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Cartilage Tissue Engineering: An 
Update on Multi-Component Approach

Epidemiology of Cartilage Injury and Osteoarthritis
Cartilage injury (also called chondral injury) is known as the 

lesion within cartilage layer, while osteochondral injury is the full-
thickness lesion extending to the subchondral bone. Cartilage 
injury or osteochondral injury is common in sport injuries [1], road 
traffic accidents [2], and other trauma. An epidemiological study on 
31,516 knee arthroscopies in USA reported that 63% of patients had 
chondral lesions (averaging 2.7 lesions per knee) and 20% had full-
thickness lesions, with 5% of these occurring in patients less than 40 
years of age [3], 65% of them were accompanied with meniscal or 
ligament lesions, mostly anterior crucial ligament (ACL) tear [3,4]. 
In subgroup analysis, 75% of young patients below 40 years old 
had solitary chondral lesions and; the remaining 25% had multiple 
lesions. Another similar study conducted in Poland examining a total 
of 25,124 knee arthroscopies, reported that chondral lesions were 
found in 60% of these patients. Medial meniscus tear (37%) and ACL 
injury (36%) were the most frequent associated factors [5].

Cartilage is categorized into three types including hyaline cartilage, 
elastic cartilage, and fibro cartilage according to its composition. 
Articular cartilage is a tough but flexible hyaline cartilage that covers 
the ends of bones at a joint, which functions as a cushion allowing 
smooth joint movement. As articular cartilage injuries can occur 
focally, which is localized and contained, or globally, which can 
finally lead to joint Osteoarthritis (OA) - the most common chronic 
joint disease. OA is a chronic degenerative disease mainly happened 
in elderly with destruction of articular cartilage and subchondral 
bone sclerosis, which is distinct from acute cartilage injury. Data from 
2010 to 2012 showed that one in five, or 52.5 million, USA adults 
had arthritis; one in nine, or 22.7 million, had arthritis-attributable 
activity limitations [6]. Recently, it was reported that more than fifty 
million of the population over 60 years old in mainland China were 
affected by joint pain that may be attributed to osteoarthritis [7]. A 
local survey in Hong Kong on men aged 50 years and above revealed 
that 17% and 7% had persistent knee pain and OA, respectively. The 
prevalence in women was higher, being 24% and 13%, respectively 
[8].

Healing Process of Cartilage Injury
Cartilage is an avascular tissue with minimal supply of nutrients 

and progenitor cells from circulation, and composed of limited 
number of chondrocytes with low mitotic potential, making cartilage 
a poor self-regenerating tissue in response to injury [9]. In cartilage, 
nutrients and wastes exchange are achieved through synovial 
fluid perfusion, which also allow the delivery of various factors 
participating in healing [9]. Scarce resident stem cells in cartilage 
are identified recently, which require considerable manipulation 
efforts to generate cartilage in vitro [10]. Chondroclasts have only 
been described for calcified or hypertrophic matrices, which are 
proposed to play a role in cartilage remodeling. Tiny defects are 
healed by migration of chondrocytes, while large defects are healed by 
formation of biomechanically incompetent fibrocartilage [11]. Hence, 
cartilage lesions seldom heal spontaneously and thus constitute one 
of the main causes of joint disease and disability [12,13]. Given that 
persistent cartilage defects gradually lead to degeneration of the 
articular cartilage and osteoarthritis [11], the restoration of cartilage 
integrity through the promotion of cartilage regeneration has been a 
research question over the decades. 

Traditional Treatments for Cartilage Injury or 
Osteoarthritis

Primary treatments options including protecting from further 
injury, ice cooling, and analgesic may help to settle the initial pain and 
swelling after acute cartilage injury. Further surgical treatments are 
subjected to the severity of cartilage lesion. Several surgical techniques 
are readily available to treat cartilage injuries of the knee upon different 
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Abstract
Cartilage injury and osteoarthritis are big clinical challenges as 

self-healing potential of cartilaginous tissue is very limited. The need 
for a multi-disciplinary approach in order to establish new strategies 
for cartilage healing has been addressed by many scientists from the 
fields of orthopaedic surgery or biomedical engineering in the last two 
decades. With a focus on the very preclinical research in this field, 
this review covers the multitude of approaches, ranging from cell-
based to scaffold-based strategies and also including growth factors, 
precondition approach, mechanical stimulation-that have been 
combined to assess their potential to develop effective concepts for 
the treatment of cartilage injury or osteoarthritis.
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scenarios [14]. Amount of all, operations like arthroscopic lavage, 
debridement, microfracture, Autologous Chondrocyte Implantation 
(ACI), and Osteochondral Autograft Transplantation (OAT) are 
most widely used nowadays encountering to the cartilage lesions [15]. 
These reparative methods are tended to stimulate the formation of 
new fibrocartilage tissue by facilitating access to the vascular system 
and bringing new progenitor cells capable of chondrogenesis (e.g., 
microfracture procedure and drilling). Reconstructive methods fill 
up the defects with autologous, homologous, or other tissue (e.g., 
autologous chondrocyte implantation and osteochondral autologous 
transplantation) [16,17]. Such methods may associated with good 
outcomes after surgery, but according to a systematic review of level I 
and II studies on OAT procedures and microfracture surgery showing 
that, patients with small lesions who returned to higher-demand 
activities had an higher progressive failure rate and only 52% of 
athletes returned to sports after received microfracture surgery, 37% 
of them retained their same level of sports 10-year after operation 
[18,19]. Besides, another systematic review reported by Filardo et al. 
revealed that 33.7% failure rate at a mean was recorded follow-up of 
8.5 years after ACI surgeries (5-12 years post-surgery) in 193 patients 
[20].

The therapeutic strategies for OA are distinct from acute 
cartilage injuries. Chronic pain relief could be achieved with 
lifestyle modification and medication such as Non-Steroidal Anti-
Inflammatory Drugs (NSAIDs) or glucocorticoid. NSAIDs are the 
most widely prescribed pharmacological medications and were 
recommended in the guidelines in the treatment of OA but long-
term administration are associated with serious side effects including 
bleeding and perforated gastric ulcers [21-23]. Long-term use of 
glucocorticoid may cause several side effects such as immunodeficiency, 
osteoporosis, peptic ulcer disease or gastrointestinal bleeding [24,25]. 
Viscosupplementation with hyaluronic acid through intra-articular 
injection helps to reduce OA caused pain through its lubricating 
action, but recent clinical studies showed that the use of hyaluronic 
acid did not improve clinical outcomes compared to the placebo 
group significantly [26,27].

However, these current treatments are not promising solution 
to prevent articular cartilage from further progressive destruction, 
thus OA patients may need joint replacement to regain reasonable 
joint movement at the expense of potential complications. Although 
the shelf life of prosthetics for joint replacement is significantly 
improved, this surgery remains less suitable for young OA patients 
[28,29]. Thus, there is a burning need for alternative approaches to 
manage cartilage lesions, which would prevent the early onset of OA 
and to reduce the need for total joint replacement. 

Biological Solutions for Cartilage Repair
Autologous Chondrocyte Implantation (ACI) is a convincing 

and effective method for the treatment of cartilage lesions [30,31]. 
The usefulness of allogeneic chondrocytes as alternative source 
was constrained because of the reported immunogenicity [32]. 
Furthermore, in vitro expansion of chondrocytes can lead to rapid 
dedifferentiation and a fibroblastic phenotype [30], resulting in an 
inferior tissue-engineered cartilage. 

Mesenchymal Stem Cells (MSCs) are a promising and readily 

available cell source showing chondrogenic differentiation potential 
and forming cartilage-like tissues in vitro induced by specific growth 
factors without compromising its low immunogenicity [33-37]. MSCs 
can be derived from various types of tissues, including bone marrow 
[38,39], adipose tissue [40], tendon [41,42], synovial membrane [43], 
dental pulp [44], umbilical cord blood [45], placenta [46,47], etc. 

Autologous MSCs are currently the major cell source because of 
ethical and immunological concerns. However, a major drawback of 
their clinical use is the aging-related decline in MSCs proliferation 
and chondrogenic differentiation potential from aged patients 
(donors) and in vitro cell culturing as several studies had reported 
that MSC isolated from older donors exhibited a slower proliferation 
rate throughout the entire in vitro expansion compared with the 
younger donors. And the shorter average length of telomere, loss 
of telomere length after cell passage and lower levels of telomerase 
activity may contribute to such phenomenon. Besides, the expression 
of p16INK4A is also strongly associated with cell senescence [48-
51]. Furthermore, instable MSCs phenotypes such as formation of 
mineralized deposits within cartilage. Current available strategies 
for enhancing plasticity of MSCs included genetic modification [52-
54], hypoxia stimulation [55,56], etc. However, safety and ethical 
concerns are existed for genetic modification approach, which is 
left far behind clinical use, and hypoxia could only promote cell 
proliferation at this stage. Hence, it is mandatory to find out a simple 
and feasible manipulation for promoting plasticity of MSCs including 
proliferation, chondrogenesis and viability.

Dedifferentiation Reprogrammed MSCs for Tissue 
Regeneration

Cellular dedifferentiation is cellular regression from a more 
differentiated stage back to a less differentiated stage from within its 
own lineage that confers pluripotency, giving rise to reminiscent of 
stem cells [57,58]. Based on this definition, cellular dedifferentiation 
is not only initiating from a completely differentiated stage, but 
also initiating from partially differentiated stage. Similarly, cellular 
dedifferentiation could result in partially or fully pluripotent 
cells, depends on the different time points. This process is more 
commonly studied in plants and more primitive creatures. Several 
non-mammalian vertebrate species, such as zebra fish and urodele 
amphibians [59-65], possess a remarkable capacity to regenerate heart 
tissue or limb, respectively. Apart from natural conditions, researchers 
found that inducible dedifferentiation is an appropriate strategy to 
promote regeneration in mammalian tissues that lack of this ability. 
Studies have reported the occurrence of cell dedifferentiation during 
tissue regeneration both in vitro and in vivo [66-70].

Recent studies have demonstrated that dedifferentiation 
reprogramming is a reliable method to improve properties of stem 
cells and promote lineage differentiation commitment [71-73]. 
Previous data revealed that a population of MSCs with enhanced 
viability in vitro and improved therapeutic efficacy in a cerebral 
ischemia model could be attained via neuronal differentiation and 
dedifferentiation reprogramming [72]. Recently we reported that, 
compared with untreated MSCs, MSCs which manipulated with 
osteogenic differentiation medium exhibited a better osteogenic 
differentiation potential, improved cell migratory capacity and up-
regulated expression of genes Nanog, Oct4 and Sox2 [74]. And we 
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also proved that such improvements were inducted by decreased 
methylation and accrual of activating histone marks of promoters 
on Nanog and Oct4.Besides, after preconditioned with chondrogenic 
differentiation medium and complete medium, the Manipulated MSCs 
(M-MSCs) also showed an improved cell clonogenicity, proliferation, 
survivability and chondrogenic property. And the results of 
epigenetic analysis revealed the central role of Nanog in maintaining 
the multipotency of the manipulated MSCs [75]. Furthermore, we 
also revealed that neocartilage formation of M-MSC-laden constructs 
implanted in the nude mice was significantly promoted after dynamic 
compressive applied in the bioreactor and the constructs laden with 
M-MSCs were also significantly promoted the cartilage healing 
process of osteochondral defect of a rat model [76].

Growth Factors for Chondrogenic Differentiation
In the hyaline cartilage, growth factors regulate homeostasis 

and integrity, as well as development [77]. Growth factors also play 
an important role in the process of chondrogenic differentiation 
of MSCs. Table 1 summarizes some representable endogenous 
bioactive cytokines, including Transforming Growth Factor β 
(TGF-β) superfamily with respect to cartilage tissue engineering are 
TGF-β1, TGF-β3, Bone Morphogenetic Protein 2(BMP-2), BMP-4, 
BMP-6, BMP-7, BMP-9 and Growth Differentiation factor-5 (GDF-
5) [78-81], which are reported to stimulate MSCs proliferation 
and differentiation. Among of these, TGF-β1 and TGF-β3 are the 
most frequently used cytokines in experimental studies to promote 
chondrogenic differentiation and synthesis of corresponding 
Extracellular Matrix (ECM) production [79,81-83] (Table 1).

Biomaterials for Cartilage Repair
Various materials in the form of sponges, hydrogels, electrospun 

fibers, and microparticles have been fabricated as scaffolds to support 
chondrogenic differentiation [89]. Natural biomaterials, derived 
from either polymer (agarose, alginate, chitosan, and hyaluronan) or 
protein (collagen, gelatin, fibrin, and silk) are biocompatible but have 
poor mechanical strength and relatively high degradation rate in most 
cases without proper modification [90,91]. Synthetic biodegradable 
polymers offer some important advantages such as controllable 
degradation rate, high reproducibility, high mechanical strength, and 

easy manipulation into specific shapes. However, the cell recognition 
signals are usually missing in such scaffolds [92]. When stem cells 
are applied to cartilage defects, direct administrations of stem cells 
into cartilage defects often lead to limited cartilage regeneration due 
to significant cell loss and death as a result of the harsh mechanical 
loading and catabolic factors in the diseased joints [93]. The lack 
of a functional carrier material to provide physical retention and 
biochemical cues to the delivered cells in the cartilage defects results 
in poor retention, significant death and unsatisfactory differentiation 
of the cells [94]. Therefore, there exists a huge demand for effective 
carrier biomaterials that afford not only physical support but also 
biochemical signals to the delivered cells in order to promote the 
cartilage repair. As articular cartilage is totally covered by the articular 
capsule, it will be much helpful to deliver the cells through a minimal 
invasive way, such as intra-articular injection.

Among all of these materials, natural polymer like Hyaluronic 
Acid (HA) has been intensively investigated. HA can be modified 
to photo-crosslink into 3D hydrogels that confers chondrogenesis 
properties of MSCs [95]. The superior mechanical stiffness and 
network porosity and permeability have positive impact on the 
differentiation of encapsulated MSCs [96-99], distribution of newly 
synthesized cartilage matrix, and nutrition transportation [100, 101]. 
Previous data showed enhanced chondrogenic differentiation and 
inhibited hypertrophy could be achieved by modulating cross linking 
density of HA macromer [102, 103]. Besides, after modified Quantum 
Dots (QDs) with β-Cyclodextrin (β-CD) and RGD peptide, the 
manipulated nanocarrier gained the ability of carrying hydrophobic 
small molecules such as kartogenin in the hydrophobic pockets 
to induce chondrogenic differentiation of human mesenchymal 
stem cells [104]. Moreover, after conjugated sulfate groups to HA, 
these modified sulfated HA exhibit a higher protein affinity and 
significantly slower degradation by hyaluronidase with no negative 
effect on the viability of human Mesenchymal Stem Cells (hMSCs) 
compared to the wild type HA hydrogel, which results the avert of 
cartilage abrasion and hypertrophy in the osteoarthritis joints of a rat 
model of OA [105].

Compared with HA, after proper modification, gelatin hydrogel 
also exhibited an excellent capacity of self-healing and improved 

Growth factor Effects on MSCs

TGF-β1 Increases proliferation and cartilaginous ECM production, downregulates collagen type I gene expression [79]

TGF-β3 Increases cartilaginous ECM production [82]

BMP-2 Turns on the chondrogenic pathway in the appropriate chondrogenic precursor cell pool and Repairs cartilage–bone interface tissue defects 
[79,80]

GDF-5 Increases cartilaginous ECM production [78]

IGF-1 Increases proliferation and cartilaginous ECM production, additive effect on chondrogenesis with TGF-β1 and BMP-7 [84]

BMP-4 Accelerates the progression of cartilage differentiation to maturation [78]

BMP-6 upregulates chondrogenic genes and downregulates genes associated with chondrocyte hypertrophy and endochondral ossification[80]

BMP-7 Inhibits cell proliferation, induces chondrogenic differentiation, additive effect on chondrogenesis with TGF-β1 and IGF-1 [85,86]

BMP-9 Maintains the expression of chondrocyte-specific ECM molecules in the presence of OA-related physiological levels of IL-1β [80]

FGF-2 Increases proliferation, increases proteoglycan production [87]

FGF-18 Inhibits cell proliferation, induces chondrogenic differentiation [88]

Table 1: Selected growth factors and their effects on MSCs.
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physical and biological properties. Recently, cyclodextrin-based 
host-guest interact with gelatin are of great interest because of its 
effectiveness and specificity of host-gust molecular recognition 
under physiological condition which can be facilitated to form 
supramolecular hydrogels. In our recent study, we revealed that 
thought crosslinked acrylated β-cyclodextrins (Ac-β-CDs) with the 
aromatic residues of gelatin by in situ formed multivalent host-guest 
nanoclusters under UV-initiated oligomerization, the as-prepared 
hydrogel shown a significantly enhanced mechanical strength 
thanks to its reversible nature of the host-guest interactions. Those 
interactions enables the hosts and guests moieties to re-form the host-
guest cross-links thus preventing the early rupture of the polymer. 
Besides, the Host-Guest Macromer (HGM) hydrogels also exhibited 
improved compressive properties with much faster stress relaxation 
rate. Such enhanced compressibility and fast stress relaxation property 
facilitate the HGM hydrogels to fit into irregular geometries without 
compromising the hydrogel integrity [106]. Moreover, the Host-
Guest Macromer (HGM) hydrogels were also able to sustain release 
of encapsulated therapeutic growth factors and deliver therapeutic 
cells. In animal study, we also demonstrated that such novel HGM 
hydrogel could significantly promoted the cartilage regeneration in 
a rat model [106]. In our subsequent study, we also demonstrated 
that the injectable stem cell-laden HGM hydrogels could remarkably 
boost the regeneration of both cartilage and subchondral bone in an 
osteochondral defect model after encapsulated human Bone Marrow-
derived Mesenchymal Stem Cells (hBMSCs) with small molecule 
(Kartogenin) and proteinaceous chondrogenic agents (TGF-β1).
Data also showed that the injection process only has a minor negative 
impact on cell viability and chondrogenic differentiation capacity 
of the cells encapsulated in the hydrogels which indicated that such 
biomaterial and cell delivery method could greatly facilitate stem cell 
therapies [107].

Mechanical Stimulation and Chondrogenic 
Differentiation 

Mechanical stimulation with bioreactors on cell-seeded constructs 
is a well-established cue for improving the mechanical properties of 
tissue-engineered cartilage [108,109]. Direct confined or unconfined 
compression and hydrostatic pressure are the two most investigated 
loading regimes in cartilage tissue engineering studies. Direct dynamic 
compression applied to chondrocyte-seeded constructs generally 
increased ECM production and proliferation of chondrocytes, and 
improved compressive properties of the engineered tissue [110-117]. 
Mechanical forces generated intrinsically within the cell in response 
to its extracellular environment, and extrinsic mechanical signals 
imposed upon the cell by the extracellular environment, play a critical 
role in determining the fate of MSCs [118-120]. Mechanical signals 
have also been reported to induce chondrogenesis of bone marrow-
derived MSCs and inhibit subsequent hypertrophy as effectively as 
TGF-β1 stimulation [121-125]. Compressive loading is the most 
frequently used protocol for promoting chondrogenesis of MSCs. 
A combination of TGF-β1 and compressive loading presents a 
synergistic effect on chondrogenic differentiation [126]. Apart from 
compressive loading, fluid flow has also been shown to upregulate 
Sox9 gene expression in murine C3H10T1/2 MSCs plated onto glass 
slides [127]; tensile strain regulated chondrogenic differentiation and 
GAG synthesis by MSCs embedded in collagen-GAG [128].

Conclusion
With aging and rising of obesity, cartilage injury and 

osteoarthritis has become major healthcare problems worldwide. 
The biological approaches showed a great therapeutic potential in 
the treatment of cartilage injury or OA. However, open questions 
and challenges are existed and remained to be settled, as most of the 
studies are still at early stage and evidences such as long-term and 
large-scale study are still needed. Besides, the problem of stability 
of the growth factors, survival rate of the cells encapsulated in the 
biomaterial and large-scale fabrication are still challenging the 
process of final commercialization. Taken all these together, till now, 
even bioactive scaffold cannot completely meet every request in the 
clinical application; we still believe that biological functionalization 
solutions are the future direction for the treatment of cartilage injury 
and osteoarthritis.
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