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Abstract
The objective of this study is to determine whether alloxan-

induced diabetic Lactoferrin knockout (LFKO-/-) mice are more 
susceptible to periodontal disease caused by Aggregatibacter 
actinomycetemcomitans compared to the diabetic wild-type (WT) 
mice. Diabetes was induced in mice by a single dose of alloxan (60 
mg/kg) injected intravenously. Mice were categorized as diabetic 
when blood glucose levels >250 mg/dL were measured on the 7th day 
after the injection. Periodontal disease was experimentally induced 
by A. actinomycetemcomitans infection in alloxan induced diabetic 
WT and LFKO-/- mice. Fasting blood glucose levels and body weight 
were monitored throughout the study. At the end of the 12th week 
of infection, mice were sacrificed and bone loss among the groups 
was estimated by measuring the distance between cemento-enamel 
junction (CEJ) to the alveolar bone crest (ABC) at 12 sites on the 
molars. A. actinomycetemcomitans infected mice groups developed 
more alveolar bone loss than sham-infected animals. Diabetic LFKO-

/- infected mice exhibited significant bone loss (P<0.01) and a higher 
mean fasting blood glucose level (P<0.05) when compared to diabetic 
WT infected mice. No statistically significant difference in fasting blood 
glucose level was found between the infected and sham-infected 
groups. Peripheral blood analysis at the end of the 12th week revealed 
a significant reduction in the platelet counts in LFKO-/- mice when 
compared to WT mice. Furthermore, diabetic LFKO-/- presented with 
lower counts than non-diabetic LFKO-/- mice (P<0.01). In conclusion, 
diabetic lactoferrin deficient mice are at a higher risk of developing 
periodontal infection induced by A. actinomycetemcomitans when 
compared to diabetic WTI mice.  

mediators can exacerbate systemic diseases including cardiovascular 
disease [10], pulmonary disease [11], nephropathy [12], rheumatoid 
arthritis [13] and DM [14]. A. actinomycetemcomitans is a Gram-
negative facultative anaerobe linked to localized aggressive 
periodontitis (LAP). LAP is a form of periodontal disease that causes 
severe periodontal ligament and alveolar bone loss around the first 
molars and central incisors [15]. LAP is more prevalent among 
adolescents of African-American and Hispanic ethnicity [16,17]. The 
detection of A. actinomycetemcomitans was higher in patients with 
diabetes and periodontitis compared to systemically healthy patients 
without periodontitis [18,19]. A recent study has also indicated that 
patients with nephropathy have complications of diabetes and a 
greater number of A. actinomycetemcomitans in their plaque when 
compared to non-diabetic nephropathy patients [20]. Hyvärinen et al. 
reported that patients with metabolic syndrome (MetS) have exhibited 
a higher level of A. actinomycetemcomitans serum antibodies and a 
greater number of missing teeth [21]. Researchers point to possible 
adverse effects of periodontal disease on glucose tolerance [22] and 
suggest that treatment of periodontal disease in diabetic subjects is 
essential for better glycemic control [23]. Periodontal therapy has 
been observed to result in lower levels of plasma glycated hemoglobin 
(HbA1c) in diabetic subjects [24]. 

Lactoferrin (LF) is an 80-kDa iron-binding glycoprotein that 
possesses antibacterial, antiviral, antifungal, anti-parasitic and 
immunomodulatory functions. LF exhibits both bacteriostatic and 
bactericidal activities against a wide range of Gram-negative and 
Gram-positive bacteria [25]. LF is also suggested to play a role in 
promoting the general health of subjects with systemic conditions such 
as DM [26]. Reports indicate that LF is involved in the metabolism of 
both glucose and lipids. In addition, it increases the cell’s sensitivity 
to insulin [27]. Any decline in LF in cases of obesity could lead to 
self-perpetuating insulin resistance [28]. Moreno-Navarrete et al. also 
found abnormally low serum levels of LF associated with DM-2, which 
they suggest could lead to impaired neutrophil function [29]. Dodds 
et al. found a substantial increase in the LF concentration in diabetic 
subject’s saliva, despite a decrease in the whole salivary flow [30]. 
Although LF levels are observed to increase in the diabetic state, most 
of it is thought to be inactive. According to Li et al. the bactericidal 
ability of LF is diminished in cases of DM due to LF binding to 
sugar molecules [31]. The role of LF is supported by a clinical study 
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Introduction 
Diabetes mellitus (DM) is a chronic metabolic disease associated 

with a wide range of oral complications such as periodontitis, 
candidiasis, caries, tooth loss, gingivitis, lichen planus, neurosensory 
disorders (burning mouth syndrome), xerostomia and impaired taste 
[1]. The relationship between DM and periodontal disease is often 
described as a “bidirectional relation”; there is a tremendous body 
of literature that has studied this interrelation in depth. The results 
of four meta-analysis studies demonstrate that diabetic subjects are 
more prone to periodontal disease compared to non-diabetic subjects 
by a 2:1 ratio [2]. Several studies in children with type-1 DM show 
that periodontal disease is more severe than in control subjects [3-
6]. Increased gingivitis and periodontitis were shown in patients 
with poor metabolic control compared to well-controlled patients 
[7,8]. Evidence points to a link between periodontal disease and 
systemic health. Periodontal infection represents a gateway for oral 
microorganism-secreted endotoxins and host cytokines to enter 
the systemic circulation, causing systemic inflammation [9]. These 
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where Talactoferrin has shown favorable results in treating diabetic 
neuropathic foot ulcer with minimal side effects [32]. 

It has also been demonstrated that LF knockdown in human 
adipocytes led to a significant decrease in adipogenic, lipogenic and 
insulin signaling-related gene expression and a significant increase 
in the gene expression of inflammatory mediators [28]. Our studies 
demonstrated that Lactoferrin knockout (LFKO-/-) mice are more 
susceptible to A. actinomycetemcomitans-induced periodontal 
disease and bacteremia [33,34], S. mutans-induced bacteremia [35], 
and C. albicans induced oral candidiasis [36] when compared to WT 
or LFKO-/- mice administered human LF. 

In our previous study, we observed that LFKO-/- mice infected 
with A. actinomycetemcomitans tended to exhibit more alveolar bone 
destruction and proinflammatory cytokine secretion when compared 
to wild type A. actinomycetemcomitans infected (WTI) mice [33]. 
Nonetheless, to the best of our knowledge, there is no study to date 
that has addressed the impact of LF absence in aggravating the 
inflammatory processes of periodontitis in diabetic mice. Based on 
our studies, as well as previous studies, we hypothesize that diabetic 
LFKO-/- mice are more susceptible to A. actinomycetemcomitans-
induced periodontitis compared to diabetic WT mice. The results 
of this study provide a better understanding of the role of LF in 
modulating the impact of hyperglycemia and controlling progression 
of periodontal disease in diabetics. 

Materials and Methods 
Bacterial strains and preparation of inocula 

Spontaneous Rifampicin (Rif) resistant variants of a clinical 
A. actinomycetemcomitans isolate, CU1000 nalidixic acid (N) 
resistant strain were grown in 100 ml of A. actinomycetemcomitans 
growth medium (AAGM) containing 70 µg/ml Rif in tissue culture 
flasks for 2 days in a 37 ºC incubator containing 10% CO2/90% air 
atmosphere. For the adherent clinical isolate, CU1000N Rif, culture 
flasks were washed three times with phosphate-buffered saline (PBS) 
and adherent cells were scraped into PBS. The bacterial cells were 
then further concentrated by centrifugation at 1,000xg, and the total 
volume was reduced to 1/10 of the original volume [37]. 

In vivo experimental design and periodontal infection 

The experimental groups comprised of 6-8 weeks old male wild 
type (C57BL/6) and LFKO-/- mice. Mouse colonies were bred and 
maintained in the transgenic animal facility of Rutgers School of 
Dental Medicine, Newark, New Jersey. To test our hypothesis, mice 
were divided into 8 experimental groups, each group comprising 
at least 6 mice that had free access to water and laboratory food. 1) 
wild-type control mice (WTC), 2) diabetic wild-type control mice 
(WTC+DM), 3) A. actinomycetemcomitans-infected wild-type mice 
(WTI), 4) A. actinomycetemcomitans infected wild-type diabetic mice 
(WTI+DM) 5) LFKO-/- control mice (LFKO-/-C), 6) diabetic LFKO-

/- control mice (LFKO-/-+DM) 7) A. actinomycetemcomitans infected 
LFKO-/- mice (LFKO-/-I) and 8) A. actinomycetemcomitans infected 
diabetic LFKO-/- mice (LFKO-/-I+DM). The protocol was approved 
by institutional animal care and use committee (IACUC) of Rutgers 
Biomedical Health Sciences, Newark, New Jersey. 

Induction of diabetes 

Diabetes was induced in mice by injection of a single dose of 0.1 
ml alloxan (ALX; 2, 4, 5, 6-tetraoxypyrimidine) (Sigma Co., St. Louis, 
USA; 60 mg/kg) intravenously. Other animals were injected with 0.1 
ml PBS. 

Determination of fasting glucose 

The fasting blood glucose levels following an 8 h fast were 
determined in the blood of all the animals using TRUE track glucose 
meter (Nipro Diagnostics, Inc., Fort Lauderdale, FL, USA). Glucose 
levels were measured before the start of the experiment (before Alx 
or PBS injection), on days 1 and 7 after the injection, and at the end 
of the experiment. Mice were categorized as diabetic if their fasting 
blood glucose levels measured above 250 mg/dL on the 7th day after 
the injection. 

Establishment of periodontal infection 

The oral cavity of the mice was swabbed once with 0.12% 
chlorhexidine gluconate (Peridex 3M, ESPE Dental Products, 
St. Paul, MN) mouth rinse one day before the infection or sham 
infection. A. actinomycetemcomitans in suspension (1x108 cells) 
with 2% carboxymethylcellulose suspension in PBS was placed 
in the oral cavity of experimental groups using a micropipette. A 
second dose of bacteria (1x109 CFU) in 10 ml PBS was injected into 
palatal gingival tissue to facilitate the retention of the bacteria, as 
reported earlier [33]. This procedure was repeated after 48 h and 96 
h. In control group mice, oral swabbing was performed with 2% of 
carboxymethylcellulose in PBS and PBS gingival injection. At the end 
of 12 weeks, animals were euthanized by CO2, and heads, blood and 
organs were collected. 

Detection of A. actinomycetemcomitans DNA 

To detect whether A. actinomycetemcomitans was present in the 
oral cavity, oral cavities of anaesthetized mice was swabbed after two 
weeks of infection. Genomic DNA was extracted directly from the 
collected oral samples with a DNeasy Blood & Tissue Kit as described by 
the manufacturer (Qiagen, Valencia, CA, and USA). The presence of A. 
actinomycetemcomitans DNA was analyzed by PCR using leukotoxin 
(LtxA) primers (Forward 5-ACCTGTCGCAGGGTTAATTG-3; 
Reverse 5-CGAGCTGATTCGCGATATGT-3). A negative control 
without DNA and a positive control with A. actinomycetemcomitans 
DNA were always included. The PCR products were electrophoresed 
in 1% agarose gel, stained with ethidium bromide, and photographed 
[33]. 

Determining alveolar bone loss 

To determine alveolar bone loss, the maxillae were hemisected, 
mechanically defleshed and exposed overnight to 3% hydrogen 
peroxide. They were then treated for 5 min with 1% sodium 
hypochlorite and then stained with methylene blue dye (Fisher 
Scientific Company, Fair Lawn, New Jersey) in order to delineate 
the cemento-enamel junction. The jaws were mounted in utility 
wax, and the lingual surfaces of the molars were photographed with 
10X magnification using an Olympus (SZ61) dissecting microscope 
(Olympus, Center Valley, PA). The images were digitalized [33] 
and printed on A4 paper, and bone loss around the three molars 
was measured at 12 sites by two different examiners. Results were 
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presented in millimeters, and the significance in bone loss was 
calculated by comparing bone loss means of the control group with 
those of the infected diabetic and non-diabetic group of WT and 
LFKO-/- mice using one-way analysis of variance (ANOVA) [38]. 

Complete blood count (CBC) 

Blood was obtained by retro-orbital phlebotomy under 
anesthesia, heparinized and complete blood count was determined 
using an automated H1 Technicon system (Antech Diagnostics, New 
Hyde park, NY, USA). 

Statistics 

Statistical analysis was performed for the experiment using 
one-way ANOVA test to compare intergroup differences. When 
appropriate, post hoc analysis of significant differences revealed by 
ANOVA was also performed using an all-pair wise Tukey’s HST 
test with the JMP software SAS 9.1 (SAS Institute, Cary, NC, USA). 
P values of less than 0.05 were considered statistically significant. 
Continuous variables were compared by pair wise t test for two 
independent samples. 

Results 
Induction of diabetes and blood glucose levels in WT and 
LFKO-/- mice 

Diabetes was induced by a single intravenous injection of alloxan 
in both WT and LFKO-/- mice. The mice were considered diabetic 
when their blood glucose level was 250 mg/dL or above. We found 
that LFKO-/-+DM mean blood glucose was significantly higher than 
WT+DM (P<0.05). No significant difference was found in the fasting 
blood glucose and food intake levels between the infected and sham-
infected in all the experimental groups. We have used the one-way 
ANOVA to determine the weight gain or weight loss among the 
groups and within the same group at different time points (0, 3, 6, 9 
and 12 weeks). During the experimental period a progressive increase 
in body weight was observed in all groups of mice. There was no 
significant difference in the weight gain or loss observed between any 
of the experimental groups. 

Alveolar bone loss due to alloxan-induced diabetes and/or 
A. actinomycetemcomitans infection 

Colonization of oral cavities infected by A. actinomycetemcomitans 
was determined by PCR using LtxA specific primer. In contrast, 
none of the sham-infected animals were found to harbor A. 
actinomycetemcomitans (Figure 1). Levels of bone loss (distance 
from the CEJ to the alveolar bone crest) determined 12 weeks after 
A. actinomycetemcomitans or sham infection was significantly less 
in WTC (0.6 mm±0.35) than in the other experimental groups. 
Compared to the bone loss levels in these healthy controls, mice that 
were infected with A. actinomycetemcomitans, DM or both tended to 
have higher amounts of bone loss. These differences were statistically 
significant except when WTC and LFKO-/- C mice are compared. 
Generally, hyperglycemic mice exhibited significantly higher bone 
loss when compared to those with normal glucose levels. Animal who 
are LFKO-/- tend to have more bone loss than corresponding WT 
mice. LFKO-/-I had significantly greater bone loss (P<0.01) compared 
to LFKO-/-C mice. Diabetic LFKO-/-I mice had significantly (P<0.01) 
higher amounts of bone loss (2.3 mm ±0.63) than animals in any 

other experimental group. When we compared the bone loss between 
WTI and WTC+DM, both groups demonstrated similar amounts of 
bone loss. The same trend was also observed between LFKO-/-C+DM 
and LFKO-/-I mice group (Table 1). 

Peripheral blood counts 

Platelet counts were measured 12 weeks following A. 
actinomycetemcomitans infection or sham infection. Compared to 
sham-infected non-diabetic mice, infection and diabetes caused a 
significant increase in platelet counts with the highest counts being in 
WTI+DM mice. LFKO-/- mice had significantly lower platelet counts 
than corresponding WT animals with LFKO-/-I+DM animals having 
the lower platelet counts (K/CMM), a value that is significantly lower 
than counts measured in other groups. Compared to un-infected 
non-diabetic animals, mice infected with A. actinomycetemcomitans 
and diabetic mice were observed to have increased blood neutrophil 
counts. All groups of LFKO-/- mice had significantly lower neutrophil 
counts when compared to WT group. In addition, LFKO-/-I+DM 
mice neutrophil counts (8.5±0.71) were non-significantly lower than 
other LFKO-/- mice group (Table 2).

Discussion 

Figure 1: Representative gel picture of detection of A. 
actinomycetemcomitans DNA from the oral cavity of infected 
diabetic and non-diabetic mice after 12 weeks of post infection. 
A. actinomycetemcomitans DNA was detected by PCR using A. 
actinomycetemcomitans LtxA-specific primers. Genomic DNA extracted from 
A. actinomycetemcomitans was also subjected to PCR as a positive control. 
1) Positive control and 2-6) A. actinomycetemcomitans DNA from infected 
mice. 

Mice groups Mean total bone

loss/group (mm)

WTC 0.6±0.35

WTI 1.30±0.59*

WTC+DM 1.27±0.53

WTI+DM 1.77±0.50

LFKO-/-C 0.93±0.41

LFKO-/-I 1.85±0.70$

LFKO-/-C+DM 1.69±0.63@

LFKO-/-I+DM 2.30±0.63#

Table 1:  A. actinomycetemcomitans-induced alveolar bone loss in WT and 
LFKO-/- diabetic and non-diabetic mice.

Alveolar bone loss was measured at 12 sites on the lingual surface as described 
in the materials and methods. Asterisks indicate statistical significance between 
the groups as calculated by one-way ANOVA with post-hoc testing. *P<0.05 
significance between WTC vs WTI. #P<0.05 significant difference between 
WTI+DM vs. LFKO-/-I+DM groups, @P<0.05 significant difference between 
WTC+DM vs. LFKO-/-C+DM groups, $P<0.05 significant difference between 
LFKO-/-C vs. LFKO-/-I groups.
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Lactoferrin is a part of the innate immune system and possess 
antibacterial, antiviral and antifungal properties [39]. Knocking 
out the LF gene, which is responsible for LF protein secretion in 
LFKO-/- mice, will render their immunity impaired, leaving the host 
susceptible to invasion by different pathogens. Our current results 
concur with previous studies that found LFKO-/- mice to be more 
predisposed to oral bacterial infections compared to WT mice [33]. 

Our study also demonstrated that diabetic mice are more prone 
to A. actinomycetemcomitans-induced periodontal disease than 
non-diabetic animals. A. actinomycetemcomitans infected diabetic 
LFKO-/- mice experienced greater bone loss than animals that were 
either diabetic WT or non-diabetic LFKO-/- mice. Several studies have 
investigated experimental periodontitis in diabetic animal models 
and corroborate our findings. Pontes Anderson et al. results are 
consistent with our results, which showed that Goto-Kakizaki (GK; 
type-2 DM) rats with ligature-induced periodontitis have greater 
alveolar bone loss than the non-diabetic rats. Furthermore, when 
bone levels were examined in groups without induced periodontal 
disease, diabetic rats demonstrated greater amounts of bone loss than 
non-diabetic animals [40]. Similarly, Liu et al. reported that Zucker 
diabetic fatty (ZDF) rats presented with more severe bone resorption 
when infected with P. gingivalis-soaked ligatures around their molars 
in comparison to controls [22]. 

A. actinomycetemcomitans oral inoculation stimulates T-cell 
proliferation, with a high percent of RANKL-expressing, CD4+ 
T-cells in non-obese diabetic mice (NOD). This explains the greater 
alveolar bone loss in diabetic NOD mice compared with pre-
diabetic and non-diabetic NOD mice [41]. It has been reported that 
A. actinomycetemcomitans infection accelerates alveolar bone loss 
in diabetic GK rats by increased rates of cell apoptosis in gingival 

epithelial and connective tissues [42,43]. 

After administrating alloxan to WT and LFKO-/- mice the blood 
glucose level of diabetic groups were measured at different time 
points. LFKO-/- mice had higher blood glucose levels than their WT 
counterparts throughout the study, indicating that LF plays a role 
in regulating blood glucose, reducing hyperglycemia. It has been 
reported that the LF molecule’s C-lobe interacts with different sugar 
molecules, subsequently lowering blood glucose [44]. Moreno-
Navarrete et al. have also reported that LF up-regulates insulin 
signaling in vitro by increasing 473SerAkt phosphorylation in HepG2 
and 3T3-L1 cell lines. In addition, they found that LF increases insulin 
sensitivity in vivo [29]. Moreno-Navarrete et al. investigated the effect 
of LF gene knockdown on human adipocyte and found that it led to 
reduced expression of adipogenic and insulin-related genes (GLUT4 
and IRS1), while the expression of inflammatory genes (IL-6, TNF-α 
and IL-8) were found to be elevated significantly [28]. 

We found that neutrophil levels are lower in diabetic LFKO-/- 
mice compared to their WT counterparts. It has been reported that 
LF secretion from neutrophils is decreased in subjects with diabetes 
[29]. Other studies have also pointed to a correlation between low 
“LF level” and neutropenia [45]. Studies in humans and animals 
have illustrated defective neutrophil chemotactic, phagocytic and 
microbicidal actions in diabetics. In addition to impaired neutrophil 
adhesion to the endothelium and migration to inflamed sites, diabetes 
affects the production of reactive oxygen species and is associated 
with a decline in cytokines release and prostaglandin production by 
neutrophils. In diabetics there is a higher rate of leukocyte apoptosis 
and decreased lymph node retention capacity [46]. 

Neutrophils are more sensitive than monocytes to diabetic 
conditions. Furthermore, it has also been reported that monocyte 
counts in the blood of type-1 diabetic patients is lower than non-
diabetics as side effect of ketosis [47]. Diabetic WT groups presented 

Mice groups Mean Neutrophils Mean Platelet counts

Counts (%) (K/CMM)

WTC 38±1.41 815±21.2

WTI 48±8.49* 921±41.7

WTC+DM 41±1.41 977±10.6*

WTI+DM 43.5±3.54 1379±35.4*

LFKO-/-C 19.5±6.43 610±29.9#

LFKO-/-I 10.5±0.71# 721±43.1$

LFKO-/-C+DM 10±2.81# 310±19.1**

LFKO-/-I+DM 8.5±0.71# 394±5.66**

Table 2: Peripheral blood counts during experimental periodontitis in WT and 
LFKO-/- diabetic and non-diabetic mice.

Peripheral leucocytes count during experimental periodontitis. Blood 
samples were collected after 12 weeks of post-infection with or without diabetics 
and analyzed for platelet and neutrophil counts. Significance in the levels were 
analyzed in duplicate experiments using ANOVA and post hoc Tukey’ HST 
test between the groups. The data shown are means ±SEM. Asterisks indicate 
statistical significance (P<0.05) differences between the groups as calculated 
by one-way ANOVA. Platelet counts; *P<0.05 significant difference between 
WTC vs. WTC+DM; WTI+DM groups, #P<0.05 significant difference between 
WTC vs. LFKO-/-C groups, $P<0.05 significant difference between WTI vs. LFKO-

/-I groups, **P<0.05 significant difference between LFKO-/-C vs. LFKO-/-C+DM; 
LFKO-/-I+DM. Neutrophil counts; *P<0.05  significant difference between WTC 
vs. WTI group, #P<0.05 significant difference between LFKO-/-C vs. LFKO-/-I; 
LFKO-/-C+DM; LFKO-/-I+DM.

Figure 2: A. actinomycetemcomitans-induced alveolar bone loss was 
evaluated with or without diabetes in WT and LFKO-/- mice 12 weeks 
after infection or sham infection. Digital images at 10X magnification of 
defleshed and Methylene blue stained maxillary jaws from all the mice groups. 
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with higher platelet counts than non-diabetic groups’ while the LFKO-

/- diabetic groups’ platelet counts were lower than those of controls 
in non-diabetic LFKO-/- mice. These points to possible correlations 
between LF level and platelet counts. One report has pointed to an 
elevated LF level in ulcerative colitis and Crohn’s disease, and its 
association with elevated platelet counts [48]. There are contrasting 
reports regarding platelet counts in diabetic patients. Several reports 
have found higher platelet counts in diabetic subjects compared 
to their matched controls [49,50]. Whereas, Hekimsoy et al. have 
measured the mean platelet volume (MPV) and mean platelet counts 
in diabetic subjects found that MPV was higher in significant manner, 
while the mean platelet counts was lower in diabetics compared to 
non-diabetic healthy subjects [51]. At this point, we don’t have any 
explanation as to why platelet counts are lower in LFKO-/- diabetic 
mice when compared to WT diabetic mice. However, there are 
reports, which show that oral administration of LF increased the 
platelet counts [52]. Furthermore, exogenous LF add-back to LFKO-/- 
mice studies are needed to elucidate the role of LF on platelet counts 
in diabetes. 

Conclusion
In summary we can conclude from our results that 

diabetic lactoferrin deficient mice are more susceptible to A. 
actinomycetemcomitans-induced periodontitis compared to diabetic 
WT mice. LF treatment could be utilized in future studies to explore 
LF’ role in reverting diabetes symptoms and diabetes complications 
as in periodontitis. 
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