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Abstract
The field of bioforensics is focused on the analysis of evidence 

from a biocrime. Existing laboratory analyses can identify the specific 
strain of an organism, as well signatures of the specific culture batch of 
organisms, such as low-frequency contaminants or indicators of growth 
and processing methods. To link these disparate types of physical data 
to potential suspects, investigators may need to identify institutions 
or individuals whose access to strains and culturing practices match 
those identified from the evidence. In this work, we present a Bayesian 
statistical network to fuse different types of analytical measurements 
that predict the production environment of a Yersinia pestis (Y. pestis) 
sample under investigation with automated text processing of scientific 
publications to identify institutions with a history of growing Y. pestis 
under similar conditions. Furthermore, the textual and experimental 
signatures were evaluated recursively to determine the overall 
sensitivity of the network across all levels of false positives. We illustrate 
that institutions associated with several specific culturing practices 
can be accurately selected based on the experimental signature 
from only a few analytical measurements. These findings demonstrate 
that similar Bayesian networks can be generated generically for many 
organisms of interest and their deployment is not prohibitive due to 
either computational or experimental factors.

Introduction
Investigative chemical or biological forensic programs focus on 

the identification of a threat agent and the interpretation of intelligence 
data to identify sources of information to ultimately solve a crime. 
Specifically, for biological forensics the investigators typically focus 
on characterization of the specific biological agent used to perpetrate 
the crime, using analytical measurements from various instruments. 
The data obtained from these instruments yield features that, when 
integrated, create signatures indicative of the agent’s identity and 
various aspects of how the agent was produced [1-3]. However, these 
instrument-driven analyses of the sample do not make a connection 
directly between the forensic signature and the potential source of 
the agent (i.e., suspect), although in some cases they might point to 
a region or institution [4,5]. It remains a challenge to link physical 
and genetic signatures to non-traditional sources of information to 
identify who and where the relevant source materials, equipment, and 
training exist to produce the sample.

The value of Bayesian networks to assist in investigations has 
been well established in the chemical and biological forensics 
fields [5-11]. Our previous work developed an automated Bayesian 
network framework to fuse the results of laboratory measurements 
with textual data associated with institutional capabilities to grow 
a specific organism under specific conditions [5]. The premise of 

our model is that scientists at these institutions make public, often 
through formal publication, their routine culturing practices, such as 
the types of materials they work with and how they use them. The 
physical and genetic characteristics of evidence recovered from a 
biocrime can be compared to these published research practices to 
point to institutions or research groups that use similar methods. 
Further investigation of individuals who learned culturing practices 
from these groups could lead to potential suspects. To date, the fusion 
of mass spectral data (E) collected on spores of Bacillus anthracis and 
textual data from the scientific literature has been demonstrated as a 
predictive method to obtain the probability that a specific institution 
(I) could produce a specific sample given the data (E): P(I|E). The 
Bayesian network is framed as layers of conditionally independent 
levels of information, which allows the direct prediction of institution 
from experimental evidence where traditional classification-based 
approaches would not work.

In this work, we extend the investigative forensics Bayesian 
network to a new model organism, Yersinia pestis (Y. pestis). We 
also systematically evaluate the contribution of specific features 
at the mass spectral (e.g., carbohydrates) and textual levels (e.g., 
keywords) to determine the network’s sensitivity to changes in the 
text and experimental data signatures. These series of investigations 
demonstrate that this approach to data fusion for investigative 
forensics can be applied with relatively good accuracy using a small 
set of features from the textual and mass spectral data that capture key 
components of separation between the culturing practices.  

Materials and Methods
The Bayesian network to fuse the experimental and textual 

data for Y. pestis is depicted in Figure 1 and computed in a manner 
analogous to that previously reported for Bacillus anthracis [5]. 
The experimental and textual nodes are modeled as independent. 
Although this assumption may not hold completely, it has been shown 
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that assuming independence does not typically dramatically affect the 
classification accuracy of Naïve Bayesian classifiers [10-12]. Using 
standard Bayesian statistical properties of conditional independence 
between the layers of the network, the probability of a specific 
institution (I) having a demonstrated history of organism culturing 
that matches a sample, based on the observed experimental data using 
isotope ratio mass spectrometry (IRMS), gas chromatography mass 
spectrometry (GC-MS), and liquid chromatography tandem mass 
spectrometry (MS/MS), E(I), E(G), and E(M), respectively, is:
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The following sections describe the experimental and textual 
components of the networks used to generate the conditional models 
in Eq. 1.

Y. pestis laboratory data

To evaluate the capability of a series of analytical measurements 
to characterize culture media used to produce Y. pestis, a series of 
experiments was executed on the attenuated strain KIM D1 (lcr-) 

cultured in three common medium formulations: tryptic soy broth 
(TSB), brain-heart infusion (BHI) and Luria-Bertani broth (LB). 
TSB typically contains hydrolysate of soy, hydrolysate of casein, and 
glucose. BHI commonly contains infusion of organs, meat protein 
hydrolysate, and glucose. LB combines hydrolysate of casein with 
yeast extract. Specifics of the bacterial strain, biosafety, medium 
formulations, and microbial growth conditions are described in 
Clowers et al. [13]. Cells were collected by centrifugation and the cell 
pellet from an individual culture constituted a sample.  Triplicate 
cultures were produced in each formulation of growth medium, 
and from three to six different formulations of each growth medium 
were tested; thus, 9 – 18 samples produced on each growth medium 
were analyzed. Three types of analyses were performed and methods 
are described below: 1) Carbohydrate profiles were generated 
by gas-chromatography-mass spectrometry (GC-MS). 2) Stable 
isotope ratios of C and N were determined by isotope ratio mass 
spectrometry (IRMS). 3) Finally, peptides from the growth medium 
that remained associated with the cellular biomass were analyzed by 
liquid chromatography-tandem mass spectrometry (MS/MS). Table 
1 outlines the specific features that were extracted from the larger 
data sets produced by each type of instrument and components of 
the culturing medium that are expected to be differentiated by these 
features.

Isotope ratio mass spectrometry: C and N stable isotope ratios 
were determined as previously described [14] using a Thermo-
Finnegan (Bremen, Germany) Delta V Plus IRMS coupled to 
a Costech Analytical Technologies (Valencia, CA, USA) 4010 
Elemental Analyzer and Zero-Blank Autosampler. 700 µg±10%, was 
weighed into a tin capsule (Costech Analytical Technologies) and 
introduced into the instrument via an autosampler. Each sample was 
analyzed in triplicate.  Stable isotope content is measured as a ratio, 

R (
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N ), and reported as a delta (δ) value where δ = 
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1000‰ and RA and RStd 

are the isotope ratios of 

the sample and an internationally recognized standard, respectively. 
The standard for C is Vienna PeeDeeBemnite and for N, air [15,16]. 
IRMS processing was completed for 12cultures of TSB, BHI, and LB 
each. For the purposes of generating conditional probability matrices 
for the Bayesian network, the C and N stable isotope ratios were 
binned into six specific regions wherfe C could be greater than -21.5, 
less than -24.5, or in between, and N could be greater or less than 3.8. 
Thus, the conditional probability of observing a specific IRMS state 
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Figure 1: The graphical representation of the Y. pestis network defining 
the distinct relationship between nodes.  The gray nodes on the bottom are 
based on observed experimental evidence that links data sources to culture 
recipes.  The black nodes on top are based on observed text-based data 
collected from public literature.

Feature ID Technology Name Description

1 IRMS Carbon isotope ratio Animal versus plant 
material

2 IRMS Nitrogen isotope ratio Animal versus plant 
material

3 GC-MS Scyllo-inositol Animal related 
carbohydrate

4 GC-MS Pinitol Soy related carbohydrate

5 MS/MS Actin Animal related protein

6 MS/MS Casein Milk related protein

7 MS/MS Yeast Yeast related protein

Table 1: Features of the sample measured from each technology and the 
anticipated relationship to culture media recipes.
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(E(I)) given one of the three culture recipes (R) was computed directly 
from these data: P(E(1)|R).

GC-MS: GC-MS processing of the samples followed standard 
protocols as described in Colburn et al. [17]. GC-MS data was 
examined for retention time and electron impact mass spectra 
matching a list of 18 standard carbohydrates (analyzed separately). 
GC-MS processing was completed for nine replicates of BHI and LB 
and 18 replicates of TSB. Two specific carbohydrates, scyllo-inositol 
and pinitol, were marked as present or absent for each sample (Table 
1); therefore, there were four possible carbohydrate states that could 
be associated with a sample. Thus, the probability of observing a 
specific GC-MS state (E(G)) given R was computed directly from these 
data: P(E(G)|R).

MS/MS: MS/MS processing of the samples followed standard 
protocols as described in Clowers et al. [13] on an Orbitrap XL mass 
spectrometer (Thermo-Fisher Scientific) with a mass resolution 
setting of 30,000 [13]. Datasets were screened against a database 
composed of the nonredundant proteomes for the organisms 
expected to be found in microbial growth media, such as cow, pig, 
soy, wheat, rice, and yeast (http://www.Uniprot.org). Three categories 
of proteins that cover the distinctions of the three growth media 
were selected, including actin, casein, and yeast proteins (Table 1). 
Again, nine replicates of BHI and LB and 18 replicates of TSB were 
analyzed. In particular, if a peptide from one of the defined proteins 
was observed, then the associated protein category was defined to be 
present. Thus, three specific protein classes were marked as present or 
absent for each sample yielding eightpossible states. The probability 
of observing a specific MSMS-MS state (E(M)) given R was computed 
directly from these data: P(E(M)|R).

Y. pestis textual data

Y. pestis was linked to institutions through the manual annotation 
of a large collection of relevant documents. A total of 1,491 publications 
associated with Y.pestis were identified by querying PubMed (http://
www.ncbi.nlm.nih.gov/pubmed) for journal articles under the 
medical subject heading “Yersinia pestis” published between 1-Jan 
2010 and 2-Feb 2012. Of the 1,491 documents, the full texts of 382 were 
not available. Therefore, 1,109 publications were manually curated to 
identify the culturing practice(s). For each of the full text articles, the 
title, authors, institutions, abstract and material and methods were 
extracted. Next, we manually annotated these documents with the 
culture medium, its brand, and the strain of Y. pestis, referring back 
to the original document if necessary. The process is described in 
detail in Webb-Robertson et al. [5]. Of the 1,109, only 303 could be 
associated with one or more of the three primary culture media (BHI, 
LB and TSB) we evaluated via experimentation.  

To meet the constraints of the laboratory data, we created text-
based signatures (see Table 2) that describe using the growth media 
TSB, BHI, and/or LB to culture Y. pestis across the 303 publications. 
Culture media were then linked to institutions through a series 
of independent random variables associated with 1) the presence 
of keywords within a given document’s abstract or material and 
methods sections, 2) the association of a culture medium with the 
keywords in each document, and 3) the document linked to one or 
more institutions. Table 3 lists the culture media used across the 

303 documents and defines the distribution of the 364 institutions 
associated with these documents.  The probability of observing 
a culture medium recipe R given a document (D) was computed 
by the product of the conditional probability of observing R given 
each keyword. In total, 19 keywords were identified with adequate 
prevalence for inclusion in the model (Table 4). As was previously 
done, keywords are treated independently: 

( | ) ( | ) ( | )k k
k

P R D P R w P w D=∏

Where P(wk|D) is 1 if word k is in the document and 0 otherwise, 
and P(R|wk) is the normalized frequency of the number of times 
keywordk is observed in a specific culturing recipe.

Accuracy metrics and feature selection

To obtain a robust measure of accuracy, the final probability for 
each institution must be generated in a fashion that is independent 
from the training phase of the network. Because the final goal of 
this analysis was to determine the feasibility of triaging institutions 
capable of generating a sample based on experimental evidence, 
cross-validation procedures were performed at the institution level. 

Keyword Document Frequency (of 303)

Infusion 101
Congo red 27
Glucose 31
BHI 39
Tryptose blood agar 22
Sucrose 37
LB 85
Brain Heart Infusion 43
Acids 48
Brain Heart 50
Luria 74
LB broth 25
HIB 30
Heart Infusion Broth 46
LB agar 32
Blood Agar 45
Glycerol 55
Agar 150
Blood 101

Table 2:The number of documents that contain each keyword.

Medium used to culture 
Y. pestis Number of Documents Number of Institutions

BHI 111 85

LB 155 197

TSB 2 3

BHI, LB 30 60

BHI, TSB 3 11

LB, TSB 0 0

BHI, LB, TSB 2 8

Total 303 364

Table 3:The frequency of use of different culture media and number of 
associated institutions across the documents.

http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
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The final metrics of accuracy were based on a Receiver Operating 
Characteristic (ROC) curve and the associated area under this curve 
(AUC). The ROC curve yields a visual comparison of true positive 
rate (TPR) across the full range of possible false positives (FPR), 0 
to 1 [18]. A perfect classifier will find all true positives at a zero FPR 
and therefore results in an AUC of 1.0, while a random classifier will 
yield an AUC of 0.5. We performed repeated 5-fold cross-validation 
at the institution level for each of the three culture media to obtain 
an average metric of accuracy [19]. Specifically, each culture medium 
was evaluated 100 times, where the experimental data were selected 
via sampling in proportion to the observed data and 5-fold cross-
validation was performed. For each of the five-folds, the ROC curve 
(FPR and associated TPR values) was saved and these averaged 
to a single ROC curve associated with that iteration. This process 
was repeated 100 times for the various states of experimental data 
associated with the culture recipe medium of interest, and the final 
answer was reported as an average ROC curve, which captures the 
variability due to various possible experimental data states for the 
culturing and separations into 5-fold cross-validation sets. The final 
AUC was computed from this average AUC using the standard 
triangle rule.

Feature selection was performed using Recursive Feature 
Elimination (RFE) [20,21]. RFE is an iterative process that identifies 
features that can be removed sequentially, thereby reducing the overall 
accuracy of the model by the least amount. Using the Y. pestis textual 
data, we began with 19 features. These 19 variables were removed 
one at a time from the model, and the AUC values for each culture 
media and the average across all culture media were evaluated. Of 
the 19 average AUC values, the feature corresponding to a maximum 
average AUC was removed from the model, meaning its removal had 
the lowest effect on the accuracy of the model. This process was then 
repeated on the 18 remaining features.

Results and Discussion
The Bayesian network was evaluated for how accurately it could 

identify institutions that have a history of growing Y. pestis in a 
manner consistent with data matching a defined growth condition. 
Furthermore, the textual and experimental components of the network 
have various positive and negative effects on this accuracy, which are 
not known a priori. Each culture type was evaluated using a ROC 
analysis. In particular, for each culture medium, data were simulated 
to match the culturing practices and then run through the Bayesian 
network using 5-fold cross-validation (CV) on the document-level 
data to attain the probability of observing each institution given the 
three data types (E(I), E(G), E(M)). Those institutions that are associated 

with the selected culturing practice (Table 3) are assigned as true 
positives. Finally, using the probability, a ROC curve value and an 
AUC value are attained. To assure that the AUC value is robust to the 
CV performed at the document stage, the full procedure is repeated 
100 times and the average AUC is reported.  

This exercise resulted in an average AUC of 0.889, 0.832, and 
0.809 for BHI, LB, and TSB respectively. The results, based upon the 
19 keywords shown in Table 2 and the seven experimental features 
in Table 1, were very promising for all three culturing practices. 
There is likely redundancy in the keywords that can reduce this 
signature; furthermore, the seven experimental features are based 
upon three independent assays. The identification of the most 
relevant experimental features would be beneficial in respect to the 
time required to obtain that data, as well as to identify which assays 
would be most relevant when the sample limited. We first evaluated 
the impact of specific keywords as given in Table 2 on the accuracy 
of identifying institutions for both individual media and the average 
across the three media formulations. Subsequently, in a similar 
iterative fashion, we evaluated each of the seven experimental features 
associated with the three technologies

Sensitivity of network based on keywords

RFE was used to identify a core set of keywords that worked well 
in combination for all three culture media. Figure 2 displays the results 
for each RFE iteration where removal of nine features resulted in the 
maximum average AUC.  Overall, the average accuracy increased from 
~0.84 to ~0.86 with the 10 keyword model versus the full 19 keywords. 
Although accuracy did not increase dramatically, removing these 
keywords did result in the ability to achieve the same or higher accuracy 
with approximately one-half of the starting keyword set. Figure 3 shows 
bar graphs of the frequency of each keyword in respect to the three 
cultures. They are ordered based upon the order of the RFE where the 
single most predictive keyword is first and so forth. For example, “agar” 
is the last keyword to be removed by RFE and is therefore identified 
as highly significant for the identification of documents that separate 
by culture medium. The second to last model includes “infusion” and 
“Congo red.” The features are continually ordered in this manner for the 
visualization in Figure 3. Many of the features in the bottom nine that 
were removed appear to be highly similar to those retained above in the 
top 10. RFE offered a statistical approach to identify these redundancies 
and determine the specific keywords to maintain in the model.

Sensitivity of network based  analytical measurements

For usability, a Bayesian model that requires as little experimental 
data as possible to start an investigation would be highly beneficial. 

Number of Datasets Dataset BHI LB TSB Avg

1 IRMS 0.865 0.841 0.829 0.845

1 GC-MS 0.874 0.854 0.757 0.829

1 MS/MS 0.886 0.830 0.483 0.733

2 IRMS + GC-MS 0.888 0.848 0.825 0.854

2 IRMS + MS/MS 0.886 0.827 0.822 0.845

2 GC-MS + MS/MS 0.886 0.851 0.781 0.839

3 ALL 0.888 0.848 0.843 0.860

Table 4:The average AUC for each culture media resulting from all possible combinations of the datasets.
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Figure 2: The AUC and average AUC based on RFE values identify an optimal model that balances accuracy for BHI, LB and TSB near 6 keywords.
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Figure 3: Bar graphs of the 19 keyword features show various discrimination of the three culture media.
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Table 4 gives the AUC values across the three culture media when 
using one or more of the IRMS, GC-MS, and MS/MS datasets. As 
seen in Table 4, none of the datasets alone or in combination offer 
accuracy as high as the full model, but some, such as IRMS+GC-
MS, are nearly as accurate. This result was expected because all three 
datasets yield some metrics of separating animal and plant materials. 
RFE was again employed across the seven distinct features to identify 
a minimum set to separate BHI, LB, and TSB with the same or better 
accuracy than the full model of 19 keywords and three datasets (seven 
experiment features).

RFE found that only the carbon isotope ratio (measured by IRMS), 
which generically separates animal from plant material, could predict 
all three culture media fairly well. Adding nitrogen from IRMS and 

Pinitol from GC-MS resulted in the maximum average classification 
accuracy. Again, the nitrogen isotope ratio separates plant from 
animal material (Table 1) and Pintol is a soy-related carbohydrate. 
These three components cover the spectrum of the three culturing 
practices used in this experiment (BHI, LB, and TSB). Similar to the 
keyword analysis, we are able to achieve the same or higher accuracy 
with less than one-half of the originating experimental features, as 
shown in Table 5. Figure 4 shows a comparison of the average ROC 
curves of the models when using the full collection of information 
available (19 keywords and seven experimental features) versus the 
RFE-base model identified (10 key-words and three experimental 
features). Based on a Wilcoxon sign rank test, the pre- and post-RFE 
models are not statistically different. However, LB and TSB both have 
an increase in average AUC, which is statistically significant with a 

Iteration Technologies Features Excluded Features Included BHI LB TSB Avg

0 IRMS, GC-MS, MS/
MS

Carbon, Nitrogen, Scyllo-
inositol, Pinitol, Actin, Casein, 
Yeast

0.888 0.848 0.843 0.860

1 IRMS, GC-MS, MS/
MS Yeast Carbon, Nitrogen, Scyllo-

inositol, Pinitol, Actin, Casein 0.887 0.849 0.837 0.858

2 IRMS, GC-MS, MS/
MS Yeast, Casein Carbon, Nitrogen, Scyllo-

inositol, Pinitol, Actin 0.888 0.849 0.848 0.861

3 IRMS, GC-MS, MS/
MS Yeast, Casein, Scyllo-inositol Carbon, Nitrogen,  Pinitol, Actin 0.887 0.849 0844 0.860

4 IRMS, GC-MS Yeast, Casein, Scyllo-inositol, 
Actin Carbon, Nitrogen,  Pinitol 0.887 0.848 0.847 0.861

5 IRMS, GC-MS Yeast, Casein, Scyllo-inositol, 
Actin, Nitrogen Carbon, Pinitol 0.887 0.830 0.835 0.851

6 IRMS, GC-MS Yeast, Casein, Scyllo-inositol, 
Actin, Nitrogen, Pinitol Carbon 0.887 0.842 0.839 0.856

Table 5:The result of Recursive feature elimination on the average AUC of each culture media.
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p-value less than 1e-3. 

Conclusions
Narrowing the potential sources of a biological sample in a 

statistically robust fashion would be highly beneficial to investigative 
forensics [1,22]. The general method presented here moves 
beyond existing Bayesian networks focused on identifying specific 
characteristics of a sample to linking that knowledge to soft forms 
of data that can lead an investigation towards a suspect. The study 
conducted here on Y. pestis demonstrated that a limited number 
of culture media are generally used to produce a specific organism 
and several straight forward analytical measurements can identify 
useful experimental signatures of that media. Furthermore, the link 
from experimental data to institution can be achieved by scanning 
the scientific literature for a small set of specific keywords. The 
combination of these two findings demonstrates that in practice, a 
Bayesian network can both rapidly and accurately (in many cases) 
identifies the institutions with a history of growing Y. pestis in a manner 
consistent with the experimental evidence. Manual exploration of the 
364 institutions included in this study would be time prohibitive.  
Our study did not include features of the organism; thus we did 
not attempt to narrow the publication search terms for organism 
beyond genus and species. Identification of the organism at the strain 
level, such as was performed during the Amerithrax investigation 
where the agent was determined to have been Bacillus anthracis 
Ames, would presumably decrease the number of publications and 
institutions initially associated with a sample. The Bayesian network 
targeted at investigative forensics would further reduce the list of 
those institutions that may have relevant information and yield a 
quantitative probability measure to guide the investigation.
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