of AD. Microtubule-associated protein tau is a 
component of neurons, but it is also found in other non-neuronal 
tissues including the skeletal muscle [168].In fact, accumulation 
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of tau protein in skeletal muscle disorders has been reported in 
vacuoles and inclusions [169]. Given that tau aggregates can be 
degraded by cathepsin D in autophagosomes-lysosomes [170-174], 
impaired lysosome degradation could lead to tau aggregation and the 
development of neurofibrillary tangle. In support, tau is accumulated 
in autophagic vacuoles in rat models of vacuolar myopathy induced 
by chloroquine [175].Increased accumulation of cholesterol in 
lysosomes and subsequent lysosome dysfunction has been linked to 
the development of neurofibrillary tangle in brains of patients with 
Niemann-Pick type C disease [126,176-180]. More importantly, 
transcriptional activation of autophagy-lysosome biogenesis 
helps clear aggregated tau [181].Together, autophagic-Lysosomal 
dysfunction contributes to the development of AD pathological 
hallmarks (Figure 1).

Perspective
Effective treatment strategies against AD require the detection 

of AD at early stage;  However, clinical diagnosis of AD is not 
precise, and a definitive diagnosis of AD relies on postmortem 
examination for AD pathological hallmarks.  Although a variety 
of biomarker has been developed, none of them robustly predicts 
subsequent clinical course of AD. Thus, it is essential to identify new 
biomarkers that may facilitate the diagnosis of early stages of AD, 
prediction of subsequent clinical course, and development of new 
therapeutic strategies. A perfect biomarker candidate for AD may be 
muscle biopsy examination for AD pathological hallmarks. Because 
Aβaccumulation and tau aggregates are detected in skeletal muscle. 
In addition, AD is associated with loss of skeletal muscle mass and 
strength, and such loss of muscle function can be caused by system 
AD risk factors including aging, genetic factors, and lifestyle-related 
factors. More importantly, a variety of AD risk factors could lead 
to autophagic-lysosomal dysfunction, which could be a common 
pathogenesis for the development of AD pathological hallmarks 
including Aβ deposition and tauaggregation in brain and skeletal 
muscle. Without the protection of blood-brain barrier, these systemic 
factors can affect skeletal muscle earlier than neurons, thus muscle 
biopsy examination for AD pathological hallmarks would be a new 
biomarkers that may facilitate the diagnosis of early stages of AD, 
prediction of subsequent clinical course, and development of new 
therapeutic strategies.

So farmountingevidence from basic science side supports the idea 
that muscle biopsies is a useful tool for pre-mortem neuropathological 
diagnosis of AD; however, the actual proof showing a path forward 
is lacking. In a way, AD is lagging behand; in Parkinson’s disease, 
clinical studies have started to test the feasibility of using colonoscopy 
biopsies [182] and skin biopsy [183,184] as a biomarkers for early 
diagnosis of Parkinson’s disease. A 10 year follow-up of a prospective 
cohort with initial muscle biopsy is needed to test the feasibility of 
using muscle biopsies as a tool for pre-mortem neuropathological 
diagnosis of AD. We suggest that muscle biopsy from distal limbs and 
examination for AD pathological features such as Aβαccumulation, 
tau pathology, and autophagic-lysosomal dysfunction should be 
conducted in matched control patients and in patients with mild 
cognitive impairment, an early stage of AD. Although the muscle 
biopsy itself is a fairly straight forward outpatient procedure with little 
risk, a successful muscle biopsy requires optimal cryo-processing of 

the fresh specimen in order to preserve viable macromolecules for 
routine histochemistry and immunohistochemistry assays [185].
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