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Abstract
Dengue virus is one of the most prevalent arborviruses that 

emerges fast around the world and imposes a substantial disease 
burden globally. The co-circulation of four serotypes of dengue viruses 
causes a large number of dengue fever and dengue hemorrhagic 
fever/dengue shock syndrome cases.  As there is no specific antiviral 
treatment, an effective dengue vaccine is one of the most important 
tools to control the global spread of dengue disease. The development 
of dengue vaccine, however, is complicated by the interference 
among four dengue serotypes and an incomplete understanding of 
host immune responses. This review provides an overview of current 
work on host immunity against dengue viral infection. The knowledge 
will help to modify the existing vaccine design strategies and the 
development of novel dengue vaccine modalities in the future.  

Overview 
Dengue virus (DENV) is one of the most important flaviviruses 

transmitted by Aedes aegypti and Aedes albopictus mosquitoes in 
tropical and subtropical regions. Approximately one third of the 
world population are at risk of dengue virus infection. Dengue 
disease is endemic in over 100 countries, mainly in South-east Asia, 
Western Pacific, South America, and Africa [1-4]. It causes 50-100 
million infections, and 500,000 hospitalizations each year [5,6]. Its 
rapid global expansion may have been accelerated by climate change, 
increased urbanization, globalization, and international travels [3,4].  

DENVs are comprised of four serotypes, DENV-1, DENV-2, 
DENV-3, and DENV-4, based on their differences in neutralization 
and complement fixation tests. These viruses co-circulate in endemic 
regions. DENV has an approximately 10 kb single positive stranded 
RNA genome, from which one polyprotein is translated and 
processed into 10 viral proteins: Core (C), pr-membrane (prM), 
envelope (E), nonstructural protein 1 (NS1), NS2a, NS2b, NS3, NS4a, 
NS4b, and NS5 [7]. While the vast majority of dengue infections are 
asymptomatic, some show febrile illness named dengue fever (DF), 
among which a small proportion can also develop into life-threatening 
severe disease as manifested by vascular leakage, thrombocytopenia 
and shock, collectively called dengue hemorrhagic fever (DHF) and 
dengue shock syndrome (DSS) [8]. The risk of severe dengue disease 
increases in secondary infections [9,10].  

The outcome of human dengue viral infection is determined by 
viral replication fitness and host immune responses. Its pathogenesis 
is closely associated with a complex network of interactions among 
various arms of host defense. Despite decades of study, with much 
scientific knowledge gained, no effective antiviral drugs or licensed 

vaccines are available. Here, we summarized the current status of 
research on immune responses to dengue viral infection during 
natural infection and in experimental vaccination. The knowledge 
will help to improve the design and testing of  dengue vaccines.  

Immune responses elicited by dengue virus infection 

Once dengue viruses invade human bodies, innate immune 
responses, B cell responses, and T cell responses are triggered. Much 
effort had been placed on describing antibody responses to dengue 
virus in animal model, or in human subjects either during or after 
recovery from dengue viral infection. In contrast, innate and cellular 
immunity have not been as intensively studied.  

Innate immunity 

Innate immune response is the first line of host defense against 
infections. As new adjuvant and delivery systems are explored for 
vaccine development, it is useful to understand innate immune 
responses elicited by dengue viral infection and multiple strategies 
that dengue virus has evolved to evade host antiviral defense.  

IFN pathway

Dengue virus is sensitive to type I interferon (IFNα and IFNβ) 
mediated antiviral activities. Treating cells with interferon α/β before 
or immediately after infection inhibits dengue virus replication, 
while delayed addition of IFN is less effective [11,12]. In vivo, type I 
interferon provides resistance to primary infection in a murine model 
of dengue viral infection [13]. To propagate its own species, dengue 
virus has evolved several strategies to circumvent type I interferon 
responses.  

During viral replication, dengue ssRNA is sensed by Toll-
like receptor 7 (TLR7), while dengue viral dsRNA is recognized 
by TLR3, retinoic acid-inducible gene I (RIG-I), and melanoma 
differentiation associated gene 5 (MDA5) [14-18]. The activation of 
such pathogen recognition receptors (PRRs) triggers downstream 
signaling pathways and stimulates the production of interferon α/β. 
Once produced, soluble interferons bind to IFN-α receptor (IFNAR), 
stimulates interferon-stimulated gene (ISG) transcription through 
Janus kinase/signal transducer and activators of transcription 
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(JAK/STAT) signaling. ISG proteins such as 2’,5’-oligoadenylate 
synthetase (2’,5’ OAS), and interferon-inducible trans-membrane 
protein (IFITMs) are capable of inhibiting dengue virus infection 
[19,20]. In vitro studies indicate that dengue virus can inhibit type I 
IFN production by cleaving stimulator of interferon genes (STING) 
[21], which is an adaptor molecule of several PRRs in the cytoplasmic 
nucleic acid sensing pathway, activating downstream transcription 
pathway to induce type I IFN production [22,23]. The expression of 
dengue viral proteins NS2A, NS4A, NS4B or NS5, impairs JAK/STAT 
signaling by reducing the amount of phosphorylated STAT1 [24], 
or inducing degradation of STAT2 [25,26]. Dengue virus may also 
circumvent type I interferon response through an idiosyncratic Fc 
gamma receptor (FcγR) signaling pathway. When immune complexes 
ligate FcγR, two suppressive pathways are activated to interrupt IFN 
production: (1) deoxyadenosine kinase (DAK) and the autophagy-
related genes 5 and 12 (Atg5-Atg12) complex inhibit MDA5 and 
RIG-I pathways, respectively. And, (2) activation of sterile alpha- 
and armadillo-motif- containing protein (SARM) and TNF receptor 
associated factor (TRAF) family member associated NF-кB activator 
(TANK) blocks the expression of TLR-3, -4,-7 [27,28].  

Nevertheless, dengue virus fails to subvert host defensive 
mechanisms in immune competent mice, where total viral clearance 
is observed. Although using high titer viral infection and artificial 
infection route such as intracerebral injection help dengue virus to 
infect wild-type mice, symptoms of human dengue disease cannot 
be fully replicated [29-31]. Similarly, DHF/DSS are difficult to be 
reproduced in non-human primates or humanized mice, despite 
detectable viral replication in peripheral tissue and some signs of DF 
[32,33]. Other alternative models are to use mouse adapted dengue 
viral strains or immune deficient mice such as AG129, and STAT1-

/- mice that are devoid of type I/II IFN receptors (AG129) or STAT1 
(STAT1-/-) function. Infection with mouse adapted DENV-2 strains in 
AG129 or STAT1-/- mice replicate antibody dependent enhancement 
and to some extent the disease profiles observed in human DF and 
DHF/DSS [34-36]. Such in vivo evidence also suggests that IFN 
pathway is an essential component of host immunity to control 
dengue infection.  

NK cell

Natural killer (NK) cells are part of innate immunity. It 
can recognize ‘self’ or ‘non-self’ patterns through the major 
histocompatibility complex I molecules expressed on cell surface. 
They lyse target cells by secreting cytotoxic granules that contain 
perforin and granzyme. Alternatively, they can stimulate the 
apoptotic receptor on target cell surface. However, these processes 
are normally inhibited, when the self MHC I molecules on target cell 
are detected by an inhibitory receptor on NK cells [37]. Additionally, 
NK cells mediate antibody dependent cell mediated cytotoxicity 
(ADCC) through FcγRIII on their surface [38]. Early activation of 
NK cells is important in the defense against primary dengue infection 
[30]. Conversely, dengue infection has been reported to up-regulate 
the cell surface expression of MHC I molecules and thereby inhibits 
NK mediated cell lysis [39].  Moreover, studies in a murine model of 
dengue viral infection showed that infiltrating NK cells are associated 
with the liver cell death [40]. Thus, the definitive role of NK cells in 
dengue viral infection requires further investigation. 

Complement

In a broad sense, complement response is also part of innate 

immunity. Complement pathways may contribute to dengue 
pathogenesis through interaction with dengue NS1 protein [41-44], 
which is being examined as a component of dengue vaccine. 

Complement activation has three cascades, classical, alternative, 
and lectin pathways. All the processes trigger subsequent cleavage 
of pro-proteins and generate a series of active factors to form a 
membrane attack complex (MAC), phagocytes are then recruited 
to lyse target cells [45]. Only the classical pathway requires specific 
antibodies to initiate the cascade. During dengue infection, soluble 
NS1 protein circulating in blood plays a vital role to modulate the 
complement pathways. DENV NS1 was found to interact with 
clusterin, a regulator that inhibits MAC formation [46]. NS1 
antibody was necessary in the activation of complement pathway 
[42], possibly by blocking the interaction of soluble NS1 with other 
regulators or factors in the pathways besides the classical one. In 
fact, studies have demonstrated that NS1 inhibits classical and lectin 
pathway by binding to C4 directly [47]. Some complement splitting 
products, such as C3a and C5a, have activities of anaphylatoxin to 
increase vascular permeability [48-50]. Whether the modulation 
of complement pathways by NS1 and the possible aggregation of 
splitting products are responsible for the vascular leakage developed 
in DHF cases is yet to be clarified by direct evidence.  

In summary, innate immunity plays different roles during dengue 
virus infection. It can be protective if it is stimulated at the early stage 
of infection, but pathogenic if it is activated too late.  

Humoral immunity 

Previous studies on antibody responses to dengue virus have 
formed the basis of current vaccine development strategies. Many 
aspects of humoral immunity have been evaluated, including the 
kinetics and magnitude of antibody responses, antibody dependent 
enhancement, neutralizing and enhancing antibodies, and specific 
epitopes targeted by anti-dengue antibodies. Each of these aspects is 
discussed next.  

Epitopes targeted by neutralizing antibody in humans and 
mice

Various antibodies against dengue viral proteins have been found 
in sera of infected patients either during acute phase of infection 
or convalescence. Those against prM or E could be protective and 
neutralizing, and thereby enhancing as well, because these antigens 
are exposed on virion surface [7].  E protein mediates virus binding, 
entry, fusion and uncoating. Its ectodomain is divided into three 
beta-barrel domains, domain I (EDI), domain II (EDII) and domain 
III (EDIII) [7]. EDII and EDIII are functional domains where fusion 
loop and receptor binding sites are located, respectively.  

The distribution of epitopes targeted by neutralizing, cross-
reactive or serotype specific antibodies is different in humans and 
mice. Early studies of dengue specific antibodies in mice showed that 
most of the strongly neutralizing monoclonal antibodies (MAb) are 
serotype specific and EDIII specific [51,52]. The main target regions 
include the lateral ridge and A strand that are partially overlapping 
within domain III [51-53]. Interestingly, studies on human MAb 
(hMAb) isolated from patient sera during dengue infection revealed 
only a few serotype specific neutralizing antibody, and the conserved 
EDII fusion loop is the major target of the serum antibodies [54]. 
EDIII antibody is not abundant in human sera, but it has the highest 
neutralizing potency among all other antibodies in sera [55]. These 
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data have drawn question on whether anti-EDIII antibody is essential 
for the neutralizing ability of human sera. A study uses recombinant 
EDIII protein to adsorb EDIII antibodies has demonstrated that the 
depletion of EDIII hardly affected the neutralizing ability of human 
sera, indicating other vital neutralizing epitopes exist outside the 
domain III region [56,57]. In fact, several newly identified epitopes 
of human neutralizing antibodies are mapped to the EDII fusion 
loop, and antibody binding to which blocks virus fusion post entry 
[54,58]. Recent studies also showed that some flavivirus neutralizing 
antibodies can only be induced in humans with whole virion but not 
the ectodomain of E protein [59,60]. Two neutralizing antibodies had 
been found to recognize the complex structure of adjacent E dimers, 
including residues in the hinge region of EDI and EDII, which is only 
presented on an intact dengue virion surface, thus may have been 
missed in previous studies using purified protein to determine the 
antibody affinity or using linear epitopes [60].  

Besides antibodies specific for E proteins, high levels of 
antibodies against prM and NS1 had been detected in human sera. 
During dengue virus life cycle, assembled viral particles bud into 
ER lumen, in which processed prM and E protein are recruited to 
form the envelope of immature viruses.  prM shields the E trimers 
during virion release, protecting it from premature release and fusing 
within acidic intracellular vesicles [7]. Before viruses are released 
from cell membrane, pr peptides are cleaved from M proteins by 
furin, unveiling domain II of E proteins. Meanwhile, the protruding 
E trimer becomes a dimeric form which lays flat on the viral surface 
over M proteins. Finally, E proteins are stretched and displayed on 
the mature virus surface [7].  

However, a recent study found that a portion of the released 
viruses are immature or partial immature in cell cultures. With the 
help of antibodies targeting prM, immature non-infectious virus 
enters target cells, becomes mature virus and then uncoats viral RNA 
and finishes its life cycle inside the cells, similar to a mature virus 
[61,62]. Of note, prM antibodies are of higher concentrations in the 
secondary than primary infection [54,62]. Such antibodies provide an 
aid to a non-infectious virion to become an infectious one, and thus 
may facilitate secondary infection.  

Anti-NS1 antibodies are abundant in sera of infected patients. 
This is of some interest because NS1 is the only non-structural protein 
secreted from infected cells. Its appearance in bloodstream coincides 
with the clinical phase of disease [63]. Furthermore, In vitro studies 
indicated that NS1 could potentially cause vascular leakage through 
modulation of complement pathways [42]. Consistent with this, 
antibodies against NS1 inhibit the development of pathology and elicit 
partial protection against disease in a murine model of dengue virus 
infection [64-67]. In contrast, antibody against NS1 has been shown 
to recognize self-antigen on endothelial cells, and thus implicated 
in causing damage to the vasculature [68,69]. Nonetheless, there is 
evidence that indicates soluble NS1 being unrelated to pathogenesis 
[70]. Therefore, further investigations are needed to determine the 
role of NS1 and anti-NS1 antibodies conclusively, and thereby resolve 
these controversial observations and provide guidance to future 
vaccine design.  

In summary, to obtain an effective dengue vaccine, one needs 
to fully understand the characteristics of dengue specific antibody 
response. Although studies in mice with murine MAb have provided 
much knowledge on humoral immune responses induced by dengue 

infection in animals, not all information gained in mouse studies 
are relevant to human dengue infections. Therefore, hMAb are 
biologically more relevant, which must be obtained from cases with 
natural dengue viral infection, or those received candidate dengue 
vaccines. Careful study of these hMAb will be of tremendous value to 
rationale design of dengue vaccines.  

Antibody response in primary and secondary infection

In a primary infection, dengue specific IgG antibody appears one 
week after the onset of fever, reaches the peak level within weeks, and 
then declines to a lower level that persists for decades. In contrast, 
in a secondary heterologous infection, IgG antibodies are detectable 
earlier (< Day 3 of fever) and at higher levels [71,72]. Although higher 
levels of antibodies are elicited earlier in a secondary infection, the 
majority of which are cross-reactive against the dengue serotype 
causing primary infection [73]. Such cross-reactive antibodies 
produced in a secondary infection may react with conserved epitopes, 
but generally bind to heterotypic virus inefficiently. In addition, the 
presence of such antibodies may also sequestrate new antigens that 
are needed for stimulation of naïve B cells.  Consequently, B cell 
responses specific to the virus serotype in secondary infection are 
weaken and delayed. This phenomenon is called “original antigenic 
sin” [74-76]. Indeed, the highest neutralizing antibody titers in acute 
and convalescent sera from children experiencing secondary dengue 
infection are to the primary infection virus serotype [76]. A recent 
study of anti-EDIII antibodies in a cohort of patients during primary 
or secondary dengue infections also revealed stronger binding 
and enhancement activities against the primary infection DENV 
serotypes during secondary infections [77], thus providing support to 
the theory of “original antigenic sin”.  

As most cross-reactive antibodies generated in primary infection 
do not effectively neutralize heterotypic dengue viruses in secondary 
infection, such “original antigenic sin” could partially contribute 
to increased risk of severe dengue disease in a secondary infection. 
Nonetheless, a recent study has reported that flavivirus group cross-
reactive antibodies isolated from patients with primary dengue 
infection are of low avidity and weak neutralization activity, whereas 
group cross-reactive antibodies from secondary infection have higher 
neutralization potencies compared to cross-reactive antibodies 
produced during primary infection [78]. Further clinical studies 
are needed to clearly define the similarity and difference between 
antibody responses during primary and secondary infections.  

Antibody dependent enhancement

In the presence of preexisting antibodies, viral infection could 
be augmented through a progress called antibody dependent 
enhancement (ADE), rather than being neutralized [79,80]. 
Antibodies with low affinity or those with high affinity at a sub-
neutralizing concentration may form immune complexes with 
viruses. These immune complexes interact with Fcγ receptor 
expressed on the surface of certain cell types through the antibody 
Fc domain [9,79]. Although not fully elucidated yet, there are two 
hypotheses explaining the mechanisms of ADE. According to 
the “extrinsic ADE” theory, binding of virus/antibody immune 
complexes to the Fcγ receptors facilitates virus entry into target cells 
that are either non-permissive or weakly permissive to dengue virus 
in the absence of antibodies, and thus increase the number of cells 
infected by DENV. Whereas the “intrinsic ADE” postulate involves 
the role of host immunity. Specifically, the internalization of immune 
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complexes stimulates downstream Fcγ receptor signal pathways, 
and blocks activation of antiviral response, such as type I interferon 
production and signaling. It has been shown that infection through 
Fcγ receptor suppresses transcription of genes of inflammatory 
cytokines including interleukin-6 (IL-6), IL-12, interferon–γ (IFN-γ), 
and tumor necrosis factor–α (TNF-α); it also inhibits an innate anti-
DENV mediator, nitric oxide; and blocks the activation of STAT-1 
signaling [81]. The outcome of “intrinsic ADE” is the release of more 
viruses from each infected cell [27].  

ADE has been demonstrated in vitro with dengue specific 
antibodies when they are diluted to sub-neutralizing concentrations 
[27,82,83]. However, not all antibodies can reach this range of 
concentrations in vivo. For a given viral strain, key factors influencing 
the outcome of virus-antibody interactions are cross-reactivity, affinity, 
neutralizing capacity and abundance of antibodies. Thus, dengue 
specific antibodies may be functionally classified into neutralizing 
antibodies and enhancing antibodies. But there are exceptions. One 
recent study demonstrated that a murine MAb targeting E protein 
domain II has only enhancement properties in vitro, while another 
has only neutralizing activities towards homologous infection in vitro 
[84]. IgG subclass and activation of specific complement pathways 
also affect the function of these antibodies [84].  

Not only ADE phenomenon has been consistently reproduced 
in primary cells or cell lines, it has also been demonstrated in 
vivo in humans or animal models. Administering antibodies at 
subneutralizing concentrations to non-human primate enhanced 
the dengue viremia following experimental infection [32,85]. 
Pretreatment of IFN receptor deficient AG129 mice with anti-
dengue sera at a subneutralizing concentration leads to vascular 
leakage, and cytokine storm after being infected with D2S10 strain 
of DENV [35,86]. Although there is no direct evidence of ADE in 
secondary dengue infection in humans, the observation that infants 
born to dengue experienced mother are associated with higher risk of 
severe dengue during 6-9 months after birth, but not earlier or later, 
a time frame coincides with the decaying of maternal antibodies to 
a threshold level at around 9 months after birth, suggest a vital role 
for dengue specific antibodies in causing severe dengue disease in 
secondary infection [87].  

Cell immunity

In the course of infection, dengue viruses elicit high levels of T 
cells that are cross-reactive among four dengue serotypes. Whether 
these T cells cause pathogenesis or confer protection remains 
controversial.  

Cytokines released by T cells

T cell responses induced by dengue viral infection had been 
associated with pathogenesis, because of the appearance of cytokine 
storm during disease. Massive secretion of proinflammatory T cell 
cytokines such as IL-2, IFN-γ, and TNF-α were detected in patients’ 
sera in the acute phase of dengue disease, and TNF-α could cause 
increased permeability of endothelial cells in the lining of blood 
vessels [88-90]. Elevation of these cytokines occurred slightly before 
or at the time of defeverscence and coincides with plasma leakage, 
suggesting immunopathogenic roles of these cytokines produced 
by T cells [91]. However, conflict results from cohort studies have 
confounded the interpretation of the role of T cell responses. In 
some studies, higher levels of cytokines were detected in patients 

developing DHF, comparing to DF cases [92,93]. Whereas in other 
studies, the elevation of IL-6, IL-10, MIF (macrophage migration 
inhibitory factor) levels was only observed in fatal DHF cases [94], 
and no differences of IFN-α and IFN-γ levels were found between 
DHF and DF cases [94,95]. In fact, cytokine levels changed rapidly 
over the course of illness, and some were detected in patient sera 
represent an overall production of these cytokines by many cell types. 
Thus the timing of measurement and type of samples from which 
the cytokines were gauged should be considered carefully. Also, the 
patients’ genetic background, such as HLA types should be noted 
[96,97]. In sum, more studies on specific branches of cell immunity 
will help to elucidate the definitive role of T cell immunity during 
dengue disease.

CD4+ T cell response 

CD4+ T cells activated during dengue primary and secondary 
infection mostly recognize structural proteins but also NS1, both of 
which are the main targets of dengue specific B cells. A portion of 
activated CD4+ T cells is follicular helper T cells that can interact 
with B cells to modulate antibody production in vivo [98]. However, 
a study in mice demonstrated that the depletion of CD4+ T cells did 
not affect CD8+ T cell and B cell activities in primary infection, yet 
dengue specific CD4+ T cells contributed to the viral clearance after 
vaccination with peptides derived from non-structural proteins [99].  

CD4+ T cells can exert their function through the production 
of various cytokines. Higher levels of IL-10, mainly secreted by 
CD4+Th2 cells, had been detected in patients with DHF, compared 
to those with DF [100]. Under the modulation of IL-10, bystander T 
cells undergo apoptosis, vacating immunological space for memory T 
cells to expand during secondary dengue infections [101].  

CD8+ T cell response

In contrast to CD4+ T cells, a majority of CD8+ T cells target 
non-structural proteins, while a smaller proportion of them targets 
structural proteins [98]. CD8+ T cells, recognizing structural 
proteins, are generally serotype specific, while those that recognize 
non-structural proteins (predominantly NS3) are highly cross-
reactive [102]. Many studies have speculated that broadly cross-
reactive T cell responses contribute to the pathogenesis of dengue 
disease by triggering inflammatory cytokine storm or lysing virus 
infected cells directly. Indeed, a recent cohort study showed that 
a lower magnitude of HLA restricted CD8+ T-cell response is 
associated with an increased disease susceptibility [97], suggesting a 
protective role of CD8+ T cell response against dengue viral infection 
[97,103]. Furthermore, immunization with immunodominant CD8+ 
T cell epitopes enhanced viral clearance in experimental dengue 
viral infection in mice [104]. However, in another murine study, the 
infiltration of CTL was associated with liver damage during dengue 
viral infection [40].

Similar to what has been observed for B cells, T cell response 
induced by dengue infection is also thought to be affected by the 
“original antigenic sin” [76,89]. Some data have showed that T cell 
responses induced during secondary infection are dominated by 
an expansion of T cells specific to the primary infection serotype 
[89,90,105], this may lead to diminished response to the virus causing 
the secondary infection and resulting in a less effective viremia 
control. However, in a recent study that screened human dengue 
specific T cell epitopes using overlapping peptides covering the full 
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length of DENV genome, no differences were found between CD8+ 
T cell responses targeting serotype specific and conserved epitopes in 
terms of magnitude, phenotype, multifunctionality, or avidity, thus 
questioning whether an original antigenic sin exists in the context of 
dengue-specific T cell response [97,103].  

In sum, for aiding rationale dengue vaccine design, both 
CD4+ and CD8+ T cell immunity need further in-depth analysis. 
Additionally, other factors such as host (human or mouse), primary/
secondary infection, host HLA type, and sampling time must be taken 
into consideration.  

Current dengue vaccine development 

To contain the spread of dengue virus around the world, 
researchers have tried to develop an effective dengue vaccine for years. 
From inactivated vaccines, live attenuated vaccines, recombinant 
vaccines to subunit vaccines and DNA vaccines, various candidates 
have been examined, and several general concepts of dengue vaccine 
design have been developed. First, it must be tetravalent to cover all 
four dengue serotypes. Second, it should elicit potent and balanced 
neutralizing antibody responses to all four dengue serotypes. And 
third, it must not induce enhancing antibodies. However, many 
unanticipated problems have been revealed in the process of dengue 
vaccine development. How to overcome these problems have become 
current goals of vaccine research.  

Live attenuated vaccines and recombinant vaccines 

Most traditional vaccines are made by inactivated pathogens. As 
inactivated dengue vaccines only trigger limited immune response, 
plus the low yield in cell culture method for preparing viral stock, 
its development has been largely discontinued. Much work now 
focuses on live attenuated vaccines and recombinant vaccines. Until 
the 1980s, live attenuated vaccines were still produced through 
sequential passage of viruses in different host or cells. More recently, 
molecular biology tools enabled the development of vaccines 
by introducing mutations to particular sites on viral genome or 
making chimerization with other flavivirus or viral vectors to form 
a genetically more defined attenuated virus.  One dengue candidate 
vaccine with four live viruses made by attenuation through serial 
passages in primary dog kidney (PDK) cells and fetal rhesus lung 
(FRhL) cells has completed Phase II clinical trial [106]. Another type 
of live attenuated vaccines were developed by deleting 30nt at 3’UTR, 
or replacing prME of 30nt-deleted DENV4 with prME from other 
serotype viruses [107]. Several such admixtures of live attenuated 
tetravalent vaccines (LATV) consisted of selected attenuated viruses 
were shown to be safe and capable of inducing trivalent or better 
neutralizing antibodies in vaccine recipients [108].  

The CYD23 recombinant vaccine had been made by swapping 
dengue virus prME genes with that of Yellow Fever (YF) viral genes 
on YF17D backbone. This vaccine has finished Phase IIb clinical trial 
and produced partial protection against 3 serotypes of dengue viruses 
[109]. The major problem of CYD23 is the lack of protection against 
DENV-2 in the endemic region where this serotype has the highest 
prevalence. One explanation offered by the trial investigators is the 
interference among four dengue viral serotypes in vivo when the 
four vaccine viruses were inoculated within one admixture.  Another 
possibility is that antibodies elicited by the DENV-2 viral strain used 
in the vaccine could not neutralize the contemporaneous DENV-
2 viral strain in Thailand [109,110]. Additionally, compare to live 

attenuated viruses or chimeric DENVs, CYD23 only incorporated 
dengue viral structural antigens, most of which stimulate B cell and 
CD4+ T cell responses. As the protective role of dengue specific 
CD8+ T cells has been implicated in recent studies [97], CD8+ T cell 
epitopes may have to be added to a dengue vaccine.  

Structural proteins including prM from all four dengue serotypes 
were included in all aforementioned live attenuated or recombinant 
vaccines, because they are the main antigens recognized by 
neutralizing antibodies. However, more recently, evidences support 
prM protein elicits cross-reactive antibodies and facilitates the 
infection of immature virus were reported [61,106-108]. A new E85 
vaccine that has removed prM and retained ectodomain of E protein 
and expressed in alphavirus vector, has been shown to induce robust 
protective immunity against dengue virus infection in a macaque 
model of dengue viral infection [111]. Direct comparison between 
vaccines with or without prM with respect to immunogenicity and 
protective efficacy will help to determine whether prM is a necessary 
component in a dengue vaccine.  

Subunit vaccine and DNA vaccine

Subunit protein vaccines and DNA vaccines have been explored 
more recently. Different from attenuated vaccines, subunit vaccines 
and DNA vaccines avoid the potential risk of virulence caused by 
reversion virus, have fewer adverse effects, and can be produced 
outside a biosafety level III laboratory.  

In mice, tetravalent EDIII proteins have induced balanced 
neutralizing antibody responses to all four serotype of viruses, with 
only minor enhancement activity observed in anti-EDIII sera [112]. 
Whether tetravalent EDIII vaccine elicits protective immunity in vivo 
and whether EDIII elicits neutralizing antibodies to all four serotype 
of viruses in humans as it did in mice are yet to be determined. A 
subunit vaccine that has been advanced to clinical trials is based on 
the expression of E protein ectodomain (80%E). It theoretically can 
induce anti-E antibodies that target both enhancing and neutralizing 
epitopes outside the EDIII region. Such tetravalent 80%E elicited 
neutralizing antibodies against four dengue serotypes, and conferred 
protection against DENV-2 in mice and monkeys [113]. Recently, 
neutralizing hMAbs targeting EDI/II have been found in patients 
recovered from dengue viral infection, thus, a direct comparison 
between EDIII and the whole E ectodomain with respect to their 
immunogenicity and protective efficacy is needed. 

Most dengue DNA vaccines deliver prME nucleotide fragment 
as antigens and form virus like particles (VLP) in host [114-116]. The 
VLP is structurally similar to the naturally processed and assembled 
virus, and has the capacity to stimulate both B and T cell responses 
[116,117]. One obstacle of DNA vaccine development is that DNA 
has weaker immunogenicity in comparison to protein or viral 
particle vaccines. To solve this problem, dengue DNA vaccines are 
often inoculated with adjuvant or used in combination with subunit 
vaccines [117-119]. Although DNA vaccine has the advantage of low 
cost and ease of production, the optimal method of delivering a large 
amount of concentrated DNA into human body needs to be explored.  

Obstacles in Dengue Vaccine Development
Interference among the viruses in a tetravalent Vaccine

Interference or interaction among live viruses has been observed 
when multivalent attenuated or inactivated viruses are mixed and 
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administered in a single inoculation. As the replication of each 
attenuated virus and immune dominance towards various viral 
antigens could not be predicted with precision before the inoculation, 
empirical modulation and adjustment of vaccine formulation and the 
dose of each component are often necessary. This approach, albeit 
worked in the trivalent polio virus vaccine [120], is cumbersome. 
Easier and more rationally methods to avoid the interferences remain 
to be discovered.  

In-vitro neutralizing ability does not predict protective 
immunity in vivo

Although sera collected from subjects of CYD23 trials have an 
apparently balanced neutralizing activity to autologous viruses 
representing all four dengue serotypes in the plaque reduction 
neutralization test (PRNT) in Vero cells, protection against DENV-
2 was not observed in the vaccinated children, despite variable 
degrees of protection were demonstrated against DENV-1, -3 and 
-4. Although PRNT titer is widely accepted as a gold standard to 
evaluate immunogenicity and a benchmark for the prediction of in 
vivo protective efficacy, it has not served these purposes in the large 
scale dengue vaccine clinical trial. The inconsistency between in vitro 
assay and in vivo activity of antibodies may be partially attributed to 
the enhancing activity of non-neutralizing antibodies elicited in vivo, 
which could not be detected in fibroblast-like Vero cells in vitro. Since 
the principal target cells of DENV are dendritic cells (DC), monocytes, 
and macrophages, it is necessary to perform neutralization test and 
enhancement assay in human primary cells to adequately evaluate 
antibody activities in clinical trials. At a minimum, cells that mimic 
the biological properties of monocytic cells should be used to more 
convincingly demonstrate neutralization and enhancement profiles 
of vaccine induced antibodies, before conclusions are made on 
vaccine efficacy and a decision is made on licensure.  

Intra-serotype variation 

Current tetravalent dengue vaccines have been designed based on 
the assumption that neutralizing antibodies induced by one strain of 
virus can protect people from infection by any viral strains within 
the same serotype. Although from cohort studies, it is observed that 
infection by one serotype can protect patient from re-infection by 
the same serotype of virus for decades or a lifetime [121], different 
neutralization activity was observed for different viral genotypes. It 
is common to find that one monoclonal antibody cannot neutralize a 
large panel of viruses from the same serotype [53,122], and the result 
of neutralization test also depends on the panel of viruses selected. 
To obtain a tetravalent vaccine with broad coverage, representative 
strain for each of the four components needs be selected at an early 
stage of vaccine development.  

Future Perspective of Rationally Designed Dengue 
Vaccines 
Genetically engineered subunit vaccine

As discussed above, subunit vaccines have advantages over live 
attenuated vaccines with respect to safety and ease of preparation. 
In addition, shorter intervals between boosts, as is often the case 
for subunit vaccines, also decrease the risk of enhanced infection by 
endemic viruses before the vaccination schedule is completed, and 
when antibody titers in vaccines may still be at sub-neutralizing levels. 
Although subunit vaccines may not be able to induce neutralizing 

antibodies targeting complex epitopes which only exist on virion, they 
have the potential to be genetically modified by selecting neutralizing 
epitopes and removing enhancing ones. Moreover, through a similar 
strategy, “good” epitopes from different viral serotypes could be 
selected and integrated into one genetic backbone, which could be 
chosen from either one dengue serotype or a consensus sequence of all 
serotypes. By expanding the reference genomes from representative 
strains of four dengue serotypes to all epidemic strains, consensus 
sequence will have the potential to solve the intra-serotype variation 
problem.  

T cell vaccine

Before recent studies indicating a protective role of CD8+ T 
cells against dengue viral infection, T cell immunity had been to a 
large extent neglected as it was thought to be associated with viral 
pathogenesis. In view of the failure of chimeric vaccine CYD23, 
which was designed principally to stimulate neutralization antibodies 
and did not include nonstructural proteins that can stimulate T cells, 
a new focus on T cell immunity in dengue vaccine development may 
be needed. Inclusion of antigens capable of eliciting T cell response 
in a vaccine (besides live attenuated dengue viruses), or selection of 
optimal T cell epitopes for a T cell vaccine, may help to create a better 
dengue vaccine.  

The roles of antigen presenting cells (APC) in dengue 
vaccine design

When dengue virus is transmitted to humans through mosquito 
bite, the first infected cells are thought to be Langerhans cells, which 
are specialized skin dendritic cells (DCs) [123]. In experimental 
models, dengue viruses enter immature DCs via dendritic cell-
specific intercellular adhesion molecule-3-grabbing non-integrin 
(DC-SIGN). Upon maturation, DC-SIGN is down regulated and 
Fcγ receptors are upregulated. Through Fcγ receptor, mature DCs 
facilitate ADE in a secondary infection [124]. Dengue infection of 
monocyte derived DC (mDC) and plasmacytoid DC (pDC) lead to 
a diminished upregulation of MHC and co-stimulatory molecules 
[125], and render them incapable of priming CD4+ Th1 cells [126]. 
In an attempt to initiate stronger cellular and humoral protective 
immunity against dengue virus, some have started to test a new 
vaccine strategy by delivering dengue antigens to dendritic cells 
directly [127]. Whether such a manipulation can improve the balance 
and potency of dengue specific immune responses is yet to be tested 
experimentally. 

Summary 
After a half century’s basic research and clinical trials, the 

mechanisms underlying dengue protective immunity have been 
gradually revealed, these knowledge provide foundation for an 
improvement in the design of future dengue vaccines. Besides 
traditional human pathogen based vaccine and antiviral drugs, 
expanded knowledge of flavivirus infection in mosquitoes [128-132], 
modulation of dengue infection in mosquitoes through infection 
by Wolbachia bacterium or genetic modification [133-135], will 
also provide additional novel strategies to control dengue virus 
transmission. The more we know, the further we can move forward 
in the direction of making an ideal dengue vaccine. Based on current 
knowledge of DENV specific immunity, either induced by natural 
viral infection or elicited by candidate vaccines, new dengue vaccine 
design and modification of current vaccine candidates can be made to 
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eventually obtain an efficacious human dengue vaccine.
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