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Abstract
Metabolomics has been increasingly applied in biomedical 

research and drug efficacy evaluation in the context of rapid advances 
in analytical instrumentation and bioinformatics. Metabolomics-based 
discovery will potentiate the drug development in many ways such as 
novel biomarkers discovery, precise clinical trial by stratifying patients, 
and evaluation of drug metabolism or toxicity. More translational 
metabolomic results will be available with the technological innovation 
in the near future.

Introduction
Metabolomics is a relatively new discipline in contrast to 

other well-established omics such as genomics, transcriptomics, 
and proteomics. However, metabolomics has drawn tremendous 
attention in both biomedical research and drug development areas 
in recent years because of its capacity of global profiling either 
the endogenous or exogenous metabolites. The human body is a 
complex “superorganism” which consists of over at least 100 times 
of microbiome than human genome [1]. As a result, the variations 
of metabolites are consequence of interactions between genetic and 
environmental factors including the contribution of gut microbiota. 
The metabolic insights on diseases and drug efficacy could facilitate 
the discovery of novel therapeutic biomarkers of diseases that are of 
critical significance for drug discovery. 

Metabolomics technologies

Metabolomics is defined as “the comprehensive and quantitative 
analysis of all metabolites” [2]. In reality, the “metabolic window” 
usually varies greatly due to the limitation of metabolomics 
instrumentation that is used. Among all tools for analytical 
platforms, mass spectrometry (MS) has the highest sensitivity and 
selectivity, leading toits best identification capabilities for analysis 
of the metabolites in urine, currently, MS-based techniques has 
been the most prevalent platform in metabolomics studies [3]. 
MS always combined with other related technologies, followed by 
various mass spectrometry-based platforms appeared gradually, 
such as gas chromatography mass spectrometry (GC-MS) and 
liquid chromatography mass spectrometry (LC-MS). Inaddition, 
metabolomics researches areal so mainly conducted with nuclear 
magnetic resonance (NMR).Notably, due to the diversity and 
complexity of the metabolic profile, different analytical tools must be 
adopted individually orin combination according to the properties of 
different metabolites [4].

Given the universal presence of 1H in most metabolites and the 
numerous advantages, 1H NMR-based platform has been adopted 
for metabolomic study in many groups. However, the application of 

NMR-based platform is also limited because of its disadvantage in 
sensitivity compared to MS-based approaches. GC-MS is primarily 
used in metabolomics due to the facts of relatively low-cost, high 
reproducibility in metabolite identification with commercial or in-
house compounds databases. Nevertheless, since GC-MS is only 
suitable for detection of volatile or derivatized compounds, it is 
particularly necessary to combine GC-MS with other analytical 
approaches (e.g LC-MS) to broaden its “metabolic window” [5]. LC-
MS is the most widely used platform for metabolomic study nowadays 
which provides comprehensive coverage of metabolites and the super 
higher sensitivity than other analytical approaches, as well as its 
obvious advantages in sample preparation, automation and sample 
volume. More detailed comparisons among metabolomic platforms 
have been reviewed [6-8]. 

Metabolomics potentiates novel drug target discovery 

Over the past decades, tremendous efforts have been paid to 
discovery of novel drug targets by over whelmingly focus on genetic 
aspect, however, the successful cases were far less than expected 
because most diseases are consequences of complicated interactions 
between genetic and environmental factors (e.g gut microbiome and 
epigenome). Since the profiling of metabolites are the final “readout” 
of cell, organ or even whole body metabolism, the metabolic insights 
acquired with metabolomics usually reveal both the environmental 
and genetic contributions to disease development, which are of vital 
significance for identifying novel drug targets. 

2-hydroxyglutarate (2-HG) is a well-evidenced oncometabolite 
that is accumulated in several types of tumor patients with isocitrate 
dehydrogenase 1/2 (IDH1/2) mutations including acute myeloid 
leukemia patients, gliomas, chondrosarcoma, enchondromaand 
intrahepatic cholangiocarcinoma [9]. Recent investigation indicates 
that 2-HG can also extend the lifespan in C. elegans by suppressing 
ATP synthase and mTOR signaling similar to α-ketoglutarate (α-
KG) [10]. This discovery highlights the potential of tumor therapy by 
targeting aging pathways through metabolic modulation. Since it is 
variable in survival range in patients with or without IDH1 mutation 
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in different kinds of tumors, the elevation of 2-HG is postulated as 
not only a functional biomarker of IDH mutation, but also may play 
important roles in tumor development via the competition with 
α-KG-dependent enzymes [11]. As a result, the identification of 
oncometabolites opens a new avenue for seeking novel drug target of 
tumor therapy. 

 Another good example of novel drug target discovery is the 
elucidation on the roles trimethylamine N-oxide (TMAO) in 
atherosclerosis, which is traditionally attributed to genetic and 
cholesterol factors. However, the application of metabolomics has 
revealed the elevation of TMAO in atherosclerosis, which is derived 
from dietary choline by co-metabolism of gut microbiota with 
hepatic enzyme, flavinmonoxygenase 3 (FMO3) [12,13]. Further 
investigations indicate that the higher plasma TMAO is correlated 
with the adverse myocardial events in humans, as well as the causative 
role of TMAO in atherosclerosis [14,15]. Accordingly, it is postulated 
that the novel drug target of anti-atherosclerosis could be explored 
by modulating intestinal bacteria and hepatic FMO3 enzyme [16]. 
These two examples highlight the great potential of metabolomics-
based discovery of novel drug targets in the context of integrative 
insights on disease mechanism. Much more evidence is accumulating 
in respect to the metabolomics-based novel drug target discovery in 
various diseases. 

In addition to 2-HG and TMAO, bile acids (BAs) are also a large 
class of gut microbiota-derived metabolites associated with various 
metabolic diseases, including conjugated BAs and unconjugated 
BAs,which are now recognized as signaling molecules [17]. The 
emerging evidence has confirmed that BAs metabolisms play 
important roles in the formation or development of cardiovascular 
diseases (CVD) and nonalcoholic fatty liver diseases (NAFLD) [18,19]. 
In astudy, an increase of secondary and primary BAs ratio were found 
in patients with chronic heart failure, that is, primary BAs were 
decreased and secondary BAs were enhanced [20]. In another study, 
scientists quantitatively analyzed small molecule metabolites induced 
by gut microbial metabolism, suggesting that BA is an important 
factor shaping gut microbiota of obese mice [21]. Interestingly, they 
also demonstrated that BA reduction by farnesoid X receptor (FXR) 
agonist, GW4064, attenuated obese phenotype [21,22]. Moreover, 
a recent studyidentifiedlithocholicacid as a putative biomarker in 
Alzheimer’s disease [23]. In summary, the confirmed links between 
BAs metabolisms and metabolic diseases highlighting the significance 
of BA-targeting therapeutic strategies in the future.

Metabolomics facilitates precise clinical trial in drug development

The clinical trial is a critical step in drug development, however, the 
high failure rate of novel drug candidates is very common because of 
unsatisfied therapeutic effect or severe toxicity in trialed subjects [24]. 
Given the heterogeneity of most diseases among patients, the precise 
clinical trial is urgently needed by stratifying patients into responders 
and nonresponders with omics approaches. Pharmacometabolomics 
(also pharmacometabonomics [25, 26]) has been aggressively applied 
in evaluating the correlation between baseline metabolic profiles and 
therapeutic outcomes or drug metabolism in several clinical drugs such 
as simvastatin [27], aspirin [28], sertraline [29] and acetaminophen 
[30]. Taken acetaminophen as an example, interindividual differences 
of acetaminophen-induced liver damage are commonly reported in 

clinic. Metabolomics-based investigation uncovers the association 
between predose urinary metabolite composition and extent of 
liver injury [25], moreover, their subsequent evidence demonstrates 
that the abundance of predose urinary metabolite p-cresol, a gut 
microbial-derived structural analog of acetaminophen, is inversely 
correlated with the postdose ratio of acetaminophen sulfate to 
acetaminophen glucuronide [30]. Generally, dual antiplatelet therapy 
(DAPT) is crucial for CAD patients undergoing percutaneous 
coronary intervention (PCI), whereas adverse reactions were also 
observed in clinical, for instance,clopidogrel high on treatment 
platelets reactivity. Subsequently, pharmacometabolomics analysis 
of plasma indicated that several pathways involved in this process, 
including metabolism of nitrogen and glycine-serine-threonine 
and biosynthesis of aminoacyl-tRNA [31]. The drug efficacy-related 
metabolites either serve as the metabolic biomarkers for stratifying 
patients who are sensitive or insensitive to certain therapies, or shed 
light on novel mechanisms of drug activity. Accordingly, the precise 
clinical trial is of highly promise in drug development by adopting 
metabolomics or pharmacometabolomics to assign “suitable” patients 
to the right medicines.

Conclusion
Taking the technological advances and increasing application 

of metabolomics in research of biomedicine into account, a large 
number of exiting evidence is accumulating in respect to the 
metabolic characteristics of various diseases and drug activities. 
Some well-confirmed disease-associated metabolites, as well as their 
metabolic pathways will be promising targets for designing of novel 
drug candidates. On the other hand, drug efficacy or metabolism-
associated metabolic phenotypes open up an important window 
for performing precise clinical trial of either “old” or novel drug 
candidates. 

Expert Opinion
The productivity of drug development is steadily declining in the 

context of limited recognition on the etiology and pathogenesis of most 
diseases. Metabolomics provides new insights on disease development 
and drug activity at the metabolic level, which is of vital significance 
for uncovering novel drug targets or stratifying patients to effective 
therapies. However, we are still encountered some big challenges 
in advancing the drug development by using metabolomics-based 
discovery. First of all, the reproducibility and reliability in metabolites 
identification and quantitation are critical for any subsequent 
investigation based on metabolomics discovery. Unfortunately, very 
few published metabolomic results have experienced strict validation 
from independent laboratories where different instrumental platforms 
or protocols are usually adopted. As the analytical instrumentation 
and technologies advance, absolute quantitation of metabolites in 
clinical samples is particularly important for designating them as 
potential diagnostic or prognostic biomarkers. Secondly, patient 
stratification is an ideal goal in clinic, however, there is a long way to 
go before it comes true. It is envisioned that the metabolic signatures 
associated with drug efficacy or toxicity could be adopted during 
the early stage in drug development, in which candidates with high 
potential of toxicity could be screened out. Finally, metabolomics 
data are much more eligible for translation from laboratory to clinic 
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where researchers from laboratory or industry should step forward 
to collaborate with clinicians. With these in mind, a promising 
perspective could be expected that validated metabolic biomarkers 
would be efficiently measured with clinical-oriented instruments for 
diagnosis or patient stratification in the coming 5-10 years.
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