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IRF4 as an Oncogenic Biomarker 
for Hematological Malignancies

Abstract
The lymphocyte-specific transcription factor Interferon (IFN) 

Regulatory Factor 4 (IRF4) is crucial for lymphocyte development. 
Importantly, IRF4 has potent oncogenic and transforming properties, 
and its intimate interaction with lymphoid and myeloid malignancies 
has been increasingly recognized. In general, IRF4 exerts its function 
by transcriptionally regulating a pool of genes pivotal for cell 
development, oncogenesis and immune response. In clinical practice, 
IRF4 serves as an important prognosis and diagnosis marker for certain 
types of these malignancies. However, the oncogenic roles of IRF4 
in most types of these malignancies and the molecular mechanisms 
underlying its interaction with them are largely not characterized. 
Accumulating evidence from cell culture shows that IRF4 regulates 
differential targets in distinct cancer contexts, depending on 
the“context-specific”co-regulator(s) associated with it in each setting. 
These complementary studies with in vitro cell culture systems are a 
necessary strategy which will provide molecular and mechanistic 
insights into the specific regulation and function of IRF4 in distinct 
cancer contexts, and may identify novel interventions specifically 
targeting IRF4 regulatory network for treatment. This review summarizes 
the evidence obtained from bench to bed showing the association of 
IRF4 with various types of hematological malignancies, with emphasis 
on molecular mechanisms underlying its regulation and its roles in 
these contexts.

Introduction
Interferon (IFN) Regulatory Factors (IRFs) are a small family of 

transcription factors which includes nine members in mammalians. 
IRFs play important roles in multiple facets of host defense systems 
especially in type I IFN production upon pathogenic infection 
[1], and are also involved in the regulation of tumorigenesis, cell 
growth, differentiation, and myeloid cell development [2]. All the 
IRF family members contain a conserved DNA binding domain 
(DBD) at their N-terminus, which binds to the consensus DNA 
sequences that generally comprises two GAAA repeats [3]. IRF4, 
also known as MUM1 (multiple myeloma (MM) oncoprotein 1), 
PIP (PU.1-interacting protein), LSIRF (Lymphocyte-specific IRF), 
ICSAT(Interferon consensus sequence binding protein for activated 
T cells), is a quintessential ‘context-dependent’ transcription factor 
whose DNA-binding specificity is profoundly shaped by lineage-
specific transcriptional co-regulators, some of which have been 
identified, including PU.1, SPIB, DEF6, BATF, STAT3, NFAT and 
FKBP52 [4-13]. 

IRF4 was cloned independently by different groups [4,14,15]. 
Its closest family member is IRF8, and together, they both play 
critical roles for the development of immune cells (lymphocytes, 
myelocytes, and dendritic cells). Irf4−/− mice are devoid of germinal 
centers (GCs) and plasma cells, with a severe reduction in the serum 
immunoglobulin (Ig) level and the failure of mounting protective 
antibody responses.

The expression of IRF4 is confined to immune cells including B 
cells, macrophages, and CD11b+ DCs, and is inducible by a variety 
of mitogenic stimuli including antigen receptor engagement, and 

TLR and CD40 signaling pathways [5]. IRF4 is strongly up regulated 
upon co-stimulation of B cells with CD40 and IL4. Commonly, these 
stimuli all activate NFκB leading to IRF4 induction [16]. Different 
from other IRF family members, expression of IRF4 is not induced 
by interferon. In B cell lineage, IRF4 expression is repressed by the 
transcription factor Mitf in mature B cells (native resting B cells), and 
is also particularly weak in GC B cells likely due to the absence of 
NFκB in these cells. The level of IRF4 protein is culminating in plasma 
cells, the terminally differentiated B cells, through a yet unknown 
mechanism. Among T cell lineages, its expression is the highest in 
activated T cells.

Like IRF2 [17] and -7 [18], IRF4 has oncogenic and transforming 
potentials and anti-apoptotic activity [19-21]. All these oncogenic 
IRFs intimately interact with Epstein-Barr Virus (EBV) latency 
programs [22], which are associated with a variety of hematological 
and epithelial malignancies.

IRF4 is over expressed in a variety of hematological malignancies. 
IRF4 over expression is a hallmark of ABC type of DLBCL and MM 
[5,23], and is frequently used as a diagnostic and prognostic marker 
for these and other proliferative disorders [5,24-26]. In these cancer 
contexts, IRF4 regulates cell cycle, apoptosis, and cell proliferation 
and survival [20,27-30], by transcriptionally targeting several key 
genes, including Blimp1, Ccnb1, Bcl6, Cdk6 and Myc [9,29,31,32].
These lines of evidence underscore the importance of IRF4 in these 
malignancies.

In this review, the association of IRF4 with multiple myeloma, 
DLBCL, and viral and other hematological malignancies is 
summarized and the known role and regulation of IRF4 in each 
cancer context are introduced.

IRF4 in multiple myeloma

Multiple myeloma(MM) is a malignancy of the terminally 
differentiated B lymphocytes, plasma cells, in which IRF4 is over 
expressed. Myc, which is over expressed owing to chromosomal 
translocation in this setting, induces expression of IRF4, and vice 
versa [29]. Chromosomal translocation also contributes to IRF4 over 
expression in a small fraction of MM [33]. Irf4 gene was identified as 
one of the six oncogenic chromosomal partners (the other five are 
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Fgfr3, Ccnd3, Ccnd1, c-Maf, and Mafb) of IgH translocation in MM 
[33,34]. 

Transcriptome analysis has shown that IRF4 regulates a 
myeloma-specific gene  expression pattern that combines IRF4 
regulatory networks from activated B cells and plasma cells [29]. In 
addition to Myc, other important IRF4 targets in multiple myeloma 
include Casp3, Cdk6, Ell2, and Tnfaip3 [29]. Therefore IRF4 regulates 
multiple essential cellular processes such as cell cycle and apoptosis 
leading to myeloma cell proliferation and survival [27,29].

The Ets family members, PU.1 and its closely related factor SPIB, 
which are expressed in B cells, macrophages, and dendritic cells, are 
not expressed in MM [35]. Thus, IRF4 transcriptional co-regulator 
which recruits IRF4 to its genomic targets in MM remains to be 
determined.

IRF4 in DLBCL 

DLBCL, a type of aggressive lymphoma with poor prognosis and 
the most common subtype of non-Hodgkin lymphoma, accounts for 
approximately 40% of lymphomas among adults. Over expression 
of IRF4 is a hallmark of ABC (activated B-cell-like) subtype of 
DLBCL [5,23], owing to the constitutive activation of the pro-
survival NFκB pathway [32], a process mediated by the adapter 
CARD11 in DLBCL. The constitutive activation of NFκB results from 
oncogenic mutations of  BCR and My D88. ABCDLBCL is likely 
originated from late germinal center B cells which fail to terminally 
differentiate into plasma cells. IRF4 over expression may manifest the 
physiological attempt of these cells to activate the terminal plasma 
cell differentiation program [36]. A recent report also shows that 
IRF4 is over expressed in a subtype of pediatric GCB-type DLBCL 
and follicular lymphoma grade 3 due to chromosomal translocation 
carrying Ig/Irf4 fusion loci [37].

In ABC DLBCL, IRF4 inhibits Irf7 gene transcription and 
therefore dampens type I IFN production, but stimulates NFκB 
signaling by transactivating Card11 gene promoter [35]. Like its 
role in MM, about 50% knockdown of IRF4 is sufficient to kill ABC 
DLBCL cell lines, but not to other tested lymphoma and leukemia 
lines[35]. Surprisingly, ChIP-Seq high throughput analysis has shown 
that, different from MM, IRF4 does not bind to Myc and Irf4 loci in 
ABC DLBCL lines, although MYC is highly expressed in ABC DLBCL, 
and that many other genes such as CD44 and CD40 are targeted by 
IRF4 in ABC DLBCL but not in MM [35]. These observations suggest 
distinct IRF4 regulatory networks in MM and DLBCL. In addition, 
unlike most normal GC B cells which display mutually exclusive in 
the expression of MUM1 and Bcl-6, tumor cells in approximately 
half of IRF4-positive DLBCL are also Bcl-6 positive. The IRF4 co-
regulator, SPIB that is not expressed in MM, intimately interacts with 
IRF4 for its oncogenic function in ABC DLBCL [35]. 

Nevertheless, different clinical studies have shown conflicts in 
terms of the prognostic value of IRF4 with DLBCL; some report poor 
prognostic value, but others have failed to observe any significance 
[38].

IRF4 in Burkitt lymphoma

Burkitt lymphoma (BL) is a type of non-Hodgkin B-cell 
lymphoma which is highly aggressive. BL is subdivided in to EBV-
associated endemic subtype (>99% are EBV+), the sporadic subtype 
in developed countries (15-25% are EBV+), and an AIDS-associated 

subtype (~30% are EBV+) clinical variants [39]. BL is composed 
of monomorphic medium-sized B cells with a high proliferation 
rate, and c-Myc locus translocation as an oncogenic hallmark in all 
cases [40]. Classically, like DLBCL, BL is considered to be germinal 
center in immunophenotype [41]. In most reports, IRF4 is negative 
in BL cases. However, a study with 222 cases of well-characterized 
Burkitt lymphomas from Brazil with the classic phenotype and c-Myc 
translocation has revealed that 90 cases (40.5%) are IRF4-positive in 
the nucleus [41].

IRF4 and viral oncogenesis

Virus contributes to appropriately 20% of total malignancies 
in the globe[42,43]. IRF4 is over expressed in EBV-transformed 
cells and associated lymphomas [20,44-46], and in Human T-cell 
Leukemia Virus-1 (HTLV1)-transformed cell lines and associated 
Adult T-cell Lymphoma/Leukemia (ATLL) [31,47-50]. It is now 
understood that, in EBV-transformed cells, IRF4 is induced by the 
LMP1/NFκB signaling (Figure 1) [20,46]. Consistent with this, IRF4 
has been recently shown to be expressed in all EBV LMP1-driven 
tumors in mice [51]. More recently, IRF4 has been shown to be 
stabilized by EBNA3 Cin EBV-transformed cells (Figure 1) [52]. An 
over expression study also showed that IRF4 is a direct target for the 
EBV antigen EBNA2, as detected by microarray analysis (Figure 1) 
[53]. Induction of IRF4 expression in the context of HTLV1 infection 
is complicated. It is induced in a Tax-independent manner in 
primary ATLL [54], but is induced in either Tax-dependent or Tax-
independent manner in cell culture [47,49,54]. Induction of IRF4 
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Figure 1: A tentativescheme for IRF4 regulation in EBV latency. IRF4 
expression is induced by the LMP1/NFκB axis [20;44-46], and probably is also 
directly induced by EBNA2 [53]. IRF4 protein is also stabilized by EBNA3C 
[52]. Our recent study has disclosed that IRF4 is activated through c-Src-
mediated tyrosine phosphorylation [91]. We also have evidence showing 
that IRF4 is activated by the LMP1 signaling pathway, probably mediated by 
c-Src. c-Src protein is induced and activated in EBV latency[91]. In addition to 
the LMP1 pathway, other lymphocyte-specific pathways may also contribute 
to IRF4 activation. Two transcriptional targets, BIC[21]and Irf5[78], have been 
identified and confirmed so far for IRF4 in EBV latency. IRF4 induces BIC but 
represses Irf5 transcription.
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expression by Tax may be an important cellular event involved in 
HTLV1 leukemogenesis [50]. IRF4 can also be induced by c-Rel or 
by other undefined cellular pathways in the absence of c-Rel or Tax 
[47,54]. 

LMP1 is the principal EBV oncogene, and is the only EBV product 
which transforms human and rodent fibroblasts in vitro [55,56]. Up 
to 50% of LMP1 transgenic (Tg) mice had a threefold increase in 
lymphoma development in elderly period in comparison with LMP1-
negative mice [57]. Moreover, on a T-cell ablated background, most 
LMP1 Tg mice developed DLBCL-like and plasmacytic tumors [51], 
As such, IRF4 can induce focus formation of mouse fibroblasts in soft 
agar, a typical sign of malignant transformation [20]. The importance 
of IRF4 in LMP1 oncogenesis is underscored by the fact that IRF4 is 
expressed in all of these LMP1-driven tumors in mice [51]. 

Nevertheless, the role of IRF4 in EBV/LMP1 oncogenesis is 
unclear. Importantly, we have recently identified B-cell integration 
cluster (BIC) as the first miRNA-encoding gene induced by IRF4 in 
virus-transformed cells (Figure 1) [21]. BIC encodes miR-155, which 
plays important roles in innate immunity [58,59], and is the first 
identified oncogenic miRNA (oncomiR) implicated in various types 
of cancers including lymphomas [60-62], breast cancer, leukemia, 
pancreatic cancer, and lung cancer [63,64]. Targeted expression of 
miR-155 alone in B cells developed B cell malignancies in transgenic 
mice [65], and enforced expression in mouse bone marrow cells 
causes myeloid neoplasia [66]. As an important miRNA in immunity 
and cancer, miR-155 preferentially targets SHIP1 [67], among many 
others [68-70]. Like oncogenic IRFs, miR-155 is also associated with 
EBV latency [61,71-73]. BIC/miR-155 is induced by TLR signaling, 
TNFα, IFN-β, IFN-γ, EBV LMP1, LMP2A [74] and B cell receptor 
(BCR) engagement. However, little is known about the mechanism 
controlling its regulation [75]. Therefore, our findings unveiled 
an intersection between two major and quite diverse models in 
the regulation of viral oncogenesis, and have provided valuable 
insights into the interaction between viral oncogenesis and immune 
mechanisms governed by them. For example, both factors are crucial 
regulators of germinal center reaction [36,76], which is implicated in 
lymphoma development and EBV latent infection [77]. Also, IRF4 
has been shown to repress IRF5 expression in EBV-transformed cells 
(Figure 1)[78].

Furthermore, our microarray analysis shows that IRF4 regulates 
a pool of interesting genes in the context of EBV infection, including 
a subgroup of the genes such as Cdk6 and Ccnb1 which are also 
targeted by IRF4 in MM (data not published). Future pursuits on 
selected targets may unravel novel and specific roles for IRF4 in EBV 
oncogenesis, and broaden our knowledge in its interaction with viral 
oncogenesis and other associated cancers.

IRF4 and other hematological malignancies

In addition to MM, chromosomal translocation and genetic 
mutation of IRF4 have been found in peripheral T-cell lymphomas 
[79], and Chronic Lymphocytic Leukemia (CLL) [33,80]. Also, IRF4 
over-expression was found in various types of T cell lymphomas 
in addition to ATLL, in most Hodgkin lymphoma cases, and in 
follicular lymphoma, primary effusion lymphoma(PEL), primary 
central nervous system lymphoma, and anaplastic large cell 
lymphoma (ALCL) [16,53,81], as well as in the context of the 
acquired immunodeficiency syndrome (AIDS) and in post-transplant 
lymphoproliferative disorders (PTLD) [41]. IRF4 may serve as 

one of the phenotypic markers of B-cell lymphoma histogenesis. 
In particular, IRF4 may be a marker for the transition from Bcl6+ 
germinal center B cell (GCB) to CD138+ immunoblasts and plasma 
cells [16]. IRF4 may help in the discrimination of PEL versus other 
lymphomas involving the serous body cavities, which are usually 
IRF4 negative [16]. 

In addition to hematological malignancies, an interesting report 
has shown that the germline variant IRF4 rs12203592 T allele was 
associated with increased risks of several types of skin cancers 
including melanoma, squamous cell carcinoma and basal cell 
carcinoma [82]. 

IRF4 as a tumor suppressor

IRF4, when over-expressed, plays an important role in the 
pathogenesis of hematopoietic malignancies. However, in some 
certain cancer contexts such as B-cell acute lymphoblastic leukemia 
(B-ALL), chronic myeloid leukemia (CML), acute myeloid leukemia 
(AML), and chronic myelomonocytic leukemia, IRF4 is down 
regulated. In these cases, IRF4 acts as a tumor suppressor [83-85]. In 
Irf4+/- heterozygous mice, c-Myc-induced leukemia was significantly 
accelerated [84]. It is also notable that IRF4 plays a dual role for 
lymphocyte activation/development and death by summating distinct 
incoming signals [30,86], and thus plays a central role in integrating 
the life and death decisions for lymphocytes [87]. 

Activation of IRF4 in cancer

As a transcription factor, activation of IRF4 is prerequisite for 
its function. Serine phosphorylation of IRF4 by the kinase ROCK2 
activates IRF4 leading to IL17/21 production in autoimmune 
response in mice [88]. However, how IRF4 is activated in cancer is 
an open question which has never been mentioned. Many proteins 
involved in cancer signal transduction are tyrosine-phosphorylated. 
A few limited high throughput profiling studies have identified 
several tyrosine phosphorylation sites on IRF4 in different cancer 
contexts, including Y192 in MM [89], and Y37, Y122, Y125, Y428 
and Y440 in Hodgkin lymphomas [90]. Interestingly, our recent 
phospho-proteome analysis has shown that IRF4 is also tyrosine 
phosphorylated in EBV-transformed cells, and identified several 
phosphorylation sites including Y125, Y192, Y181 and Y428 on IRF4. 
We have concluded that Y125 is a promising phosphorylation site at 
least important for IRF4-associated lymphomas [91]. We have further 
shown that the tyrosine kinase c-Src promotes IRF4 phosphorylation 
and activation, and identified Y62 and Y125 of IRF4 as two key sites 
responding to c-Src-mediated activation (Figure 1) [91]. Moreover, 
we show that c-Src is constitutively expressed and activated in EBV-
transformed cells [91]. These findings indicate that IRF4 is activated 
through a c-Src-mediated pathway in EBV-transformed cells. 
However, our data suggests that c-Src is unlikely a direct kinase for 
IRF4 [91]. Further study will be followed to confirm this claim and to 
identify the direct kinase(s). 

Discussion and Prospectives
Increasing evidence has shown the implication of IRF4 

deregulation in diverse hematological malignancies. IRF4 serves as a 
prognosis marker for MM and ABC DLBCL and was also proposed as 
a prognosis marker for classical Hodgkin lymphoma [92]. IRF4 over-
expression has been found in almost 100% cases of MM, classical 
Hodgkin lymphoma, primary central nervous system DLBCL, 
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plasma cell myeloma and PEL. In many cases, IRF4 may be used as an 
important marker in combination with other markers for diagnosis. 
For example, for follicular lymphoma and DLBCL, IRF4 can be used 
with CD10 and Bcl6 for diagnosis [16].

However, the functional roles of IRF4 and the mechanisms 
underlying its interaction with these cancers remain to be elucidated. 
Study with cell culture systems is a necessary tool for this purpose. 
Targeted expression of IRF4 in mouse lymphocytes failed to develop 
any cancer[93], probably due to the fact that IRF4 requires co-factors 
for its function. Thus, gene-targeted mouse models are necessary to 
be established for the in vivo study of the interaction between IRF4 
and other factors such as LMP1 in developing malignancies.

Currently, important work includes systematic and in-depth 
analyses of functional roles of IRF4 in distinct cancer contexts, the 
identification of “context-dependent” co-factors for IRF4, and the 
identification of potential lymphocyte-specific signaling pathways 
leading to IRF4 activation in each cancer context (Figure 1).These 
studies will highlight the importance of IRF4 in the pathogenesis of 
these cancers and will establish IRF4 as a unique therapeutic target for 
treating these hematological malignancies and other cancers[5]. Since 
IRF4 is a lineage-dependent transcription factor, discriminating 
its specific roles in different cellular developmental stages and 
different cancer contexts may provide unique opportunities to target 
IRF4 regulatory network for treating these diverse proliferative 
diseases.  Finally, we envision discovering novel signaling pathways 
and novel molecules such as the kinase(s) for IRF4 which may 
open up unique opportunities for therapeutic treatments of IRF4-
associated hematological malignancies.
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