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Recent Advances of  Chitosan 
and Its Derivatives for Novel 
Applications in Food Science

Abstract
Chitosan is produced by deacetylation of chitin, the second 

most abundant polymer in nature next to cellulose. Being a unique 
cationic polysaccharide, chitosan possesses many functional 
properties and bioactivities, such as antioxidant property, lipid-
lowering activity, antimicrobial capacity, film-forming and gelling 
property, encapsulation potentials, and so on. Since last decade, it 
has been extensively studied in food, pharmaceutical, biomedicine, 
and chemical industries. In recent years, many advanced applications 
of chitosan and its derivatives have been developed in food science, 
including novel chitosan derivatives with enhanced antioxidant and 
antimicrobial activities, chitosan-based active films for food packaging 
to extend shelf life, as well as chitosan-based encapsulation and 
delivery systems for nutrients. This review focuses on the advances in 
recent five years in the development of chitosan and its derivatives for 
their novel applications related to food science.

Introduction
Chitosan is a natural-based biopolymer derived from chitin, the 

second most abundant polymer in nature next to cellulose. Chitin 
can be found from many sources in nature, including exoskeletons 
of crustaceans, insects, as well as mollusks and fungi. Cellulose, 
chitin, and chitosan share very similar backbone structures, as 
shown in (Figure 1). The difference among these three molecules is 
the functional group at C-2 position. In molecular chain of chitin, 
it consists of linear structures of 2-acetamido-2-deoxy-β-D-glucose 
through β (1  →  4) linkage, by replacing hydroxyl group at C-2 
position in cellulose molecular chain with acetamido group. Chitosan 
is the chitin derivative produced by the N-deacetylation process, 
resulting in the amino group at C-2 position on its backbone. Like 
cellulose, both chitin and chitosan are considered as naturally-
occurring polysaccharides, and they are of particular commercial 
interest because of great nitrogen content (6.89%) [1]. Apparently, 
both cellulose and chitin are water-insoluble polymers with very low 
chemical reactivity. When the deacetylation degree reaches about 
50%, chitosan becomes water-soluble in acidic pH (lower than its 
pKa~6.2), in which condition the protonation of –NH2 groups occurs 
resulting in solubilization. After protonation, chitosan carries positive 
surface charges on its D-glucosamine repeat unit and therefore 
becomes the only pseudo natural cationic biopolymer. Chitosan is 
also well-known for its biocompatibility, biodegradability and low-
toxicity. Due to these unique properties, chitosan is considered as a 
versatile biopolymer that can be developed into different forms, such 
as gels, films, nano/micro-particles, beads, etc., and find numerous 

applications in various fields, including food, pharmaceutical, and 
cosmetic sciences.  

Due to the hydroxyl and amino groups on its backbones, 
chitosan is an amenable molecule that can be easily modified by 
various methods. Modifications of chitosan are aimed to improve 
physicochemical properties of chitosan and thus expand its 
applications in different situations. Several modification methods 
have been well documented for chitosan, including chemical, 
physical, and enzymatic approaches. For instance, because the 
high molecular weight and high viscosity of chitosan may limit its 
applications in certain biological conditions, depolymerization 
is often applied to chitosan to obtain the oligosaccharides and/or 
monomers [2]. The depolymerization is often achieved via enzymatic 
modifications using chitonase. Many chemical means are also 
reported to modify chitosan, such as quaternization, N-alkylation, 
hydroxylalkylation, carboxyalkylation, thiolation, glycation, etc, [2]. 
The physical modifications include electromagnetic radiation and 
sonication. The modified chitosan with enriched properties, such as 
excellent solubility in aqueous solutions at different pHs, modulated 
surface charges, higher absorption efficiency, new crosslinking sites, 
find novel applications and can be tailored for particular purpose.

Since last decade, chitosan has received increasing attention and 
its applications have been extensively explored in all aspects of science. 
In food science, chitosan is of particular interest over synthetic 
polymers, because it is considered as GRAS (Generally Recognized 
as Safe) by Food and Drug Administration (FDA). The present 
review focuses on the most recent advancement of applications of 
chitosan and its derivatives in food sciences, including the nutritional 
properties, antimicrobial activities, edible coating, food packaging, 
emulsions, encapsulation, as well as enzyme immobilization and 
water purification. 

Biological Activities of Chitosan and its Derivatives
Antioxidant properties

Antioxidant activities of chitosan have been extensively studied 
both in vitro and in vivo using different methodologies. The 
antioxidant properties of chitosan are reported to be correlated to its 
structural characteristics, including Molecular Weight (MW), Degree 
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Figure 1: Molecular structure of cellulose, chitin, and chitosan.



Citation: Luo Y, Wang Q. Recent Advances of Chitosan and Its Derivatives for Novel Applications in Food Science. J Food Processing & 
Beverages. 2013;1(1): 13.

J Food Processing & Beverages 1(1): 13 (2013) Page - 02

of Deacetylation (DD) as well as the sources of chitosan. The MW 
and DD may also present some synergistic effects on the biological 
activities of chitosan. Different results may be obtained for different 
free radical generating systems. The recent advances on antioxidant 
properties of various chitosan-based products are summarized in 
Table 1.

Antioxidant properties of native chitosan and its oligomers

Yen and coworkers investigated the antioxidant properties of 
chitosan prepared from crab shells [3] and shiitake stipes [25]. Both 
studies pointed out that the antioxidant activities of chitosan increased 
with increase of DD during preparation. The longer N-deacetylation 
time results in more amino groups on C-2 positions which contribute 
significantly to the antioxidant activities. Chitosan from both sources 
showed the greatest antioxidant activities in hydroxyl radicals 
scavenging, conjugated diene formation, and reducing power assays, 
showing the EC50 lower than 1.5 mg/ml, whereas less satisfactory 
activities in (1, 1-diphenyl-2-picrylhydrazyl) DPPH radicals and 
ferrous ion chelating ability tests, showing the EC50 as high as 16.3 
mg/ml. EC50 is defined as the effective concentration at which the 
antioxidant activity was 50%. The MW of chitosan was reported to 
have major effect on its antioxidant activities. Chitosan with lower 

MW have more pronounced scavenging effects on superoxide and 
hydroxyl radicals than the one with higher MW [26]. Another study 
investigated the antioxidant properties of chitosan oligomers obtained 
by H2O2 degradation, and confirmed that the MW is negatively 
related to the antioxidant activities of chitosan [27]. The chitosan 
oligomer with MW as small as 2300 Da has the greatest antioxidant 
activities against superoxide anion and hydroxyl radicals. Chitosan 
with higher MW was considered to be more compact in structure due 
to the stronger intramolecular hydrogen bonds, such as N2–O6 and 
O3–O5, than the one with lower MW. Therefore, the hydroxyl and 
amino groups in chitosan with lower MW are more flexible to react 
with free radicals, and hence exhibited higher free radical scavenging 
effects.

Antioxidant properties of modified chitosan

In order to further improve the antioxidant properties of chitosan, 
various modifications have been applied on chitosan molecules 
to overcome its solubility limitation. Sulfation represents a very 
important family of chitosan derivatives with enhanced biological 
activities, especially antioxidant properties. It has been shown that 
sulfated chitosan and sulfanilamide chitosan have significantly better 
free radical scavenging activities than native chitosan [26,28] mainly 

Chitosan and derivatives MW / DD In vitro studies – free radicals scavenging 
and metal chelation assays Ref.

Chitosan from crab Unknown / 83.3-93.3% DPPH, reducing power, hydroxyl radicals, Fe2+ 
chelation [3]

Chitosan from the larvae of housefly, Musca domestica 426 kDa / 90% DPPH, hydroxyl and superoxide anion radicals, 
reducing power, Fe2+ chelation [4,5]

Phosphorylated Chitosan from squid gladius Unknown DPPH, ABTS, Fe2+ chelation, hydroxyl radicals [6]

Chitosan supplement (Chitosamin®) 100 kDa / 90% DPPH, ABTS [7]

Water soluble chitosan (Chitosan-up®) 20 kDa / 95% Human serum albumin, DPPH, ABTS [8]

N-acyl chitosan oligosaccharide 7310 kDa / - hydroxyl and superoxide anion radicals, reducing 
power [9]

N-(2-hydroxy-3-trimethylammonium) propyl chitosan chloride 9641 (weight average molar mass) 
/ 80%

β-carotenen linoleic acid activity, DPPH, reducing 
power, hydrogen peroxide radical [10]

Quaternized chitosan conjugated with gallic acid or caffeic acid 70 kDa / 97% Hydroxyl radical, superoxide radical, DPPH [11]

2-[phenylhydrazine (or hydrazine)-thiosemicarbazone]-chitosan 200, 8 kDa / 96% hydroxyl and superoxide anion radicals, reducing 
power, Fe2+ chelation [12]

Gallic acid grafted chitosan 307 kDa / 80%;
950 kDa / 92%

DPPH, reducing power, horseradish peroxidase, 
carbon-centered alkyl radicals, hydroxyl radicals [13,14]

Ferulic acid grafted chitosan 200 kDa / 90% DPPH [15]

Caffeic acid-grafted chitosan 47, 198, 544 kDa / unknown DPPH, reducing power [16]

Chitosan-glucose conjugate
Unknown / 78-82%; 105 kDa / 

90%; DPPH, reducing power, superoxide radical, 
β-carotenen linoleic acid activity [17-19]

Chitosan-xylan conjugate 810 kDa, 90%
118 kDa / 95% Lipid peroxidation [20]

In vivo studies – Oxidative stress

Chitosan 750 kDa / 85 – 87% Age-associated dyslipidemic rats – attenuated 
oxidative stress in heart tissue of aged rats [21]

Chitosan Unknown Hyperlipidemic rats - elevated serum levels of 
antioxidative enzymes [22,23]

Chitosan supplement (Chitosamin®) 100 kDa / 90%

Healthy human subjects and nephrectomized 
rats – reduced albumin oxidation and increased 

plasma antioxidant activity;
[7,24]

Water soluble chitosan (Chitosan-up®) 20 kDa / 95%
Healthy human subjects – reduced albumin 
oxidation and increased plasma antioxidant 

activity
[8]

Table 1: Antioxidant properties of chitosan and its derivatives (2008-2013)*

*Abbreviations: M.W: Molecular Weight; DD: Degree of Deacetylation; DPPH: 1, 1-diphenyl-2-picrylhydrazyl; ABTS: 2, 2’-azino-bis (3-ethylbenzothiazoline-6-
sulphonic acid).
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due to the enhanced water solubility and hence increased accessibility 
of chitosan to free radicals. Many other modifications have also been 
reported to be able to improve free radical scavenging activities of 
chitosan, such as Schiff bases reaction [29], quaternization [30, 
31] carboxymethylation [29,32] and acylation [33]. In addition, 
conjugation of small antioxidant molecules with chitosan has been 
developed as a new approach in recent years to improve antioxidant 
properties of chitosan. In this modification, it is aimed to upgrade 
chitosan functionality with incorporation of natural plant antioxidant 
to its polysaccharide backbone. The chemical cross-linking methods 
are generally adopted to graft antioxidants to chitosan molecules, 
including essential oils [34,35] and phenolics [14,36] The antioxidant 
properties of grafted chitosan are significantly improved, especially 
for DPPH scavenging and metal ions chelating activities, in which 
systems native chitosan has very little activity. However, because the 
toxic and irritating reagents are needed in the chemical modification 
process, this modification becomes less popular. Another novel and 
attractive method has been recently developed and received increasing 
interest as an alternative to chemical cross-linking modification, i.e. 
enzymatic modification. Using this method, several bioactives have 
been reported to successfully graft to chitosan molecules, including 
flavonoids [37,38] and phenolics [39,40]. Some other physical 
modifications have also been reported to improve antioxidant 
activities of chitosan, such as ionizing radiation [41] and irradiation 
[42].

In vivo studies of antioxidant properties of chitosan

Antioxidant properties of chitosan has not only been shown by 
in vitro antioxidant assays, but also evidenced in many in vivo studies 
using various animal models as well as clinical trials. Anraku and 
coworkers investigated the effect of high MW chitosan on antioxidant 
stress and chronic renal failure using nephrectomized rats [24]. The 
study showed that ingestion of chitosan over a 4-week period not only 
resulted in a significant decreased ratio of oxidized to reduced albumin 
and an increase in biological antioxidant potential, but also alleviated 
renal failure. Another recent study also revealed the antiaging effect 
of high MW chitosan in glutathione-dependent antioxidant system 
in rats [21]. The oral administration of chitosan was reported to 
signicantly attenuate oxidative stress in heart tissue of aged rats by 
maintaining antioxidant enzymes. The antioxidant effect of high MW 
chitosan has been recently evidenced in a clinical trial [7]. Besides the 
high MW chitosan, the antioxidant properties of low MW chitosan, 
especially oligosaccharides have also been widely studied in many 
in vivo experiments. For instance, chitosan oligosaccharides have 
been shown to protect mice from liposaccharide-induced sepsis by 
attenuating organ dysfunction and improving antioxidative enzymes’ 
levels and preventing redox imbalance [43]. Similar effect of chitosan 
oligosaccharides have also been observed in diabetic rats induced by 
streptozotocin [44].  As discussed above, low MW chitosan is believed 
to possess greater antioxidant activities than high MW chitosan, 
as observed by in vitro assays; however, the comparison of MW-
dependent antioxidant activities has not been well understood yet. 
Furthermore, the in vivo evaluation of chitosan derivatives has not 
been well-established so far, because some toxic chemicals are usually 
involved in the modification process which may pose potential 
toxicity to animals or humans. 

Lipid-lowering effects

The lipid-lowering effects of chitosan have been observed since 

1980s [45,46] in animal models, and this effect was reported for the 
first time in humans without any side effects as early as 1993 [47]. 
Then, increasing evidence of potent lipid-lowering effects of chitosan 
has been consistently shown in numerous literatures. Chitosan has 
been well-documented to possess pronounced capabilities to lower 
plasma and hepatic triacylglycerol, total cholesterol levels, as observed 
in a large number of animal studies. While nowadays, more and more 
attention has been drawn to explore the underlying mechanisms of 
hypolipidemic activity of chitosan. Several mechanisms have been 
proposed recently. First, chitosan possesses strong binding capabilities 
to fat, cholesterol, and bile salt. This binding effect is contributed by 
the electrostatic attraction between positively charged amino groups 
of chitosan and negatively charged carboxyl groups of fatty acid and 
bile salts; by the entrapment of fat droplets in stomach and later 
precipitation in small intestine, delaying the digestion of fat [48]; 
and by the hydrophobic interactions as well as hydrogen bonding 
between lipid and chitosan [49]. Second, chitosan can help body 
maintain the antioxidant enzymes, such as superoxide dismutase 
(SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), which 
play important roles in lipid peroxidation [22,23]. Third, chitosan 
has profound impact on plasma adipocytokines, which significantly 
reduce adiposity index, and therefore chitosan can regulate the 
level of circulating triglycerides and counteract some inflammatory 
disorders and metabolic alterations [50].

Different chitosans exert different lipid-lowering effects in 
vivo, because the physicochemical properties of chitosan affect its 
efficacy significantly. Different DD of chitosan results in different 
amount of free amino groups on its backbones. The more free amino 
groups convey more positive surface charges of chitosan, which will 
strengthen the electrostatic binding capacity with fatty acid and 
bile salts. The MW also plays an important role in lipid-lowering 
efficacy as well. The higher MW chitosan has higher viscosity, which 
can help binding and entrapment of fat droplets in gastrointestinal 
tract and thus prevent their absorption. This phenomenon has been 
verified in a recent study, showing that high MW chitosan exhibited 
more pronounced effect on the increase of fecal fat and cholesterol 
in mice, while lower MW chitosan seemed to be more effective in 
elevating lipoprotein lipase activities in both plasma and liver [51]. 
Additionally, the particle size of chitosan powders has great influence 
on lipid-lowering effects. The nanopowdered chitosan prepared 
by ultrafine milling has been reported to be more effective than 
ordinary chitosan, due to the larger surface area to interact with lipids 
resulting in increased excretion of lipids in feces [52]. Several studies 
also suggested that different modification methods result in different 
lipid-lowering mechanisms [53-55].

Other biological activities

Chitosan has many other biological activities and health 
benefits that are well-documented [56-58], including prevention 
of renal failure, wound healing, reduction of gastric ulcers (anti-
inflammatory), antigenotoxic effects, anti-cancers, etc. As novel 
modification methods have been developed in recent years, more 
and more studies focus on the biological activities of chitosan 
derivatives, especially those with low molecular weight. For instance, 
the chitosan oligosaccharides prepared from enzymatic degradation/
depolymerization exhibited many new biological functions, such as 
immune-modulating and hemostasis effects [59].
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Chitosan and its Derivatives for Food Applications
Antimicrobial applications

Chitosan is widely recognized for its potent antimicrobial activity 
with, broad spectrum, and high killing rate but low toxicity toward 
mammalian cells. Although the mode of antimicrobial action of 
chitosan is not completely understood, it is well established that the 
molecular structure of chitosan is prerequisite for its antimicrobial 
activity [60,61]. The polycationic characteristic of chitosan in acidic 
medium is the main factor contributing to the antimicrobial activity. 
Due to the positive surface charges at acidic condition, chitosan 
interacts with anionic components on bacteria surface, such as 
negatively charged lipopolysaccharide in outer membrane of Gram-
negative bacteria and peptidoglycan and teichoic acid in cell wall of 
Gram-positive bacteria. This electrostatic interaction causes release 
of major proportion of proteinaceous materials from the cells. In a 
recent study, chitosan was suggested to possess profound effect on 
the negative charges of cryotococcal cellular membrane of fungus, 
and consequently interfering with surface colonization and cell-cell 
interactions during biofilm formation [62]. As revealed in Figure 
2, chitosan significantly reduced capsule size and sheared capsular 
polysaccharide of crytococcal cells, as well as clipped exopolymeric 
matrix from biofilms, which in combination explained the underlying 
mechanisms of chitosan on preventing the formation of fungal 
biofilms. This potent effect was ascribed to the electrostatic interactions 
between chitosan molecules and microbial cell membranes, leading 
to the leakage of proteinaceous and consequently increased chitosan 
penetration to nucleus and binding to DNA, which in turn inhibited 
mRNA synthesis.

Many factors can affect its antimicrobial efficacy. The intrinsic 
factors include DD, MW, chemical modifications, and the extrinsic 
factors consist of environmental conditions, especially the pH and 
ionic strength of the medium and bacterial species. Because different 
DD results in different number of amino groups on the chitosan 
backbones, which determines the charge density and thus the 
electrostatic interactions with microbial cell membranes; while the 
MW reflects the compactness of the chitosan molecular structure, 
which may affect the flexibility of the functional groups that can 

react with microbial cells. The chitosan modifications that increase 
amino groups or decrease MW are known to change the molecular 
structure and hence increase its antimicrobial activity. For instance, 
the asparagines N-conjugated chitosan oligosaccharide that has two 
positively charged sites and small MW exhibit stronger interaction 
with carboxyl-negative charges on the bacteria cell wall [63] not only 
due to the greater number of amino groups but also more flexibility of 
the chitosan structure after MW decreased. Another possible mode is 
the hydrophobic interactions and metal chelating effects, particularly 
in the case of water soluble chitosan [64] or when the pH of the 
medium is above pKa of chitosan [60].

Due to the biodegradability, nontoxicity and its intrinsic 
antibacterial effect, chitosan has been widely used as an antimicrobial 
agent in food science area to improve food quality and extend shelf 
life. To exert its antimicrobial effects, chitosan and its derivatives can 
be used alone or blended with other ingredients in food industry. For 
instance, chitosan and its combination with biocontrol yeast and/or 
calcium chloride has been applied to control blue mold in pear fruit 
[65]. The synergistic effects were found among chitosan, biocontrol 
yeast and calcium chloride that the combination demonstrated a 
more effective and stable reduction in the fungal decay compared 
with the treatment with either chitosan or with biocontrol yeast 
alone. In addition to bacterial and antifungal activity, chitosan 
has been recently tested for its efficacy toward foodborne viruses, 
including human norovirus and enteric virus surrogates [66]. In 
some cases, modification of chitosan is needed to further improve 
its antimicrobial efficacy in certain food systems. For example, to 
better protect mushroom from microbial degradation and improve 
the postharvest quality, chitosan-glucose complex coating was 
found to be the most effective treatment, compared with chitosan 
or glucose coating treatment alone [67]. The complex coating not 
only maintained tissue firmness of mushroom, inhibited increase 
of respiration rate, microorganism counts (pseudomonads, yeast, 
and moulds tested), but also delayed changes of ascorbic acid and 
maintained overall sensory quality. Water soluble chitosan has also 
been well characterized for their antimicrobial activities recently 
[68, 69]. A recent study has developed chitosan- and carboxymethyl 
chitosan-zinc complexes to compare their antimicrobial activity 
[70]. The study revealed that carboxymethyl chitosan-zinc complex 
exhibited much better antimicrobial activity against both Gram-
positive and Gram-negative bacteria than chitosan-zinc complex. It 
was deduced that the carboxymethyl groups greatly improved water 
solubility of chitosan and thus higher concentration was available at 
the site action due to enhanced diffusivity of complex.

Edible film/coating and food packaging applications

Since the last decade, increasing interest in food industry has 
been drawn to development of novel active films/coatings as food 
packaging materials, which not only have natural origins for food 
applications, but also can enhance food safety and quality during 
storage. Among the biomaterial candidates, chitosan is one of 
the most promising biopolymers, thanks to the combination of its 
excellent film-forming property and antimicrobial activity. 

The biopolymer-based edible films for food packaging are 
generally characterized by several parameters, including mechanical 
properties (elongation, tensile strength and breaking force), 
thickness, water vapor and oxygen permeability, as well as moisture 
content and color evaluations. Chitosan film is usually prepared by 
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Figure 2: The effects of chitosan on capsule size (E and F) and capsular 
polysaccharide (D and G) of Cryptococcus neoformans cells, and 
exopolymeric matrix of biofilms (E and H). Scale bars in all pictures represent 
2 μm. Reprinted with permission from Ref [62], copyright (2010), Elsevier.

ISSN: 2332-4104



Citation: Luo Y, Wang Q. Recent Advances of Chitosan and Its Derivatives for Novel Applications in Food Science. J Food Processing & 
Beverages. 2013;1(1): 13.

J Food Processing & Beverages 1(1): 13 (2013) Page - 05

casting chitosan solution on a certain plate. Since chitosan is only 
soluble in acidic conditions, the type of organic acid used is crucial to 
the mechanical properties of chitosan films. Although acetic acid has 
been considered as a common solvent for chitosan, it was reported 
to have adverse effects on chitosan films, compared with many other 
organic acids, such as malic, lactic and citric acid [71]. Acetic acid 
resulted in the toughest films and lowest elongation rate, making it 
too brittle for its coating applications. Therefore, the plasticizer is 
necessary to prepare adequate chitosan film. A recent study showed 
that both plasticizer concentration and drying methods significantly 
affected the mechanical properties of chitosan film [72], due to the 
changes of glass transition temperature of chitosan under different 
conditions. 

However, due to the hydrophilic nature of chitosan, the films 
prepared from chitosan alone are unable to exhibit adequate water 
vapor/oxygen barrier properties and antimicrobial activities during 
long term storage. The new trend to develop chitosan films or 
coatings is the preparation of active films/coatings by combination 
of natural antimicrobials or incorporation of various bioactive 
compounds. The chitosan-based active films/coatings have been 
applied in various food products, especially fruits, fresh produce and 
meat. For instance, incorporation of green tea extract into chitosan 
active film has been reported to improve both mechanical and water 
vapor barrier properties, mainly due to the enhanced intermolecular 
interactions between phenolic compounds and chitosan molecules 
[73]. This green tea extract incorporated chitosan film has been 
further applied as active packaging for shelf life extension of pork 
sausages by improving antioxidant, minimizing color change, and 
reducing microbial growth during storage at 4°C [74]. Our group 
developed edible coatings by incorporation of sodium chloride into 
both chitosan and carboxymethyl chitosan coatings and investigated 
their synergistic effects on the quality of fresh-cut d’Anjou pears [75]. 
Our findings revealed that the combination of sodium chloride and 
chitosan adversely affected the quality of pear slices by accelerating 
discoloration of cut surfaces and increasing polyphenol oxidase 
activity, while the combination of sodium chloride and carboxymethyl 
chitosan showed desirable effects. In addition of incorporation of 
bioactive small molecules into chitosan active films, an emerging 
trend is to develop composite films using chitosan and other natural 
polymers, including both proteins and polysaccharides [76]. The 
objective of using composite films as food packaging material is 
to combine the advantages from different polymers, including 
mechanical property, water vapor permeability, solubility, thermal 
property, appearance, antimicrobial activity, etc. Chitosan-gelatin 
composite film has been recently studied [77]. It was shown that by 
incorporation of gelatin in chitosan film, it was able to produce more 
flexible films with lower tensile strength and higher elongation rate. 
The more gelatin ratio was included in the film, the more translucent 
film was obtained due to the reduced light transmission. The 
translucent appearance of the film will greatly expand chitosan-based 
active film applications as edible coating.  

Chitosan-based emulsions for food quality preservation

Among food grade hydrocolloids, chitosan is considered as an 
excellent emulsifier that can be used to stabilize oil in water (O/W) 
emulsion without addition of any other surfactant. Because in 
acidic conditions, the amino groups are protonated and chitosan 
carries positive surface charge, which make chitosan become an 
amphiphilic substance that can adsorb at oil/water interfaces and 

facilitate formation of emulsion by lowering interfacial tension. The 
emulsifying capability of chitosan is highly dependent on its MW 
and DD [78,79]. The low MW chitosan was reported to exhibit better 
emulsifying properties than high MW chitosan, while chitosan with 
low (60%) or high DD (86%) showed better emulsifying properties 
to produce unimodal oil droplet size, compared to chitosan with 
intermediate DD (65-77%). The emulsion stabilization effects of 
chitosan is also concentration-dependent, especially for the chitosan 
with intermediate DD [80] The hydrophile-lipophile balance for 
chitosan was reported as 36.7, suggesting the high hydrophilic 
property of chitosan [81]. Although the surface activity of chitosan 
is limited, using higher concentration of chitosan result in higher 
viscosity of emulsion, and consequently provide stabilization of oil 
droplet by forming a denser and thicker polyelectrolitic brush at the 
water side of interface [82]. 

Chitosan-based emulsions have been widely reported as a novel 
approach to improve food quality, in the form of edible coating or film. 
Mineral oil-chitosan emulsion has been studied recently as a coating 
material on chicken eggs to maintain quality and prolong shelf-life 
during storage. The coating minimized weight loss and significantly 
preserved albumen and yolk quality of eggs for at least 3 weeks longer 
than those without coating stored at room temperature, and this effect 
was more pronounced at refrigerated temperature [83]. The sensory 
discrimination indicated that mineral oil-chitosan emulsion coating 
on eggs did not affect the overall appearance and the purchase intent 
was the same as uncoated eggs [84]. Soybean oil-chitosan emulsion 
coating on eggs has also been recently shown to have similar beneficial 
effects [85]. Lemon essential oil-chitosan emulsion coatings has been 
studied on the preservation of strawberry quality [86]. The coating 
maintained high quality of strawberry during cold storage at 5°C by 
slowing down the respiration rate and enhancing anti-fungal activity. 
Various essential oils-chitosan emulsions have been characterized 
and developed so far, and the type of essential oils greatly affects the 
emulsion film forming property and antimicrobial activities [87,88]. 
Besides essential oils, some other lipids-chitosan emulsions have also 
been studied for their applications in food industry. For instance, 
a novel application of oleic acid-chitosan emulsion in osmotic 
dehydration during food processing has been studied by Garcia et al. 
[89]. They evaluated the effects of chitosan emulsion coatings in the 
osmotic dehydration of scalded-cut papaya in two different ripening 
stages, i.e. green and ripped. Immersion of papaya cubic cuts in the 
oleic acid-chitosan emulsion significantly improved the efficiency of 
osmotic dehydration process for papaya in both ripening stages, by 
increasing the water loss and decreasing the solids gain, compared 
with uncoated samples. Additionally, to further improve quality 
maintaining capability, chitosan nanoemulsion has been prepared by 
ultrasonication, and the nanosized chitosan emulsion exhibited better 
efficiency as a biofungicide for controlling anthracnose of tropical 
fresh fruits, compared with conventional chitosan emulsion [90]. 

Encapsulation and Nutrient Delivery Applications
Encapsulation technology for food science

Encapsulation is defined as a process to entrap one substance 
within a certain matrix. This technology has been widely applied in 
pharmaceutics and biomedicine, with aims to protect drugs from 
gastric condition and hence improve absorption in intestine as well 
as provide targeted delivery of encapsulated drugs after it enters 
blood circulation. The biodegradable polymeric nanoparticles are of 
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particular interest in this area [91]. As more and more biodegradable, 
natural polymers have been studied for encapsulation and delivery 
of drugs, food scientists are beginning to explore this emerging 
technology in food industry, where encapsulation can be applied for a 
variety of reasons [92]. First, encapsulation can be used to protect food 
labile bioactives from harsh processing conditions, e.g. heat, oxygen, 
high pressure, etc. Second, some nutraceuticals are susceptible to 
low pH condition and form isomers or oligomers in stomach, thus 
encapsulation can provide a matrix to protect these compounds. Third, 
the fat-soluble bioactives, such as lipophilic vitamins and  flavonoids, 
have limited applications in food industry due to low solubility. 
By encapsulating them into a hydrophilic polymeric matrix, they 
become soluble in water and their applications are greatly expanded. 
Forth, encapsulation can also be adopted to mask undesirable flavors 
or smells of certain active compounds and hence improve the overall 
acceptance as food products. Fifth, like many drugs, the food derived 
bioactive compounds also need targeted delivery and prolonged 
blood circulation time to exert their functions. Sixth, encapsulation 
of probiotic living cells in microcapsules is currently receiving 
considerable interest in food industry, in order to provide proper 
protection of cells from adverse environmental conditions.

Chitosan-based delivery systems for food applications

Among various food biopolymers investigated in encapsulation 

and delivery systems, chitosan is one of the most popular polymers, 
and it is considered as a versatile polymer in drug delivery [93]. In 
food industry, chitosan has also been extensively investigated for 
its encapsulation and delivery potentials for various nutrients. The 
cationic characteristic of chitosan in acidic conditions provides 
simplicity to fabricate encapsulation and delivery systems in different 
forms, including nano/micro-particles, hydrogel beads, emulsions, 
fibers, films and membranes. Chitosan-based polymeric delivery 
systems for biomedical applications can be fabricated by a variety 
of approaches [93]. The commonly adopted fabrication methods 
and their applications in food science are briefly introduced in the 
following sections. The recent advances of chitosan-based particulate 
systems for encapsulation of nutrients are summarized in Table 2. 
In these approaches, electrostatic interactions between chitosan and 
anionic molecules are the main driving forces, and hydrogen bonding 
and hydrophobic interactions are also involved in some cases to 
assemble chitosan delivery systems.

Nano/micro-particles

Chitosan nano/micro-particles can be easily prepared using 
sodium TriPolyPhosphate (TPP) which carries five negative charges 
per molecule. In this method, TPP solution is added to chitosan 
solution in a dropwise manner, and the particles are spontaneously 
formed when chitosan and TPP are mixed together, and then 

Chitosan and derivatives Preparation methods Particulate systems Nutrients 
encapsulated Beneficial effects Ref.

Chitosan Emulsification, ionic gelation 
with TPP

Nanoparticles,
280 – 400 nm Essential oil Controlled release [94]

Chitosan Ionic gelation with peptides Nanoparticles,
150 nm EGCG Enhanced bioavailability, 

lower toxicity [95,96]

Chitosan Ionic gelation with TPP Nanoparticles,
125– 300 nm Selenium

Controlled release,
enhanced bioactivity, 

improved bioavailability
[97,98]

Chitosan Ionic gelation with TPP Nanoparticles,
180– 580 nm Vitamin C Prolonged shelf life,

enhanced in vivo delivery [99,100]

Chitosan Coating on zein nanoparticles Nanoparticles,
200 – 800 nm Vitamin E Controlled release in GI 

track [101]

Carboxymethyl chitosan Coating on zein nanoparticles 
and ionic gelation with calcium

Nanoparticles,
80 – 250 nm

Indole,
Vitamin D3

Controlled release, 
improved stability [102,103]

Carboxymethyl chitosan Ionic gelation with calcium and 
soy protein

Nanoparticles,
160 – 240 nm Vitamin D3 Controlled release [104]

Linoleic acid-modified chitosan Ionic gelation with 
β-lactoglobulin

Nanoparticles,
170 – 350 nm Quercetin – [105]

Chitosan Spray drying with tween Nanoparticles,
320 – 360 nm Curcumin Solubilization, controlled 

release [106]

Chitosan Emulsification, ultrasonication, 
and freeze drying

Microparticles,
0.8– 1.4 μm Fish oil – [107]

Chitosan
Emulsification,

lay-by-lay deposition with 
caseinate and pectin

Microparticles,
0.2 – 2 μm Corn oil

Controlled release,
delayed digestion in GI 

track
[108]

Chitosan Spray drying Microparticles,
3 μm Betalains Improved stability, 

retained bioactivity [109]

Chitosan hydrochloride Ionic gelation with TPP and 
spray drying

Microparticles,
5 μm Antioxidant extract Controlled release [110]

Chitosan Ionic gelation with alginate and 
calcium

Hydrogel beads,
10 – > 100 μm Lipid Controlled digestion in 

GI track [111]

Chitosan Emulsification and crosslinking 
with vanillin

Microparticles,
53– 311 μm Resveratrol Controlled release, 

improved stability [112]

Chitosan Ionic gelation with alginate and 
calcium

Hydrogel beads,
780 μm – 1 mm Plant extracts Controlled release [113]

Carboxymethyl chitosan Ionic gelation with calcium in 
alcohol solution

Hydrogel beads
1 mm Vitamin D3 High loading capacity, 

controlled release [114]

Table 2: Chitosan-based particulate systems for encapsulation of nutrients (2008 – 2013)*.

*Abbreviations: TPP: Sodium TriPolyPhosphate; EGCG: (-)-EpiGalloCatechin-3-Gallate
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collected by centrifugation or drying methods (freeze-drying or 
spray drying). As shown in (Figure 3), pure chitosan exhibited rough 
membrane-like morphology; however, upon dropwise addition 
of TPP to chitosan solution spherical nanoparticles were formed 
spontaneously. Particle sizes can range from 100 nm to several μm, 
by controlling the concentration of chitosan and TPP, their mass 
ratios, and drying methods. Due to the simplicity of this method, 
chitosan/TPP particles have been widely adopted to encapsulate both 
hydrophilic and hydrophobic nutraceuticals. To encapsulate, the 
bioactive compound (dissolved in water or ethanol) is either added 
to chitosan or TPP solution before they are mixed together. Several 
chitosan derivatives are also able to form nano/micro-particles with 
oppositely charged molecules. For instance, glycol chitosan [110] 
and chitosan hydrochloride [115] are positively charged chitosan 
derivatives, and both can form nano/micro-particles with TPP, while 
the negative charged derivatives, e.g. carboxymethyl chitosan [116], 
can form nano/micro-particles with calcium. 

Alishahi and coworkers investigated the encapsulation of vitamin 
C into chitosan/TPP nanoparticles to extend its shelf life and achieve 
controlled release [117]. The particle size and encapsulation efficiency 
were greatly affected by MW of chitosan used. The nanoparticles 
prepared with lower MW chitosan had more uniform and smaller 
particle size, while higher encapsulation efficiency was achieved by 
using higher MW chitosan. The shelf life of vitamin C was greatly 
improved, compared with unencapsulated samples. The controlled 
release profile of vitamin C was found as pH responsive, quicker 
release in pH 7.4 but slower release in acidic medium, however, the 
effect of digestive enzyme was not tested. Encapsulation of sodium 
selenite, a nutraceutical supplement of trace element selenium, in 
chitosan/TPP nanoparticles has been studied by Luo et al. [98]. The 
particle size, zeta potential and encapsulation efficiency were greatly 
influenced by the concentration of chitosan and TPP, as well as the 
loading concentration of selenite. The encapsulation of selenite in 
chitosan nanoparticles enhanced its antioxidant properties, which 
was attributed to the antioxidant activities of chitosan. Although 
a fast release of selenite was observed in both PBS and simulated 
gastrointestinal fluids containing digestive enzymes, the release 
profile was significantly improved after chitosan/TPP nanoparticles 
were coated with zein, a water insoluble protein. The selenite-
encapsulated chitosan nanoparticles were also demonstrated by 
cellular evaluation to not only improve selenium cellular uptake but 
also protect cells from selenium-induced DNA damage response [97]. 
Encapsulation of nutraceuticals in zein nanoparticles coated with 
carboxymethyl chitosan/calcium has been recently reported by our 
group [102,103]. Carboxymethyl chitosan/calcium coating on zein 
nanoparticles not only increased encapsulation efficiency, retarded 
controlled release, but also improved thermal and photo-stabilities of 

the encapsulated compounds, i.e. vitamin D3, indole-3-carbinal, and 
diindolylmethane. 

Chitosan nanoparticles can also be prepared by crosslinking with 
oppositely charged biopolymers. The nanoparticles prepared by this 
method are usually considered as polyelectrolyte complex. This trend 
has received increasing attention in recent years, since more and 
more research provides evidence that nanoparticles prepared with 
two or more polymers are able to protect encapsulated compounds 
better against environmental conditions [118]. A lot of biopolymers 
have been reported to form polyelectrolyte complex nanoparticles 
with chitosan, including alginate, hyaluronic acid, carrageenan, gum 
Arabic, carboxymethyl cellulose, etc. On the other hand, complex 
nanoparticles can be prepared by crosslinking negatively charged 
chitosan derivatives and biopolymer together with cationic ions, 
such as calcium. Our group developed carboxymethyl chitosan-
soy protein complex nanoparticles for nutrient delivery [104]. In 
this method, carboxymethyl chitosan and soy protein complex 
was crosslinked by calcium. The complex nanoparticles exhibited 
remarkable encapsulation efficiency and improved release profile 
of vitamin D3 in simulated gastrointestinal conditions, compared 
with nanoparticles prepared with single ingredients. Another 
promising development is to prepare nanoparticles using chitosan 
and negatively charged polypeptides, which are nontoxic and edible. 
Chitosan-poly(r-glutamic acid) nanoparticles have been studied 
for encapsulation of tea catechins [119]. Both negatively charged 
or positively charged nanoparticles can be prepared depending on 
the ratio of chitosan to polypeptide. The antioxidant activity of tea 
catechins were greatly retained in simulated gastric conditions, due 
to the encapsulation in nanoparticles. It was shown that the positively 
charged nanoparticles could transiently open the tight junction 
between Caco-2 cells and thus increase the paracellular transport of 
tea catechins. Chitosan-caseinophosphopeptide nanoparticles were 
also developed to improve bioavailability of epigallocatechin gallate 
[95,96].

Chitosan microparticles are prepared with similar procedures as 
nanoparticles, but dried through spray drying method. The typical 
particle size ranges from 2 to 20 μm, depending on the crosslinker 
type and chitosan concentration. Unlike chitosan nanoparticles, 
microparticles are widely studied in pharmaceutical industries to 
encapsulate drugs, but not nutrient for food applications [120]. 
Vitamin C encapsulation in spray dried chitosan/TPP microparticles 
has been systematically studied by Park group [121-123], including 
the chitosan concentration, chitosan/TPP mass ratio, chitosan 
molecular weight, as well as spray drying parameters, all of which 
affected vitamin C encapsulation efficiency and release profile. A 
recent study investigated the encapsulation of orange oil in chitosan 
emulsion microparticles by spray drying [124]. The prepared chitosan 
microparticles were aimed to help orange oil retain in fabrics after 
washing in detergent solution. By choosing the proper formulation, 
small microparticles with uniform particle size were successfully 
prepared to effectively deposit orange oil in cotton fabrics, and the 
encapsulated orange oil was very stable during storage due to the slow 
release. This may find new applications of chitosan microparticles for 
textile applications.

Hydrogel beads

Hydrogels are defined as the hydrophilic polymer networks that 
can absorb a significant amount of water, from 10% to thousands 

Chitosan

Adding TPP

Chitosan/TPP nanoparticles

Figure 3: Scanning Electron Microscope (SEM) photographs of chitosan 
and chitosan/TPP nanoparticles. Adapted with permission from Ref [98], 
copyright (2010), Elsevier.
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of times of their dry weight [125], because they swell but do not 
dissolve in water. Hydrogels are formed when a three-dimensionally 
polymeric network is crosslinked loosely, either chemically or 
physically. Among various hydrogels, hydrogel bead is one of 
the most investigated forms, due to its simplicity of preparation. 
Hydrogel beads are usually formed spontaneously by dropping 
polymer solution in high concentration into a crosslinking solution 
containing oppositely charged ions or polyelectrolyte polymers, and 
no further cutting or shaping procedure is needed. 

Among various polymers, chitosan and its derivations are the 
most studied polyelectrolytes, due to its abundance, non-toxicity, and 
biodegradability. To prepare hydrogel beads, concentrated chitosan 
solution (as high as 3%) is added into TPP solution through syringe 
needle to ensure the small particle size. Chitosan/TPP hydrogel beads 
have been proven to possess pH-sensitive swelling behavior, and the 
encapsulation efficiency and release profile are dependent on the 
preparation parameters [126]. Chitosan hydrogel beads can also be 
prepared by crosslinking chitosan with negative charged polymers, 
such as alginate [127] and pectin [128]. Chitosan-based hydrogel 
beads not only have a variety of applications in biomedicine and 
pharmaceutics [129], but also hold several promising potentials in 
food science [130,131].

Encapsulation and delivery of nutrients

Chitosan-based hydrogel beads are believed to be a useful tool to 
encapsulate and deliver nutrients. Due to the large size of hydrogel 
beads, several advantages are considered over nano/micro-particles 
delivery systems, such as higher loading capacity and encapsulation 
efficiency, better controlled release, simpler and easier preparation and 
collection procedures. Chitosan-alginate beads prepared with ionic 
gelation were tested for encapsulation of polyphenolic antioxidants 
from different plant extracts, including raspberry leaf, hawthorn, 
ground ivy, yarrow, nettle and olive leaf [113]. It was found that 
the encapsulation efficiency and kinetic release profile were greatly 
affected by constituents of plant extracts. However, the hydrogel 
beads did not provide proper protection against rapid degradation 
and loss of antioxidative stability of encapsulated nutrients, which was 
possibly due to the hydrogel beads in the study were not dried during 
storage so that the excess water caused deterioration of bioactivities.  
Chitosan/alginate hydrogel beads were also studied for controlling 
lipid digestion [11]. It was shown that the hydrogel beads with larger 
diameter (>100 μm) were more effective than smaller hydrogel beads 
in delaying lipid digestion tested by an in vitro digestion model with 
lipase. 

Carboxymethyl chitosan, a water soluble chitosan derivative 
with negative charge, is reported as unable to form hydrogel beads 
on its own due to the chain rigidity, while alginate is normally used 
as an adjuvant polymer to form hydrogel beads with carboxymethyl 
chitosan/calcium [132]. Recently, a novel method to prepare 
carboxymethyl chitosan hydrogel beads has been successfully 
developed in our group [134]. In this method, calcium dissolved 
in aqueous-alcohol was used a cross-linking solution to prepare 
carboxymethyl chitosan hydrogel beads. As shown in Figure 4, the 
formation of hydrogel beads was dependent on the concentrations 
of alcohol-aqueous solvent, in which calcium chloride was dissolved 
to physically crosslink carboxymethyl chitosan. It was found that 
30% alcohol concentration was the optimal solvent to form hydrogel 
beads with the most spherical shape, and that drying methods had 

significant impact on surface morphology and swelling behavior. 
Since the beads were prepared in aqueous-alcohol solvent, they 
were the ideal encapsulation and delivery system for hydrophobic 
nutrients, such as vitamin D3. The encapsulation efficiency was as 
high as 97%, which was much higher than other delivery systems for 
hydrophobic nutrients. 

Encapsulation and delivery of probiotics

Probiotics are defined as a group of bacteria that can confer health 
benefits to the host when they are administered at adequate amounts. 
The benefits of probiotics to human host include production of nutrients 
and cofactors, competition with pathogens and hence inhibition of 
their growth, maintaining beneficial gut microflora, stimulation of 
immune response, as well as treatment of bowel-associated diseases 
[133]. These microorganisms are used in production of functional 
foods and pharmaceutical products. However, it is important to 
protect their viability from harsh conditions and preserve their 
health benefits. Plus, probiotics are extremely susceptible to gastric 
environment where the greatest viability will be lost due to high 
levels of acid. Therefore, immobilization of probiotics in a polymer 
matrix could protect them from gastric condition and then release 
them in small intestine to confer their healthy benefits. Encapsulation 
of probiotics has received increasing attention in recent years, as an 
emerging technology that can effectively enhance their viability [134]. 

Chitosan-based hydrogel beads find many applications in this 
area; particularly, chitosan is often used as a coating material on 
alginate beads to enhance protective effects of probiotics in harsh 
conditions. For instance, chitosan coated alginate hydrogel beads 
were reported to be much more effective than alginate/calcium beads 
in protecting viability of probiotics in simulated gastric solution, as 
well as prolonging controlled release of viable probiotics in simulated 
intestinal solution [135]. A similar system has been further tested 
in pomegranate juice to explore the protective effects of chitosan/
alginate beads, showing that chitosan coating significantly increased 
the cell viability by 5.5 log CFU/ml, compared with uncoated alginate 
beads [136]. Besides chitosan, carboxymethyl chitosan was also 
proved as an effective coating on alginate beads to help increase 
the survival rate in gastric and bile conditions [137]. It is worth 
mentioning that before coating chitosan on alginate beads it is 
crucial to adjust pH of chitosan solution to 6, since the original pH 
of chitosan solution is lower than 5 which is harmful for probiotics. 
It is recently reported that another benefit to coat alginate beads with 

10% 20% 30% 40%

50% 60% 70% 80% 90%

Figure 4: Digital photos of carboxymethyl chitosan hydrogel beads prepared 
in different alcohol-aqueous binary solvents. The percentage below each 
photo represents the alcohol concentration for preparation of each bead. 
Reprinted with permission from Ref [114]. Copy right 2013, Elsevier. 
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chitosan is to enhance mucoadhesive properties [138]. Although 
alginate itself is a mucoadhesive polymer, the crosslinking with 
calcium ions to produce hydrogel beads significantly reduced its 
mucoadhesive property. By coating alginate beads with chitosan or 
thiolated chitosan, the mucoadhesion performance was substantially 
enhanced, and thus the coated beads were able to deliver markedly 
higher amount of probiotics to the in vitro model of colonic mucosa 
than that of uncoated alginate beads.

Other Applications of Chitosan in Food Science
Immobilization of enzymes on chitosan-based biomaterials is an 

important application of chitosan in food science. By immobilizing 
onto chitosan supports, enzymes are more robust and more 
resistant to environmental changes; especially, the heterogeneity of 
the immobilized enzyme systems allows easier recovery, multiple 
reuse, and more rapid termination of reactions, and many other 
benefits [139]. Chitosan-based biomaterials in different geometrical 
configurations have all been studied for enzyme immobilization 
applications, including powders, flakes, beads, films, and membranes. 
Enzyme-immobilized chitosan biomaterials have been developed 
into various biosensors for their novel applications in food industry, 
such as glucose biosensor [140], choline biosensor [141], food-borne 
pathogens biosensor [142], and polyphenol detection kit [143].

Another application of chitosan is the purification of waste water 
in food industry. Recently, purification of waste water has attracted 
great scientific and industrial interest, because water pollution is one of 
the largest environmental problems affecting quality of life adversely. 
The purification process involves many steps, such as removal of 
heavy metal ions, dyes, phenol compounds, sludge conditioning, and 
so on. The use of polyelectrolyte polymer in production of drinking 
water and treatment of waste water is the commonly adopted 
method in water industry [144]. Due to the abundant amino groups, 
chitosan is a very effective adsorbent for removing water impurities 
and is mostly used in the form of hydrogel beads and microspheres. 
Chitosan has been widely investigated in the process of phenol 
compounds bioconversion [145], dyes removal [146], Cu2+ and Zn2+ 

removal [147]. In order to achieve more efficient process, various 
modifications have been applied to chitosan, such as functionalized 
chitosan membrane with carbon nanotubes [148] and chitosan beads 
impregnated by ion imprinting for metal removal [149], water soluble 
chitosan for clay flocculation [150], and conjugated chitosan for 
phenols removal [151]. In addition to waste water, chitosan is also 
currently being studied to improve the quality of drinking water, 
such as removal of trace element [152], defluoridation [153], and 
microtoxin removal [154].

Future Directions: Chitosan-based Nanotechnology 
for Food Applications

Nowadays, there is no doubt that chitosan-based nanotechnologies 
are becoming more and more popular and important. The current 
research efforts are mainly focused in biomedical fields, but very 
limited in food applications. Although chitosan has been considered 
as a GRAS material for its use as food additives by FDA, the use 
of chitosan at nanoscale in food/medical products has not been 
approved yet. Especially, chitosan composite nanomaterials have 
been developed for their potential applications in food industries, for 
instance, chitosan-TiO2 nanotubes films [155] for food packaging and 

chitosan-silver nanoparticles composite for drinking water filtration 
applications [156]. But the safety of these materials when they have 
direct contact with food products is still unknown. In addition 
to chitosan, a lot of chitosan derivatives are also being shown in 
literature to have numerous benefits and sometimes more advantages 
than native chitosan in food applications. However, compared 
with chitosan, little information on toxicity and safety of chitosan 
derivatives is available, and so far none of chitosan derivatives have 
been approved to be used in food products as a GRAS material, due 
to the difficulties to remove toxic solvent residues from modification 
process. Therefore, in addition to develop chitosan-based 
nanomaterials, there is an urgent need to evaluate their toxicity and 
safety aspect in real food products, in order to facilitate their approval 
for applications in food industry.

Conclusions
Being a deacetylated product of chitin, chitosan is a versatile 

food biopolymer that finds a variety of applications in all areas 
of food science. As a functional biopolymer, chitosan has many 
intrinsic nutritional values, such as antioxidant properties, health-
promoting bioactivities against many chronic diseases, including 
hypercholesterolemia, hypertension, inflammation, immune 
diseases, etc. Chitosan possesses promising antimicrobial activities 
with broad spectrum, and hence it has been widely studied as a 
food preservative to improve food quality and extend shelf life of 
perishable food products. Chitosan also has excellent emulsifying 
properties and is used to stabilize various oil-in-water emulsions in 
food industry to avoid the use of synthetic surfactants. All of these 
intrinsic properties vary with MW and DD, both of which are the most 
important characteristics of chitosan. Due to the abundant amino 
groups, chitosan carries many positive charges in acidic medium, 
and becomes a popular biopolymer to develop encapsulation and 
delivery systems for food industry, such as nano/micro-particles, 
hydrogel beads, as well as nanocomposites. With proper modification 
of chitosan, its functional properties and biological activities can be 
further enhanced and more applications are being developed. 
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