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Abstract

The oral cavity is the richest stem cell source in the human body. 
Oral stem cells are indeed found in dental pulp, exfoliated deciduous 
teeth, periodontal ligaments, the apical papilla, dental follicles, 
gingival epithelial tissue, and gingival connective tissue. These oral stem 
cell populations have common cell properties including the capacity 
for self-renewal and multi-lineage differentiation potential giving rise to 
odontogenic, osteogenic, chondrogenic, adipogenic, myogenic, and 
neurogenic cell types. Because the oral cavity is so accessible, oral 
stem cell extraction is easy. These stem cells are now recognized as 
being vital to different types of dental tissue regeneration, such as that 
of dentine and periodontal ligaments following injury, thus emphasizing 
the potential use of these oral stem cells in regenerative medicine. 
This involves stem cell recruitment or seeding at the injured site, or 
a combination with appropriate biocompatible scaffolds for tissue 
engineering. Such initiatives may provide specific innovative dental 
tissue restoration strategies using the patient’s own oral stem cells. This 
review focuses on identifying the main available stem cells in the oral 
cavity and their potential use for basic and clinical applications. We 
will also highlight the potential limitations that may reduce the clinical 
use of oral stem cells as tissue regeneration therapy.

of injuries along with sports, assaults, traffic accidents, and work-
related accidents [7-9]. Hard and soft tissue defects secondary to 
trauma include tooth displacement, root fracture, fracture of the 
anterior teeth, and soft tissue injuries.
Oral Mucosa Defect Secondary to Periodontal Disease

The importance of and need for periodontal care has been largely 
attributed to the significant prevalence of periodontal diseases 
worldwide. It has been reported that approximately 20% of the 
populations of most countries suffer from severe forms of periodontal 
disease [10,11]. In recent years, despite significant improvements in 
other oral pathologies such as dental caries, periodontal diseases 
have remained prevalent, with little decrease in terms of severity 
[12]. These diseases cause inflammation and the destruction of the 
periodontium, thus having a considerable impact on both day-to-
day life and quality of life [13]. Severe destructive periodontitis 
associated with gingival recession leads to the loss of gingival tissue 
and underlying alveolar bone [14]. Dental tissue damage, in either its 
localized or generalized form, is an undesirable condition resulting 
in such significant health issues such as gingival mucosa damage, 
root exposure and resorption, tooth sensitivity, and ultimately, tooth 
loss [15]. Clinical interventions are intended to overcome these side 
effects and improve patient health.

Hard and Soft Tissue Defects Secondary to Oral Cancer
Oral cancer represents a high risk factor for mortality around the 

world [16,17]. It may involve the tongue, lips, floor of the mouth, soft 
palate, tonsils, salivary glands, or back of the throat. More than 90% 
of oral and pharyngeal cancers occur in individuals over 45 years of 
age [16,18]. Oral cancer is not only promoted by several exogenous 
insults, such as tobacco and alcohol use [19-22], but can also cause 
chronic pain, loss of function, and at times irreparable and socially 
disfiguring impairment. Following cancer treatment, maxillofacial 
prosthetic rehabilitation is crucial in the efforts to restore head and 
neck functions for the patient [23,24]. With recent advances in cancer 
treatment and reconstruction (e.g., the introduction of brachytherapy 
and microvascular free flap transfers), oral tissue rehabilitation has 
taken on a new dimension by providing a more acceptable quality 
of life for patients. Innovative techniques in surgical reconstruction 
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Introduction

The superior oral cavity extends from the vermilion of the 
lips to the junction of the hard and soft palates, while the inferior 
cavity extends to the line of the tongue’s circumvallate papillae and 
includes the lips, upper and lower alveolar ridges, buccal mucosa, 
retromolartrigone, hard palate, floor of the mouth, and the anterior 
two-thirds of the tongue. Each structure is critical to the complex 
functional capacity of the oral cavity. Although oral tissues are 
protected, they are prone to disorders such as hard and soft tissue 
defects secondary to trauma (e.g., car accidents), congenital defects 
(e.g., cleft palate), and acquired diseases (e.g., periodontal disease, 
cancer) [1,2]. Oral tissue defects must be restored to improve the 
patient’s life and well-being. 

Hard and Soft Tissue Defects Secondary to Trauma

Cranio maxillofacial injuries occur in a significant number of 
trauma patients either in isolation or in combination with other 
serious injuries, including cranial, spinal, and upper and lower body 
injuries [3,4]. The epidemiology of facial fractures varies according 
to type, severity, and cause as a function of the involved population 
[5,6]. Activities of daily life and play accidents are the leading causes 
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thus make the maxillofacial prosthodontist’s task that much more 
challenging [25].

Oral Tissue Reconstructions
Periodontal plastic surgery is performed to prevent, correct, or 

eliminate anatomical, developmental, or traumatic deformities of 
the oral soft and hard tissues [26,27]. Multiple techniques have been 
proposed for oral tissue defects secondary to periodontal or cancer 
disease [28-30]. The rationale for these procedures is to restore oral 
cavity functionality and improve patient comfort and well-being. 
While these techniques are considered as the gold standard, by 
employing autologous soft and hard tissues they are nevertheless 
hampered by significant limitations and complications. For example, 
gingival recession treatment with a hard palate graft leads to an 
unmatched color of the implant with the neighboring native tissue. 
Furthermore, frequent post-operative sequels of the donor area 
may at times be significant [31]. In addition, many patients exhibit 
a minimal band of buccal keratinized tissue with several areas of 
gingival loss, which limits the availability of suitable tissue for 
grafting. This limitation can be further complicated by the presence of 
a small, flat palate, which also impedes the therapist’s ability to obtain 
an adequate amount of keratinized soft tissue to graft [32]. Other 
challenges include the need for a second surgical site, which prolongs 
the procedure, not to mention patient discomfort. In the case of oral 
cancer resection, large soft and hard tissues are required, which lead to 
a more complex clinical situation due to the deficiency of implantable 
autologous tissue [33]. In recent years, tissue engineering has focused 
on one highly challenging goal, namely, to recreate healthy functional 
tissue and organs to replace diseased ones [34,35].  

Impact of Tissue Engineering in Dentistry
Dental reconstructions following tissue loss are required for 

a large number of patients worldwide [36]. Tissue engineering 
seeks to devise functional and healthy soft as well as hard oral 
tissues to replace diseased or non-functional ones [36]. Compared 
to conventional grafts, tissue engineering procedures for tissue 
reconstruction in the oral cavity may provide significant advantages, 
as there is minimal or no donor site morbidity. In the field of tissue 
engineering of oral mucosa, naturally derived and synthetic polymers 
(membranes) populated with cells are being used in dentistry for 
tissue reconstruction [37,38]. One of the major challenges for dental 
tissue engineering is the use of cells that are characterized by their 
capacity to self-renew and to differentiate into multiple lineages. 
Human oral stem cells can be extracted from dental pulp, exfoliated 
deciduous teeth, the apical papilla, periodontal ligaments, dental 
follicle progenitor cells, gingival connective tissue, and gingival 
epithelial tissue.

Oral Stem Cells
Pulp stem cells and tissue engineering

It is now well established that dental pulp contains stem cells 
which are activated upon tooth injury leading to cell growth and 
differentiation to repair tooth damage [39]. Dental pulp contains 
several stem cell niches localized predominantly in the perivascular 

area of the pulpal cavity and ready to restore the damaged area [40]. 
Dental pulp is crucial to tooth homeostasis; loss of this pulp is without 
question associated with tooth fracture and periapical disease leading 
to tooth loss [41,42]. To avoid this situation, one may think of pulp 
regeneration as including important key players [43,44] regenerated 
dental pulp must be vascularized; the differentiated stem cells must 
be supported by the existing dentinal wall of the root canal space; 
and the newly regenerated tissue must adequately interact with the 
existing dentin [43,44].

A number of research groups have attempted to engineer pulp 
tissue replacements similar to normal pulp tissue for use in such 
regenerative endodontic procedures as pulp stem cell extraction, 
growth and differentiation, and in vitro tissue engineering. Dental 
pulp stem cells (DPSCs) can be differentiated, resulting in a dentin 
pulp-like complex that includes mineralized matrix and odontoblasts 
[44,45]. DPSCs were reported to differentiate into multi-cell lineages, 
such as adipocytes, neural-like cells, and osteoblasts [46,47]. We were 
able to extract stem cells from dental pulp, culture and differentiate 
them onto osteoblast-like cell-generating bone nodules, as shown 
in Figure 1. To promote bone tissue formation, we also combined 
DPSCs with an osteogenic porous scaffold to demonstrate in vitro 
this bone tissue formation (Figure 2). Animal studies also showed in 
vivo bone tissue formation following dental pulp cell differentiation 
into osteoblasts than implementation [48]. These studies suggest the 
potential use of dental pulp stem cells to restore dentin and bone 
defects in humans. However, the major limit using these DPSCs for 
clinical therapies is the available throughout a patient’s lifetime. As 
this availability is basically greater at an early age, DPSCs banking 
may constitute a potential solution by cryopreserving the cells for 
future clinical use. Such solution may not be useful for all around 
the world.

Exfoliated deciduous teeth stem cells

Replacement of deciduous teeth by adult permanent teeth is 
a dynamic process that combines the resorption of deciduous root 
and its detachment from the mandibular under the pressure of the 
permanent teeth. Exfoliated deciduous teeth can be used to collect 
the remaining dental pulp tissue. This has been reported to be rich 
in stem cells. Extracted and cultured in vitro, deciduous teeth stem 
cells were shown to display a faster proliferation rate compared 
to that of dental pulp stem cells [49]. They can also differentiate 
into odontoblasts, osteoblasts, adipocytes, neural cells, etc. [50]. 
Interestingly, these exfoliated deciduous teeth stem cells are regarded 
as immature dental pulp stem cells expressing embryonic stem cell 
markers Oct4, stage-specific embryonic antigens (SSEA-3, SSEA-4), 
and tumor-recognition antigens (TRA-1-60 and TRA-1-81) [51]. In 
vivo grafting of these cells in a mouse model showed the formation 
of dentin [49]. When used in critical-sized bone defects in mouse 
calvarias, these cells demonstrated bone repair [52]. Based on these 
cell properties, we hypothesize that exfoliated deciduous teeth stem 
cells can be introduced in vivo as autologous or allogeneic grafts, thus 
exfoliated deciduous teeth may constitute a feasible cell source for 
dental regenerative medicine. However, the use of these stem cells 
as autologous implementation may not be applicable throughout a 
patient’s lifetime. 

Apical papilla stem cells

Stem cells from the apical papilla (SCAP) refer to mesenchymal 
stem cells residing in the apical papilla of underdeveloped teeth [53]. 
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Figure 1: Bone nodule formation using dental pulp stem cells. Cells were extracted from dental pulp then cultured to get high number (a). Cells were subculture 
in the presence of osteoblast differentiating cocktail (b). After 3 weeks, cells differentiate onto osteoblast-like cells giving rise to bone nodules (c, arrows). 

Figure 2: Bone nodule formation following DPSC culture into an osteogenic 3-dimentional scaffold. Stem cells were isolated from dental pulp. They were 
seeded into a collagen-hydroxyaptatie-PLCL 3-D porous scaffold. Cells were stained with Hoechst after 4 days of culture (a). Also cells were cultured for 21 
days. Macroscopic shape of the pulp stem cell seeded scaffold (b). At this time SEM analyses were performed showing nodule formation (c). Energy descriptive 
spectrometer analysis of the nodule demonstrated the presence of high levels of calcium and phosphorus (d). 

Apical papilla refers to the soft tissue at the apices of developing 
permanent teeth [54]. Extracted and expanded in vitro, SCAP can 
be differentiated into a variety of cell types including odontoblasts 
and adipocytes [55,56]. SCAP differentiation into odontoblasts 
can be promoted by BMP2 [57] or bFGF [58]. SCAP was reported 

to express low levels of dentin sialoprotein, matrix extracellular 
phosphoglycoprotein, transforming growth factor β receptor II, 
FGFR3, VEGF receptor 1, FGFR1, and melanoma-associated 
glycoprotein [59]. Interestingly, SCAP express CD24 but not 
DPSCs. Under neurogenic stimulation, SCAP express glutamic acid 
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decarboxylase, neuronal nuclear antigen, and neurofilament-M 
markers [53]. Comparative studies of DPSC and SCAP have suggested 
that SCAP appear to be the source of primary odontoblasts responsible 
for the formation of root dentin, whereas DPSCs are likely the source 
of replacement odontoblasts that form reparative dentin [60]. An 
in vivo study with mini pigs demonstrated that the removal of root 
apical papilla at an early development stage halted root development 
[61]. Although very promising to engineer dental tissue, SCAPs may 
not be available at a high number and throughout a patient’s lifetime. 
Such limitation may suggest the reduced therapeutic potential of 
theses SCAPs.

Dental follicle progenitor cells

The dental follicle is an ecto-mesenchymal tissue that surrounds 
the developing tooth germ [62,63]. During tooth root formation, 
periodontal components, such as cementum, periodontal ligaments 
(PDL), and alveolar bone derive from the differentiation of dental 
follicle stem cells [62,63]. Phenotyping of cells extracted from the 
dental follicle showed the expression of Notch1, STRO-1, nestin, 
collagen type I, bone sialoprotein (BSP), osteocalcin (OCN), and 
fibroblast growth factor receptor 1-IIIC [64]. Dental follicle stem 
cells (DFSCs) can be differentiated into osteoblasts, cementoblasts, 
adipocytes, and neurons [65,66]. Human BMP-2 and BMP-7 were 
shown to increase BMP-2 and BMP-7 expression by dental follicle 
stem cells [65]. In vivo studies demonstrated that dental follicle stem 
cells were able to form periodontal ligament (PDL)-like tissue [66]. 
In vivo generated tissue was found to express high levels of human-
specific transcripts for BSP and OCN, but a low level of collagen type 
I [64].Overall data therefore suggest that dental follicle stem cells may 
be a useful research tool for regenerating/restoring PDL formation, 
thus representing an important regenerative therapy. However, the 
collection of these cells or tissue containing a significant amount 
of DFSCs may not be easy, due to the limited volume and the need 
of this tissue to support the regeneration of cementum, PDL, and 
alveolar bone [62,63].

Periodontal ligament stem cells

The periodontal ligament (PDL) is a key dental tissue of the tooth. 
It suspends the tooth in its bony socket (the alveolus proper) and 
supplies nutrients to both the alveolus and the cementum to maintain 
tooth homeostasis [67]. Structural and or functional deregulations 
of the periodontal tissue often result in alveolar bone resorption 
leading eventually to tooth loss [68]. Earlier studies reported that 
PDL contained progenitor cells that maintain the homeostasis and 
regeneration of periodontal tissue [69,70]. Specifically, PDL houses 
a population of clonogenic cells that display the characteristics 
of post-natal stem cells [71,72]. Following extraction and in vitro 
culture, cell phenotyping demonstrated that PDL stem cells expressed 
CD105, CD90, CD44, and CD73, but not CD45, CD31, and CD34. 
Under the appropriate culture conditions, PDL stem cells can be 
differentiated into osteoblasts, chondrocytes, and adipocytes [73,74]. 
Multiple growth factors contribute to PDL stem cell differentiation 
into multiple cells types. In vitro studies have shown the efficacy 
of basic fibroblast growth factor 2 (FGF-2) in periodontal tissue 
regeneration [75]. FGF-2 modulates the activity of various cell types 
by promoting fibroblast and osteoblast proliferation, in addition to 
enhancing angiogenesis. These activities are directly associated with 

periodontal tissue regeneration [75]. FGF-2 promotes the expression 
of FGFR1 and FGFR2 by periodontal ligament stem cells [76]. The 
responsiveness to FGF-2 was also shown to be higher in PDL stem 
cells than in mature periodontal ligament cells [77]. These in vitro 
data were confirmed in vivo with an animal model showing that 
local application of FGF-2 promoted periodontal regeneration in 
both dog and primate models [78,79]. We have learned from in vivo 
studies that PDLSCs possess unique properties to form a cementum/
periodontal ligament complex-like structure when introduced into 
an animal model [71]. Structural analysis of the in vivo regenerated 
tissue showed a dense type I collagen-positive PDL-like tissue within 
the transplants. Interestingly, in another study, the generated collagen 
fibers were shown to interact with the newly formed cementum-like 
structures and to mimic the physiological attachment of Sharpey’s 
fibers [80]. These findings suggest the possible differentiation of PDL 
stem cells into cementoblasts/cementocytes and collagen-forming 
cells in vivo. Furthermore, the graft of human PDL stem cells in 
immune compromised mice to restore periodontal defects resulted 
in the formation of PDL-like tissue. Moreover, human PDL stem cells 
were found to be closely associated with the trabecular bone next to 
the regenerated PDL. These data indicate a contribution of PDL stem 
cells to alveolar bone regeneration [80-83]. Overall data therefore 
suggest that PDLSCs are ideal cell sources for cell-based periodontal 
therapies. Tissue inaccessibility may, however limit the potential use 
of these PDLSCs for clinical applications.

Gingival mucosa stem cells

(a)  Stem cells in human gingival epithelium: Adult or tissue-
specific stem cells have been identified in various tissues, including 
the hematopoietic system, corneal epithelium, neural crest, and 
gingival mucosa. Inside these tissues, stem cells are associated with 
a specialized environment that provides key signals to guide stem 
cell function [84,85]. In the gingival epithelium, epithelial stem cells 
are involved in self-renewal and multi-potency. Indeed, one stem 
cell goes under asymmetrical division giving rise to two cells; one 
will remain with the same stem cell characteristics as the progenitor. 
The other one will undergo several proliferation rounds forming the 
different strata of the epithelial tissue before terminal differentiation 
[86,87]. Gingival epithelium can be subdivided into different layers 
(basal, suprabasal, superficial). Epithelial stem cells are located in 
the basal layer of the gingival epithelium. In normal tissue, epithelial 
stem cells are quiescent or slow-cycling cells [88]. Cell phenotyping 
has shown that epithelial stem cells express the following stem cell 
markers: α6 and β1 integrins, keratins 15 and 19, p63, α6β4, oct3/4, 
CD44H, p75, ATP-binding cassette subfamily G member 2 and K5 
[89]. When needed, under specific stimulation, epithelial stem cells 
undergo phenotype to become first a supra basal cell layer, then 
superficial epithelial cells [89]. Extraction and in vitro subculture 
of epithelial gingival stem cells showed elevated clonogenicity and 
proliferative capacity [90].

These properties have led us to engineer oral mucosa epithelium 
to be used for basic and clinical applications (Figure 3). Indeed, 
under appropriate culture conditions, these gingival epithelial stem 
cells proliferated and stratified to form a three-dimensional gingival 
epithelium [91,92]. Engineered oral mucosal epithelial cell sheets 
were shown to be safe and effective for corneal and esophageal 
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Figure 3: Adult gingival stem cells isolated from gingival biopsy. Gingival biopsy (a) was used to extract epithelial cells and fibroblasts using enzyme 
treatments. Extracted cells were cultured (b) under appropriate culture conditions. They show cell growth with specific shape to each of cell type (C and d).  Cells 
cultured in the presence of porous scaffolds (e) or into collagen gels (f) facilitate the production of a 3-D epithelial (e) and gingival mucosa (f) containing epithelial 
and connective tissue structures. 

epithelium reconstructions [93,94]. This evidence thus suggests that 
oral epithelial stem cells have the capacity to repair damaged epithelial 
tissues in the human body. 

Gingival epithelial stem cells may be combined with gingival 
fibroblasts to engineer native-like gingival mucosa tissue. We 

demonstrated that when interacting with gingival fibroblasts through 
a 3-D collagen scaffold, gingival epithelial stem cells produced a well-
structured, stratified gingival mucosa tissue (Figure 3). This was used 
for in vitro and in vivo basic research to demonstrate its usefulness 
as a promising strategy for dental tissue regeneration. Gingival 
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epithelium is the most accessible tissue in the oral cavity. This 
guarantees the availability of stem cells extract from the epithelium 
throughout a patient’s lifetime. Moreover, stem cell banking may not 
be needed thanks to the possibility to harvest gingival tissue at any 
time and extract the stem cells for basic and /or clinical use.

(b) Stem cells in human gingival connective tissue (lamina 
propria): Multiple experimental procedures have demonstrated that 
oral mucosal connective tissues originate embryonically from the 
cranial neural crest [84]. With this distinct developmental origin, 
cells present in the oral mucosal connective tissue have a specific 
gene expression profile compared to that of skin cells [95]. The 
multipotent differentiation potential of mesenchymal stromal cells 
from oral connective tissue is comparable to that of cells isolated from 
skin dermis and bone marrow [96]. Phenotypically, human gingival 
connective tissue stem cells express CD44, CD73, CD90 and CD105 
[97]. Human gingival connective tissue MSCs can undergo specific 
differentiation to produce tooth matter and periodontal tissue when 
placed in an extra-oral niche [84]. In vitro and in vivo studies have 
shown a possible PDL regeneration using human gingival stem cells 
[81,83] present in gingival connective tissue. 

Gingival connective tissue stem cells were found to display a 
significant self-renewal capacity and a higher proliferation rate 
compared to BMSCs [98-100]. With this elevated proliferation 
capacity, it then becomes possible to grow cells and to engineer 
in vitro connective tissue following the combination of cells with 
extracellular matrix. As shown in Figure 3f, it is possible to seed a 
collagen gel matrix with gingival connective tissue mesenchymal 
stem cells to produce gingival connective tissue in vitro [101]. This 
engineered tissue can subsequently be used for in vitro and in vivo 
studies [92,102,103]. Of interest is that human gingival connective 
tissue MSCs can be differentiated into osteoblasts, adipocytes, and 
chondrocytes [104,105,100]. In vivo use of a biocompatible scaffold 
populated with gingival connective tissue MSCs was shown to 
generate various tissues, such as connective tissue-like structures 
[104,100] or bone matrix [99,106]. Thus gingival connective tissue as 
well as gingival epithelium may constitute potential stem cell supply 
sources with the advantage of being accessible at all times during the 
patient’s lifetime, thereby allowing for safe, non-invasive tissue and 
cell collections for cell/tissue therapies.

Conclusion
The potential for the clinical applications of stem cells to restore 

damaged human tissue is highly attractive. Having access to stem cell 
sources is a key step in the design and use of engineered tissue for 
regenerative medicine. The oral cavity, the most accessible stem cell 
source in the human body, houses different stem cell niches. In vitro 
studies have not only confirmed the usefulness of the oral stem cells 
for tissue production but have been supported by a plethora of animal 
studies, providing an overwhelming body of evidence to support the 
significant potential of oral stem cells for dental tissue regeneration 
applications. Some human clinical trials have used oral stem cells 
for the regeneration of corneas, dental pulp, and bone. Appropriate 
double-blind randomized clinical trials are still to be performed to 
confirm the true regenerative power of these stem cells. Through 
further clinical research, multiple key parameters should be optimized; 

including the required stem cell density and availability as well as 
appropriate strategies for their use (either alone or in combination 
with scaffolds, site injection, etc.). The other major issue regarding 
the clinical use of oral stem cells is the availability of the cells over 
time. For example, dental pulps stem cells or exfoliated deciduous 
tooth stem cells are not available throughout a patient’s lifetime. 
As this availability is basically greater at an early age, oral stem cell 
banking may constitute a potential solution by cryopreserving these 
oral stem cells for future clinical use. However, such a possibility is 
not only time-consuming and costly but limits the use of some oral 
stem cells as a clinical strategy. The use of oral stem cells for dental 
tissue regeneration is nonetheless an important biotechnological 
innovation with the potential of providing significant benefits to 
overcome the effects of dental diseases. 
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