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Abstract
 This letter refers to the current discussion around re-evaluation 

of the dose and dose rate effectiveness factor (DDREF) equal to 
2, presently recommended by the International Commission on 
Radiological Protection. The topics of the threshold, hormesis and 
DDREF are interrelated with the linear no-threshold theory (LNT). The 
LNT does not take into account that DNA damage and repair are 
permanent processes in dynamic equilibrium. Given the evolutionary 
prerequisite of best fitness, it would be reasonable to assume that 
living organisms have been adapted by the natural selection to the 
background levels of ionizing radiation. Accordingly, there must be an 
optimal exposure level, as it is for many environmental factors. Several 
studies cited in the literature in support of the LNT and lowering of 
the DDREF down to 1 are discussed here. In the author’s opinion, the 
dose-effect relationships with non-neoplastic diseases found in certain 
exposed populations call in question dose-effect relationships with 
cancer. Self-selection and other biases in epidemiological studies are 
discussed. The dose-response relationships should be clarified in large-
scale experiments involving different animal species. In conclusion, 
the LNT and under-estimation of DDREF tend to exaggerate radiation-
related health risks at low radiation doses and dose rates.

Arguments against Linear No-Threshold Theory 
(LNT)

Radiation-related cancer risk estimates have been primarily 
based on the data from atomic bomb survivors. To adjust the risk 
estimates at acute exposures to low dose and continuous (low dose 
rate) exposures, a dose and dose rate effectiveness factor (DDREF) 
is used [1]. This letter refers to the discussion around re-evaluation 
of the DDREF value equal to 2, currently recommended by the 
International Commission on Radiological Protection (ICRP) [2]. 
The topics of the threshold, hormesis and DDREF are interrelated 
with the linear no-threshold theory (LNT). Hormesis and LNT are 
considered controversial by many scientists; discussion is in [3-8]. 
The LNT is corroborated by the following arguments: the more tracks 
go through a cell nucleus, the more DNA damage would result and the 
higher the risk of malignant transformation would be. “Decreasing 
the number of damaged cells by a factor of 10 would be expected to 
decrease the biological response by the same factor of 10” [9]. This 
concept does not take into account that DNA damage and repair are 
permanent processes in dynamic equilibrium. Given the evolutionary 
prerequisite of best fitness, it would be reasonable to assume that 
living organisms have been adapted by the natural selection to 
background levels of ionizing radiation [10]. Accordingly, there 
must be an optimal exposure level, as it is for many environmental 
factors: visible and ultraviolet light, different chemical elements and 
compounds [11], as well as the products from radiolysis of water 
[12]. Evolutionary adaptation to a changing environmental factor 
would lag behind its current value and correspond to some average 

of historic levels. Natural background radiation has probably been 
decreasing during the time of life existence on the Earth. It can be 
argued that resistance against radiation carcinogenesis may not be 
acquired by natural selection because the average reproductive and 
cancer-developing ages in humans differ considerably. However, 
DNA repair is an ancient mechanism that had developed long time 
before the appearance of the human species. The double-strand 
breaks in DNA, induced by radiation, can be repaired by error-free or 
error-prone repair mechanisms [13]. Mutations and carcinogenesis 
are caused by many factors; it might be hypothesized that a low-dose 
radiation exposure would contribute to expression of repair-related 
genes, which would enhance the error-free repair of the damage 
induced by different mutagens. The conservative nature of mutation 
repair mechanisms suggest that they have evolved in the distant past 
so that modern organisms may have retained some of the capability 
of efficiently repairing damage from higher radiation levels than 
those currently existing [14].

Discussion around Dose and Dose Rate Effectiveness 
Factor (DDREF)

Understandably, if a dose is split into fractions, a biological 
system would have time for repair, so that resulting damage would 
be lower. However, high LET radiation has generally been regarded 
to show a small or no dose-rate dependence in contrast to low LET 
radiation where low dose-rate can significantly reduce effects [15-17]. 
It can be reasonably assumed that high LET radiation, constituting a 
minor component of the natural radiation background except for the 
gas radon, has induced less adaptation of internal organs other than 
the lung. Besides, a track of densely ionizing radiation is generally 
much more destructive [18]. Accordingly, lowering the dose rate 
of low-LET radiation reduces carcinogenic effectiveness, whereas 
fractionation of high-LET radiation dose does not [19-21].

Several studies were cited in [2] directly [22-24] or through the 
review [25] in support of the no-threshold concept and lowering 
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of the recommended DDREF value down to 1. Some of these 
papers are discussed below. So, epidemiological studies based 
on the best fitting of functional forms do not necessarily prove a 
cause-effect relationship. In the study of Hiroshima and Nagasaki 
survivors [22], it was concluded that zero dose is the best estimate 
for the dose threshold, thus validating the LNT. This conclusion is, 
however, regarded questionable as the analysis had a priori restricted 
the possible functional forms of the dose-response relationship, 
resulting in the conclusion on a zero dose threshold [5,26]. If a more 
generalized functional form was used, the conclusion would have 
been different, as the lower bounds of the 95% confidence intervals 
would have been below zero for low doses; more details are in [5]. The 
artificial neural networks method was reported to have circumvented 
the limitation of [22] and demonstrated the presence of a threshold 
of excess relative risk in humans exposed to ionizing radiation [27]. 
Along with the elevated risk of cancer mortality, an increased risk 
of non-neoplastic diseases including those of circulatory, respiratory 
(pneumonia, influenza etc.) and digestive systems, was reported 
in [22], which can be seen as circumstantial evidence in favor of 
dose-related differences in medical surveillance and self-reporting, 
a phenomenon noticed also by other researchers in populations 
exposed to radiation [28], discussed in [29]. In the author’s opinion, 
the dose-effect relationships with non-neoplastic diseases [30-34] 
call in question such relationships with cancer, reported e.g. in the 
studies [23,24,35-43] including those cited in [2,25] in support of the 
DDREF lowering. Although there may be some risk of cardiovascular 
disease at high dose and dose-rate exposures [16], existing data are 
insufficient to confirm a cause-effect relationship between radiation 
and cardiovascular diseases at doses below 1-2 Gy, while plausible 
biological mechanisms are unknown [44]. Average doses in the 
epidemiological studies [30-34] were lower. As mentioned above, 
people knowing their relatively high dose estimates would probably be 
on average more motivated to visit medical institutions (self-selection 
bias), being at the same time given more attention. Conscious or 
subconscious dose-dependent behavioral changes have probably 
contributed to the dose-effect correlations found in epidemiological 
studies: one additional X-ray, endoscopy or blood count can lead to a 
cancer diagnosis thus influencing statistics. The same mechanism can 
cause in future an increase in the registered cancer incidence in the 
high natural background radiation areas (Guarapari, Brazil; Kerala, 
India; Ramsar, Iran; Yangjiang, China), where no cancer increase has 
been detected so far [2,45-48]; although singular reports on enhanced 
cancer risk in such areas have already appeared [45,49]. 

A tendency to exaggerate medical consequences of Chernobyl 
accident in some professional publications was noticed in the 1990s 
[50,51]. Biases and conflicts of interests could have influenced results 
and conclusions by some researchers, e.g. [52-56], as discussed in 
[29,50,51,53,57]. This may pertain also to some reports cited in [2,25]. 
Similar biases might have been active in some studies correlating 
radiation exposure and minisatellite mutations in the offspring of 
exposed parents [58,59]. Studies of that kind have been commented 
previously [11,60]. More details are in [61-65]. There is also a 
tendency to emphasize radiation-related pathology in the Techa River 
and Mayak nuclear facility cohorts, although in some publications no 
increase in cancer or other potentially radiation-related conditions 

were reported [66-68]; and existence of a threshold was held possible 
[68]. It was concluded, for example, that: “The number of radiation-
induced cancers in the Techa river cohort has been lower than 
among Japanese A-bomb survivors” [69], which means that the risk 
from acute exposure is higher than from protracted one at the same 
dose. Other works stress similarities between the data from Japan 
and the Urals i.e. similar level of cancer risk from acute and low-
rate exposures [70]. Accordingly, with regard to DDREF, the more 
recent papers concluded that carcinogenic risk resulting from low-
rate exposure is not lower than that from acute exposure of A-bomb 
survivors [71] i.e. the DDREF value must be close to 1. Today, when 
the literature is so abundant, research quality and possible biases 
should be taken into account defining inclusion criteria for studies 
into pooled analyses, meta-analyses and reviews. For example, certain 
reports on Chernobyl-related thyroid cancer can be conductive to 
over-estimation of carcinogenic properties of radioiodine; discussed 
in [72].

On the Dose-Response Relationship 
A dose-effect curve for low doses and dose rates can be construed 

theoretically. There are numerous carcinogenic factors, both 
environmental and endogenous. The lower would be the level of 
added radioactivity due to contamination, the smaller would be its 
contribution compared to the natural radiation background, and the 
less significant would be the role of radiation in general compared 
to other carcinogens. Accordingly, the dose-effect curve would 
deviate from linearity with the dose and dose rate decreasing down 
to the background levels; the relationship can even become inverse 
in accordance with hormesis. A corresponding graph plotted on 
the basis of experimental data is presented in [73] with a comment 
that the window for maximum adaptive response protection occurs 
at doses between 1 and 100 mGy, where risk is reduced below the 
spontaneous level of cancer risk [73]. It means that a large part of 
experimental data is at variance with results of epidemiological 
studies discussed in [2,43]. Admittedly, data obtained in small 
animals as well as adaptive responses detected at the cellular level 
cannot be directly extrapolated to humans. Some animal experiments 
do not support the hormesis concept showing, for example, no life 
lengthening in mice continuously exposed to radiation at low dose 
rates [74] (critically discussed in [75]). Other researchers did report 
life lengthening of mice in analogous experiments [76]. In any case, the 
hormesis concept should be applied with caution as hormetic stimuli 
may act without threshold upon pre-damaged or atrophic tissues, 
or act synergistically with other known or unknown noxious agents 
including carcinogens [77-79]. In this connection, the petition to 
remove the phrase “As low as reasonably achievable” (ALARA) from 
the radiation safety regulations [80] is hardly justified, as exposures 
are unpredictable during a human life, while effects of exposures 
may accumulate. Hormesis cannot be used in the radiation safety 
regulations without compelling experimental evidence from large-
scale animal experiments using different species. Epidemiological 
studies in humans would be less informative because of the relatively 
low sensitivity and biases [7,81], in particular, dose-dependent 
quality of medical surveillance and more frequent self-reporting of 
people with higher doses (self-selection bias). The dose-response 
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relationships should be clarified in large-scale experiments involving 
different animal species.

DDREF under-estimation: about motives

If vested interests cannot be excluded, the question cui bono? (to 
whose profit?) should be discussed. The LNT and under-estimation of 
DDREF down to the values below 2 [17] tend to exaggerate radiation-
related health risks at low doses and dose rates. Such exaggeration is 
conductive to strangulation of nuclear energy, the cleanest, safest (if 
everything is done properly) and practically inexhaustible means to 
meet the world’s energy needs [52]. This would agree with the interest 
of fossil fuel producers. Nuclear power has returned to the agenda 
because of the concerns over increasing global energy demand, 
declining fossil fuel reserves and global climate changes. Nuclear 
energy emits virtually no greenhouse gases in comparison to coal, 
oil or gas [82]. In the author’s opinion [83], revision and possible 
elevation of the dose limits both for the public and for professional 
exposures is indicated, which must be accompanied by measures 
guaranteeing adherence to the regulations. More international trust 
and cooperation would enable construction of nuclear power plants 
in optimally suitable places, notwithstanding national borders, 
considering all sociopolitical, geographic, geologic factors, attitude of 
workers and engineers to their duties [64,82] interrelated with their 
proficiency, moods, motivations and observance of human rights. 
Consideration of all these factors would make nuclear accidents 
improbable. 
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