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Abstract
Biomarkers are biological measures that are indicative of a 

specific disorder, its severity or response to treatment. They are widely 
used in many areas of medicine, but biomarker development for 
brain-based disorders lags behind. Using examples from the field of 
psychiatry, this article reviews the concepts of biomarkers, challenges 
to their development and the recent progress along those lines. In 
addition to discussing historical biomarker candidates such as cortisol 
or catecholamine levels, we include progress from recent genetic, 
epigenetic, proteomic, neuroimaging and EEG studies. Successful 
identification of biomarkers will advance the field of psychiatry towards 
the goal of biological tests for diagnosis, symptom management and 
treatment response.

Introduction
A biomarker is a biological measure that provides information 

about the state of a normal biologic process, pathogenic process, or 
pharmacologic response to an intervention [1]. In clinical practice, it 
must be reliable, reproducible, cost effective, and noninvasive [2,3]. 
For example, hemoglobin A1c (HbA1c) is measured in peripheral 
blood, and is widely used to assess glycemic control in patients with 
diabetes or those at high risk for developing diabetes; it is used both as 
a clinical diagnostic and for the development of new pharmaceutical 
treatments. In fact, biomarkers are used widely in a number of fields 
(Table 1), while others, including brain-based disorders, lag behind. 

Neuropsychiatric disorders are a leading cause of disability 
worldwide [4], though their biological basis generally remain 
unknown. Diagnosis of psychiatric disorders is based on the presence 
of characteristic symptoms and is guided by the Diagnostic and 
Statistical Manual (DSM) or the International Classification of 
Diseases (ICD). These criteria are periodically revised as more is 
learned about each disorder. Although this system has been widely 
used with a high degree of inter-rater reliability, it has achieved this 
at the expense of validity [5,6]. Notable limitations exist with respect 
to the diagnostic classification of individuals for research purposes. 

For example, symptom assessment can be subjective [7]. Symptoms 
can overlap, making it difficult to distinguish similar disorders from 
each other [8,9], and comorbidity is common. Additionally, criteria 
established for one ethnic or cultural group may not be applicable to 
others [10]. 

Independent of diagnosis, the high cost of healthcare and lost 
productivity weigh heavily on individuals and their governments 
worldwide [11,12]. Despite the development of a variety of 
pharmacological treatments, the remission rate for those with 
psychiatric disorders remains low [13,14]. Because of these reasons, 
the field would benefit especially from identification and use of 
biomarkers that can be used to detect the first episode of a disease, 
chronic illness, symptom severity, treatment response or non-
response (Figure 1). There are no biomarkers that are relevant for 
clinical practice in psychiatry or psychology, but over the past several 
years, we have seen remarkable progress towards this goal. As the 
field advances, it is important to review the key criteria a psychiatric 
biomarker should possess (Table 2). 

Central Versus Peripheral Measures
Decades of research support that psychiatric disorders are brain-

based, and many argue that the brain is the only place to look for 
biologically meaningful correlates of brain-based disorders. Studies of 
postmortem brains provide insight into how those with and without 
major depressive disorder (MDD) or with and without psychotic 
symptoms differ on a molecular and functional level [15,16]. Though 
such studies provide insight into the pathophysiology of MDD, the 
brain is not generally accessible for molecular testing. Unless the same 
biological differences are observable in accessible tissues, measures 
identified in postmortem brains are not practical for biomarker 
development. 

A recent study compared results from potential biomarkers 
measured in postmortem brain and those measured in serum [17]. 
Though not all molecules were comparable between central and 
peripheral measures, many were, particularly those that were involved 
in the inflammatory response. In fact, a number of peripheral systems 
interact with and respond to signals from the central nervous system 
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Biomarker Application

C- Reactive Protein (CRP) Detect inflammation [119]

Glycosylated Hemoglobin A1c (HbA1c) Monitor glycemic control 
[120,121]

Human Epidermal Growth Factor Receptor 
2 (HER2)

Select breast cancer treatment 
[122,123]

Creatine Phosphoskinase (CPK) Detect muscular injury [124]

Brain Natriuretic Peptide (BNP) Acute heart failure [125]

Troponin T and I Myocardiac infarction [126]

Table 1: Examples of biomarkers currently used in clinical practice.
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(CNS) [18,19]. For example, peripheral inflammatory cytokines 
can access the brain and interact with numerous pathophysiologic 
domains relevant to psychiatric illness including neurotransmitter 
metabolism, neuroendocrine function, synaptic plasticity and 
mood-relevant neurocircuitry [20,21]. Researchers with an interest 
in biomarker development often leverage these relationships by 
focusing on peripheral tissues that can be readily sampled.

Genetic and Epigenetic Biomarkers
Because of the relatively high heritability of a number of 

psychiatric disorders [22], genetic or epigenetic studies can provide 
insight into genes that relate to etiology, disease progression and 
treatment response. While sequence variants may increase risk 
for a psychiatric disorder, they will not make effective biomarkers 
because an individual’s genotype is fixed. However, gene expression 
patterns change over time, and mRNA levels have been associated 
with psychiatric disorders, symptoms and treatment response. For 
example, P11 (also known as S100A10) is an annexin II light chain 
protein that belongs to the S100 family [23,24]. Su and colleagues 
suggested that P11 expression in peripheral blood cells could be used 
to differentiate post-traumatic stress disorder (PTSD) from other 
psychiatric conditions including MDD, bipolar disorder (BPD) and 
schizophrenia (SCZ) [25]. In addition to full-length transcripts, there 
is also evidence to suggest that splice variants in peripheral blood 
mononuclear cells (PBMCs) delineate those with SCZ and BPD 

from each other and from controls [26]. Gene expression patterns 
are tissue-specific, but the expression patterns between blood and 
brain are reasonably correlated [27] suggesting that some expression 
profiles may not only serve as biomarkers but also reflect brain-based 
differences as well. 

Gene expression patterns cannot be detected in all tissues, but 
many epigenetic modifications can. Epigenetic marks, such as histone 
modifications, DNA methylation and miRNA, help to regulate 
gene expression [28-30]. High-throughput technologies have made 
epigenetic marks easier to assay, and numerous studies have described 
associations with psychiatric diagnoses, symptoms or treatments 
[31-34]. This promising area of research has been providing insight 
into biological mechanisms through which gene expression varies 
in response to the environment [35]. For example, exposure to 
antiepileptic medications can promote widespread changes in DNA 
methylation as well as other epigenetic modifications [36-39]. In 
addition to medication exposure, preclinical research using animal 
models and clinical research with human subjects [40-42] supports 
the hypothesis that exposure to early life stressors may result in 
DNA methylation changes in the glucocorticoid receptor (NR3C1), 
a hormone-activated factor that mediates many of the downstream 
effects of the stress hormone cortisol. These studies are helping to 
elucidate how environmental factors modify gene regulation to 
increase risk for some psychiatric disorders [43]. 

Figure 1: The stages of diagnosis and treatment for psychiatric disorders with areas of focus for biomarker development.

• Shoud detect a discrete characeristic related to a disorder, its severity or treatment efficacy
• Should be safe and easy to measure peripherally
• Should have sensitivity >80% for detection and specificity >80% for differentiating from similar traits
• Should be reliable and reproducible to allow standardization between labs 
• Should be cost effective to promote use in clinical practice 

Table 2: Characteristics of a psychiatric biomarker.
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Protein Biomarkers
Dysregulation of the hypothalamic-pituitary-adrenocortical 

(HPA) axis is a hallmark of multiple psychiatric illnesses. As stress 
levels vary so too do the levels of cortisol, which can be assessed in 
saliva, urine, blood or hair. Changes in serum cortisol level have been 
reported in MDD as well as many other disorders [44,45]. Cortisol 
levels decrease in patients with schizophrenia [46]. They also decrease 
following treatment with an antipsychotic medication [47], and 
discontinuation of that antipsychotic increases cortisol levels again 
[48]. Some studies report an inverse relationship between PTSD 
severity and cortisol levels, while other report no difference [49] or 
even higher levels [50]. This may be because cortisol also associates 
with trauma exposure [51,52], a risk factor for depression and other 
psychiatric disorders [53], making it difficult to distinguish the 
molecular correlates of an experience that increases risk for a disorder 
from the disorder itself. 

Driven by discrepancies in the literature and reports that 
catecholamine levels also differentiate PTSD from controls, Young 
and Breslau reported that urinary catecholamines, but not cortisol, 
levels distinguish those with PTSD from trauma exposed individuals 
without PTSD or non-exposed subjects [54]. Previous studies 
have used urinary analysis of catecholamine neurotransmitters 
(norepinephrine and dopamine) to delineate those with and without 
depression [55,56] as well as those that respond to treatment 
[57,58]. Despite being easy to assay and consistent with our present 
understanding of psychopathology, the measurement of cortisol and 
catecholamines is not particularly useful in discriminating between 
disordered and healthy individuals, and thus these measures are not 
likely to be informative biomarkers.

It is difficult, if not impossible, for a single molecule to discriminate 
between all potential diagnoses, symptoms and treatment responses 
across the broad range of human psychopathology. Indeed 
biomarkers for SCZ have been consistently implicated in a variety 
of psychiatric disorders as well; the common link is that all of these 
putative biomarkers have an inflammatory or immune activation 
component [59,60]. Because of this, investigators have begun to focus 
on identifying a profile of multiple biological markers to increase 
predictive capabilities. A recent study compared serum from controls 
to patients with SCZ, MDD, euthymic BPD and Asperger’s Syndrome 
[61]. Examination of 51 analytes [62] distinguished the serum from 
the majority SCZs from those with other psychiatric disorders or 
controls. This study suggests that profiles of multiple biomarkers may 
be more successful than examination of a single molecule. 

Moving beyond this approach, other investigators advocate the 
use of proteomic approaches to more comprehensively assess how 
proteins interact temporally and spatially in a particular disease state 
[16,63,64]. Because expression products can be extensively modified 
after translation, proteomic approaches provide insight beyond 
those offered by genetic or epigenetic measures. In a recent study, a 
shotgun proteomic experiment compared post-mortem tissue from 
24 MDD patients and 12 controls [16]. A large number of proteins 
were identified that differed between the two groups, many of which 
had been implicated in other psychiatric disorders. In addition, 
the proteomic signature successfully differentiated MDD patients 
with and without psychotic symptoms. Proteomic approaches are 
applicable to all bodily fluids typically explored in biomarker studies 
and do so in an unbiased manner that may reveal novel markers [65]. 

However, to realize its potential to biomarker research, predictive 
differences detected in the brain must also be observable and 
predictive in peripheral tissues. Future studies in this area are likely 
to be highly promising.

Neuroimaging & Electroencephalography Biomarkers 
Not all potential biomarkers require sampling of fluid or tissues. 

Magnetic Resonance Imaging (MRI), diffusion tensor imaging (DTI) 
and positron emission tomography (PET) provide a remarkable 
ability to detail the morphological and functional characteristics of 
the brain without being invasive. For example, a recent meta-analysis 
of neuroimaging studies identified a number of brain regions whose 
properties reflect clinically relevant outcomes in depressed subjects 
and may be appropriate biomarkers [66]. Higher activity levels in the 
anterior cingulate cortex (ACC) has been observed in patients with 
MDD and those that are more likely to respond to antidepressants 
[67,68]; the meta-analysis confirmed that higher baseline activity of 
the ACC is predictive of clinical improvement [66]. The subgenual 
ACC is a target for deep brain stimulation, a technique used to treat 
MDD patients who are resistant to other therapies [69,70]. 

Similarly, higher baseline activation of the insula predicts poor 
clinical response in patients with MDD [66]. A study examining 
brain glucose metabolism with PET scans reported that subjects with 
lower glucose metabolism in the insula were more likely to respond 
to cognitive behavioral therapy while those with higher glucose 
metabolism in the insula were more likely to respond to ecitalopram 
[71]. While replication of this finding is necessary, it could dramatically 
reduce the time to identify an effective treatment. Neuroimaging 
studies have substantial potential to produced informative biomarkers 
for psychiatric disorders, but many studies have small samples sizes 
and limited power to detect between group differences. For this 
reason, meta-analyses will be essential as neuroimaging biomarkers 
move forward. Neuroimaging is promising, but its predictive value 
is currently limited. It is also quite expensive, limiting the likelihood 
that it will be adopted for widespread clinical use [72].

Electroencephalography (EEG) measures brain electrical activity 
via electrodes placed on the head. Oscillation frequencies associate 
with brain function and are classified by range: <4 Hz (delta), 4-8 Hz 
(theta), 8-12 Hz (alpha) and 12-30 Hz (beta). EEG is non-invasive, 
easy to administer, well tolerated, widely available and much less 
expensive. However, it has lower spatial resolution compared to 
neuroimaging methods. Despite this, EEG has widely been used in the 
diagnosis of epileptic seizures, and is being used to identify potential 
biomarkers of antidepressant response [73]. For example, studies 
suggest that baseline theta activity associates with treatment response 
in patients with MDD [74,75]. Treatment response may also associate 
with hyperactivity of the theta band in the anterior cingulate cortex 
[76,77], the region of the brain that associated with antidepressant 
response in neuroimaging studies [67,68]. The observed increased 
theta in the ACC may reflect increased metabolism in the ACC in 
response to effective treatment [78]. An increase in alpha wave 
activity has also been reported in depressed patients who are not on 
medication [75,79], and those who respond to SSRI treatment have 
detectable differences in alpha wave characteristics when compared 
to non-responders [80-82]. These observations support the idea that 
EEG measures may be informative for tracking treatment response. 
However, studies with limited power and uncertainty of findings in 
the light of comorbidity complicate the interpretation of these studies 
[83-85]. 
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A Candidate Biomarker: BDNF
The literature is full of association studies linking psychiatric 

disorders to varying environmental exposures, genetic or molecular 
factors and physiological measurements or traits. However, few of 
these achieve the level of confidence and reproducibility required to 
investigate it as a biomarker. One example of a gene that has been 
evaluated as a potential biomarker is Brain-derived neurotrophic 
factor (BDNF), a small, basic protein with approximately 50% 
homology to other known neutrophins [86,87]. As a class, neutrophins 
have been implicated in the development and survival of sympathetic 
neurons and neural crest-derived sensory neurons [86,88]. BDNF 
supports existing neurons and promotes growth and differentiation 
of new ones [89,90]. It also supports in synaptic plasticity, which is 
involved for learning and memory [91]. Of relevance to its use as a 
biomarker, BDNF is expressed in the central and peripheral nervous 
systems at similar levels [92,93].

Changes in BDNF expression or function have been implicated 
in numerous psychiatric disorders [94-96]. Serum levels of BDNF 
are lower in subjects with MDD than in healthy controls, but they 
increase following treatment with an antidepressant [97-100]. DNA 
methylation of the BDNF promoter in peripheral blood delineates 
MDD cases from controls without any history of psychopathology 
[34], and methylation of this region has been proposed as a biomarker 
for depression [15]. Similarly, BDNF has also been proposed as a 
biomarker for schizophrenia [97-100]. Serum BDNF levels are lower 
in schizophrenics and also correlate with both positive and negative 
symptoms [101]. However, BDNF cannot be considered specific 
biomarker if it predicts both disorders.

Because of the overlap in core symptoms between psychiatric 
disorders, many biomarker studies focus on symptoms that change 
with disease status. Indeed this strategy may be more practical for 
measuring the progression of an illness or for guiding treatment 
response. BDNF expression and function may simply represent an 
underlying symptom or intermediate phenotype common to both 
MDD and schizophrenia. BDNF responds to stress and changes in 
brain function [102]. Its levels are tightly correlated with the activity 
of multiple neurotransmitter systems and may be a final common 
pathway for some psychotropic medications [100,103]. Thus, while 
BDNF is promising as a biomarker, further studies will be necessary 
to define its specific utility.

Future Directions
Psychiatric disorders are very complex and their causes are 

multifactorial [104-106]. Psychiatric diagnoses are inherently made 
on clinical grounds based on the presence of a particular group 
of signs and symptoms that result in distress and/or functional 
impairment. For biomarkers to become a realizable goal, the field 
must move beyond its current reliance on diagnosis. One way to do 
this is to identify endophenotypes, originally defined as an internal 
phenotype discovered by biochemical test or microbiological test 
[107]. In contrast to other potential traits of interest, endophenotypes 
should also be heritable and co-segregate with a disorder [108]. This 
approach has been useful in providing trait markers of psychiatric 
and other medicals disorders; however, the underlying etiology of 
endophenotypes may still be heterogeneous [109].

Identification of discrete behavioral or functional characteristics 
may result in more rigorous study design and greater reproducibility, 

both for basic and clinical research. The Research Domain Criteria 
(RDoC) project represents a substantial effort towards accomplishing 
that goal. RDoC is a concerted effort to classify psychopathology based 
on distinct observable behavior or neurobiological measures, even 
if these basic dimensions are common across multiple traditionally 
defined diagnoses. Efforts such as the RDoC initiative will reduce the 
heterogeneity in classifying subjects for basic and clinical research, 
potentially leading to more precise and replicable studies. 

In addtion to alternate systems of classification, new technological 
approaches are being leveraged for biomarker studies. For example, 
magnetoencephalography (MEG) can provide dynamic information 
on brain activity, but this approach has not been utilized as extensively 
as EEG or neuroimaging. MEG signals have been used to successfully 
categorize subjects with different neurological, psychiatric and 
medical illensses including multiple sclerosis, Alzheimer’s disease, 
schizophrenia, chronic alcoholism, Sjogren’s syndrome and facial 
pain. In this study, each illness could be distinguished from each other 
and from healthy controls with a high degree of confidence [110]. 
Since that initial study, this approach has been applied to autism [111-
113], Alzheimer’s disease [114], as well as migraine and other pain 
syndromes [115,116]. However, it has been only sparsely applied to 
studies of psychiatric disorders and treatment response [117,118]. As 
MEG and other noninvasive technologies are developed and adopted, 
we are likely to learn more about how healthy brain activity is altered 
in the context of psychiatric illness. 

Conclusions 
The need for biomarkers in the field of psychiatry is clear, but 

progress towards their development has been limited. With the recent 
advances in high-throughput biological assays and neuroimaging 
techniques, it seems that the field is on the forefront of a breakthrough 
that will translate research findings into reliable clinical tests. In all 
likelihood, development of a panel of biomarkers or a strategy that 
combines neuroimaging and peripheral measures may be more 
productive than reliance on a single measure or technique. Clinically 
informative biomarkers will likely also be limited in scope to a 
highly specific group of patients or type of treatment. As the field 
of psychiatry achieves a greater understanding of the molecular or 
functional signatures of an individual’s diagnosis, relapse, treatment 
and recovery, access to mental health screening and services will 
become more widely available.
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