
Citation: Martínez-Jiménez  LA, Organista-Nava J, Illades-Aguiar B, Leyva-Vazquez M, Gómez-Gómez Y, Terminal Deoxynucleotidyl Transferase in type 
B Acute Lymphoblastic Leukemia. J Hum Anat Physiol 2019;3(1): 4.

J Hum Anat Physiol
February 2019  Volume:3, Issue:1
© All rights are reserved by  Martínez-Jiménez  LA, et al.

Terminal Deoxynucleotidyl 
Transferase in type B Acute 
Lymphoblastic Leukemia

Abstract
Terminal deoxynucleotidyl transferase (TdT or DNTT) is a nuclear 

enzyme whose expression is restricted to normal tissue (thymus 
and bone marrow) and to lymphoid precursors of the B and T cell. 
TdT catalyzes the addition of deoxynucleotides independently of 
the template in the 3’-terminal hydroxyl end of the oligonucleotide 
primers. In addition, it plays a crucial role in the insertion of N regions 
during the rearrangement of immunoglobulin genes and receptor 
T and B cells (TCR and BCR) at the DJ binding sites and variable (V) 
diversity (D) binding (J). This mechanism of the diversity of the binding 
is essential for the development of a repertoire of immunoglobulin’s 
and B and T cell receptors. TdT is expressed in malignant lymphoblastic 
tumors of precursors, including precursors of B and T cells. In this review, 
we describe the biological importance of TdT in acute lymphoblastic 
leukemia of type B cells. 
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Functions of TdT
The ability of the immune system to respond to the wide range 

of potential pathogens that infect us during the development of life 
depends on the diverse repertoire of antigenic receptors expressed by 
B and T lymphocytes   [1, 2]. The great diversity of antigenic receptors 
is largely generated part by the recombination process V D J, in which 
DNA elements are randomly linked to form the variable domains of 
the antigenic receptor genes [3]. Generation of the functional heavy 
chain (H) and light (L) genes from immunoglobulin’s through V D 
J recombination occurs in a gradual process during the development 
of B cells in the primary lymphoid organs such bone marrow and 
the spleen. Among the key enzyme in this process is the terminal 
deoxynucleotidyl transferase enzyme (TdT or DNTT) [4]. 

The gene from TdT is located on chromosome 10q23-q25, This 
gene is a member of the X-type DNA polymerase family that codes for 
a 58-kDa DNA polymerase independent of the template that catalyzes 
the addition of deoxynucleotides to the 3’-hydroxyl terminus of the 
oligonucleotide primers [5, 6]. 

TdT is responsible for the addition of random nucleotides in 
the junction (N region) of the heavy chain of rearranged Ig, during 
recombination of V D J in the maturation of B and T cells, playing 
an important role in the development and variations of antigenic 
receptors in the immune system. Transcriptionally TdT is regulated 
by transcription factors such as AP-1, as well as through recombinant 
gene expression activators (RAG). TdT activity can also be regulated 
at the post-transcriptional level by phosphorylation. Another group 
of proteins that also regulate the TdT activity is known as TdT 
interaction factors (TdiF1) [7-11]. 

Since that the cloning trials from TdT were initiated, there was an 
increase in knowledge about properties and functions under normal 
and pathological conditions of TdT, In humans, the expression of 
TdT is restricted in lymphoid precursors of lineage T and B, and in 
hematological cancers. TdT isoforms are slightly more complicated as 
each have three alternative splice variants designated as TdTS (short), 
TdTL1 (long) and TdTL2 (long) [12,13]. There is evidence of possible 
human isoforms of TdT (hTdT) derived from the genomic sequences 
of hTdT, which led to the identification of the short isoform (hTdTS), 
as well as the mature long transcripts that contain exon XII (hTdTL1) 
and another that includes the exon VII (hTdTL2) in lymphoid cells 
[14]. 

Normal B and T lymphocytes express exclusively hTdTS and 
hTdTL2, whereas expression of hTdTL1 appears to be restricted to 
transformed lymphoid cell lines [15]. 

The newly discovered hTdT isoforms should be considered in the 
future examination of human leukemias [16]. 

The structure-function analysis of the murine TdT protein was 
also performed to determine the functions of the structural motifs 
that have been implicated in protein-protein and DNA-protein 
interactions. In this analysis was demonstrated that the N-terminal 
portion of TdT, including the C-terminal BRCA-1 domain (BRCT), is 
not required for TdT activity, although the BRCT domain contributes 
to the activity of adding N-nucleotide [17]. 

The second helix-hairpin-helix domain of TdT, but not the first, is 
required for this activity. The deletion analysis also suggested that the 
complete C-terminal region of TdT is necessary for the addition of 
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N-nucleotide in vivo Homology among members of the pol X family 
is not limited to their catalytic center (amino acid position 332 to 349). 
Additional domains shared by several of these polymerases include 
BRCA-1 C-terminal (BRCT) domains as well as helix-hairpin-helix 
(HhH) domains, The BRCT domain is a phosphopeptide binding 
motif that mediates protein-protein interactions and is commonly 
found in proteins involved in DNA recombination and repair, such 
as BRCA-1, XRCC4, and DNA ligase IV (amino acid position 26 to 
130) [18-20]. (Fig, 1).

HhH domains are non sequence-specific DNA binding motifs 
that contact DNA by interactions of peptide backbone nitrogen atoms 
with phosphate groups of the DNA (HhH1 amino acid position 213 to 
218) (HhH2 amino acid position 257 to 261), It has been shown that 
TdT plays a very important role in the development of B lymphocytes 
in fetal development since it has been observed that the precursors of 
B cells from lymph nodes are positive for TdT [21, 22]. 

Biases in the recombination process and/or cellular selection 
through Ig receptors are thought to account for the nonrandom 
nature of the Ig repertoire; however, the details of these selection 
mechanisms and the relative impact of each type of selection 
mechanism on the Ig repertoire have not been determined. The Ig H 
chain repertoire displays two interesting nonrandom characteristics 
that have been particularly well studied: 

1. Unequal usage of DH reading frames (RF), and 

2. Over usage of the VH81x gene segment [23-25]. 

However, during neonatal life the immunoglobulin diversity is 
limited and the absence of TdT expression with the consequent lack of 
addition not contemplated during the neonatal period, and together 
with the predominant use of a single DH reading frame, leads to 
serious limitations of diversity in the CDR3 region of Ig Heavy chains 
(H). The repertoire of the neonatal Ig H chain is also characterized by 
the restricted use of VH, with predominant expression of certain VH 

segments, such as VH81x, which are rarely evident during adult life. 
When the expression of TdT is induced in the neonatal repertoire 
of VH81xDJH, the synthesis of TdT cancels the bias in the reading 
frame DH during the fetal/neonatal period through an independent 
mechanism of the Ig receptor. These findings suggest that the bias 
of the DH reading frame during neonatal life is determined to a large 
extent by homology-directed binding [26]. 

Also found, was that the synthesis of TdT alters the selection 
of productively rearranged VH81xDJH alleles in the neonatal spleen 
through an Ig-dependent mechanism. These results demonstrate 
that TdT can indirectly influence the Ig repertoire by influencing the 
selection processes dependent on the receptor and the independent 
receptor [27]. It has been reported that TdT play a very important 

role in the ontogeny of B lymphocytes in adults, since in one study a 
relationship between the expression of TdT with specific markers of 
lineage B (CD19) was demonstrated, but the expression of CD19 did 
not, it is a marker of early ontogeny of B lymphocytes, therefore it can 
be used to CD79a, which is highly specific for B cells and which can 
also be expressed very early in ontogenesis, In the same way, it was 
demonstrated that TdT has the same function in the development of 
B lymphocytes in a murine model because it increases the insertion 
in the N-region in pre-B cells, It is also known that TdT is involved in 
the ontogeny of T lymphocytes [16, 28-30].

Tdt in Leukemia
Leukemia is a type of blood cancer, which starts in blood-

forming tissue, such as the bone marrow, and causes large numbers 
of immature blood cells to be produced and enter the bloodstream. 
Leukemia is subdivided into different subtypes according to cellular 
maturity (acute or chronic) and cell type (lymphocytic or myeloid). 
Acute lymphoblastic leukemia (ALL) is a cancer of lymphocytes, a 
type of white blood cell that is part of the body’s immune system. ALL 
is the most common cancer in children under 18, the great majority 
of ALL is of type B lineage (75-80%). In studies on TdT in subjects 
with acute leukemia, an increase in its expression was observed, In 
1978, it is described for the first time that there is a higher percentage 
of TdT expression in leukocytes of B-type ALL than in type T, and in 
experimentally demonstrating the biological role not only in B cell 
proliferation [31-34]. 

In a study in which it was evaluated, the activity of TdT in samples 
of bone marrow and peripheral blood of patients with various types 
of leukemia such as acute myeloblastic leukaemia and chronic 
granulocytic leukaemia, it was reported that there is an increase in 
the activity of TdT in those patients with ALL. In another study, 
they conclude that the assay of TdT in the peripheral blood or bone 
marrow of patients with acute leukemia is of value in differentiating 
lymphoid (including non-T non-B) from myeloid leukemia [35, 36]. 

Since then TdT has been used as a diagnostic marker 
of ALL implementing microscopy methods as main tools; 
immunofluorescence and immunohistochemistry [37]. But because 
there are reports of positive TdT cells in acute myeloid leukemias, 
their diagnostic value has been questioned [38]. An alternative that 
has been employed is the use of flow cytometry as a method that 
allows quantitative analysis, since it recognizes differences between 
ALL and AML. In a study performed on subjects with B-ALL, high 
levels of TdT was observed, while AML had low levels [39]. For this 
reason, TdT can be an effective biomarker for classifying leukemias of 
lymphoid origin, in the same way, it is valuable to define the stages of 
maturation of leukemias [40]. 

It has recently been shown that the expression of TdT increases 
in the presence of different cytosines (IL-2, IL-7, and IL-15) and that 
inhibiting TdT reduces the expansion of B and T cells and therefore 
both decreases apoptosis and proliferation [41]. On the other hand, 
a high number of TdT-positive cells has been reported in inflamed 
pediatric kidneys in children with lymphoblastic leukemia [42]. 
It has also been reported that in pediatric patients with ALL who 
overexpress miR-125b, miR-100, and miR-99a are resistant to 
treatment with vincristine and that it reduces the expression of 11 

Figure 1: Structure of TdT-FL. The domains of TdT are depicted as 
rectangles and labeled as follows: BRCA-1 C-terminal domain (BRCT), helix-
hairpin-helix (HhH1 and HhH2), and pol X active site.
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genes, including TdT [43]. 

Conclusion
In spite of the great scientific advance that has extended the 

knowledge on the process of leukemogenesis, little is known about 
the molecular events that participate in the development of ALL. TdT 
is an enzyme that is involved in the ontogeny of B lymphocytes in a 
normal way. There are also articles that report the altered expression 
of TdT in type B ALL. TdT expression is currently evaluated through 
immunohistochemistry, immunofluorescence and flow cytometry. 
Therefore, an alternative treatment be to inhibit the expression of 
TdT plus the combination with routine treatments for type B ALL.
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