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Adaptive Design Methods in Clinical Trials
Investment in pharmaceutical research and development (R & D) 

has more than doubled in the past decade. The increase in spending 
for biomedical research does not reflect an increased success rate 
of pharmaceutical development. There are several critical areas 
for improvement in drug development. One of the obvious areas 
for improvement is the design, conduct, and analysis of clinical 
trials. Improvement of the clinical trials process includes [1] the 
development and utilization of biomarkers or genomic markers [2], 
the establishment of quantitative disease models, and [3] the use of 
more informative designs such as adaptive and/or Bayesian designs. 
We should not use the evaluation tools and infrastructure of the last 
century to develop this century’s advances. Instead, an innovative 
approach using adaptive design methods for clinical development 
must be implemented.

In general, an adaptive design consists of multiple stages. At each 
stage data analyses are conducted and adaptations take place based on 
updated information to maximize the probability of success of a trial. 
An adaptive design is a clinical trial design that allows adaptations 
or modifications to aspects of the trial after its initiation without 
undermining the validity and integrity of the trial [1-3].

The adaptations may include, but are not limited to, (1) group 
sequential designs, (2) sample-size adjustable designs, (3) pick-
the-winner and add-arm designs, (4) adaptive treatment allocation 
designs, (5) adaptive dose-escalation designs, (6) biomarker-adaptive 
designs, (7) adaptive treatment-switching designs, (8) adaptive 
dose-finding designs, and (9) adaptive error-spending designs. An 
adaptive design usually consists of multiple stages. At each stage, data 
analyses are conducted, and adaptations are taken based on updated 
information to maximize the probability of success.

An adaptive design must preserve the validity and integrity of the 
trial. The validity can be classified as internal and external. Internal 
validity is the degree to which we are successful in eliminating 
confounding variables and establishing a cause-effect relationship 
(treatment effect) within the study itself. External validity is the degree 
to which findings can generalize to the population at large. Integrity 
involves minimizing operational bias; creating a scientifically sound 
protocol design; adhering firmly to the study protocol and standard 
operating procedures (SOPs); executing the trial consistently over 
time and across sites or country; providing comprehensive analyses of 
trial data and unbiased interpretations of the results; and maintaining 
the confidentiality of the data.

Background 

The term “adaptive design” in clinical trial may have been first 
introduced by Bauer as early as 1989 [4-8]. Adaptive Randomization 
designs were early studied by Hoel, Simon and Weiss, Simon, 
Wei, Wei & Durham, Hardwick and Stout, Rosenberger & Lachin, 
and more recently by Rosenberger & Lachin, Rosenberger and 
Seshaiyer, Hu, and Ivonova under different names [9-20]. The recent 
developments in adaptive randomization were covered in the book 
edited by Sverdlov [21]. Bayesian adaptive dose-escalation design was 
first studied by O’Quigley, Pepe and Fisher [22]. Chang and Chow 
studied a hybrid approach with adaptive randomization [1]. Adaptive 
dose-escalation and dose-finding design were further studied by 
Ivanova & Kim, Yin & Yuan, and Thall [23-25]. Winner design with 
three groups [26] and drop-loser and add-arm designs [27] were also 
developed for later stage trial designs.

A randomized concentration-controlled trial (RCCT) is one in 
which subjects are randomly assigned to predetermined levels of 
average plasma drug concentration. The dose adaptation takes place 
based upon observed concentrations that are used in each patient 
to modify the starting dose to achieve the pre-specified randomized 
concentration. The RCCT is designed to minimize the inter individual 
pharmacokinetic (PK) variability within comparison groups and 
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Abstract
In the past decade, the pharmaceutical industry experienced a 

paradigm shift from classical to adaptive clinical trial design. The high 
NDA failure rate and the increasing cost in pharmaceutical R & D is 
the motivation behind the innovation. Biostatisticians in collaboration 
with physicians and other major stockholders in pharmaceutical R & D 
are the driving force in this revolution. In this review paper, we provide 
an overview of adaptive trial design, covering majority of types of 
adaptive designs, and the opportunities, challenges, and controversies 
surrounding adaptive trials. We cover the topic broadly as there have 
been explosions of research papers that consider adaptive design 
over the past decade. Adaptive designs have become very popular, 
making it impossible to cover them all in a single overview paper.
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consequently decrease the variability in clinical response within these 
groups [28,29].

Adaptive methods were further developed to allow sample size 
reestimation [30-32], which has caused controversies surrounding 
the unequal weights for patients from different stages and efficiency 
of the design compared to GSD [33].

Biomarker utilization in clinical trial was studied by Simon & 
Maittournam, Mandrekar & Sargent, Weir & Walley, Simon, and 
Baker et al. [34-38]. Population Enrichment design and adaptive 
designs using biomarker or genomic markers are adaptive designs 
that allow us to select target population based on interim data [39]. 
Simon & Wang and Freidlin, Jiang & Simon studied a genomic 
signature design, Jiang, Freidlin & Simon proposed Biomarker-
adaptive threshold design, Chang and Wang, Hung & O’Neill studies 
population enrichment design using biomarker, which allow interim 
decision on the target population based on power or utility [40-45]. 
Song & Pepe studied markers for selecting a patient’s treatment 
[46]. Further studies on biomarker-adaptive design were done by 
Beckman, Clark, and Chen for oncology trials, and more recently 
by Wang, Wang, Chang, and Menon using a two-level relationship 
between biomarker-primary endpoint [47-50].

Recently, adaptive design has been developed into multiregional 
clinical trials [51], in which sample size can be redistributed among 
different regions depending on the interim data in different regions to 
maximize the probability of success.

For any particular compound, there are many adaptive designs 
can be used. The optimal design fits particular needs should be 
based on so-called evaluation matrix. Menon and Chang studied 
the optimization of the adaptive design was using simulations [52]. 
Chang provides a practical approach [53]. For adaptive trial interim 
data monitoring and adaptation-making, readers can refer to books 
Proschan, Lan, and Wittes, DeMets, Furberg, and Friedman, and 
Chang [54-56].

Recent analysis and applications 

The analyses of data from adaptive trials are complicated with 
many unsolved controversies, provoking discussions of fundamental 
statistical principles or even scientific principles in general [57,58]. 
Different proposed methods have been studied by Chang, Emerson, 
Liu and Hall, Lui and Xiong, Chang, Chang, Wieand, and Chang, 
Chang, Gould, and Snapinn, and Pickard and Chang [59-71].

In a recent investigation on the use of adaptive trial designs [72], 
it is reported that among all adaptive design they investigated, 29% is 
GSD, 16% SSR, 21% Phase-I/II or Phase-II/III seamless designs, and 
41% dose-escalation, dose-selection and others.

The adaptive design has gained popularity since 2005 when a 
group of people from the pharmaceutical industry, academia, and 
government started a series of conferences and workshops on adaptive 
clinical trials in the United States and Internationally. There are two 
working groups who have made significant contributions to the 
popularity of adaptive clinical trial designs: PhRMA Adaptive Design 
Working Group [2] and Biotechnology Industry Organization (BIO) 
Adaptive Design Work Group [73]. The popular book by Jennison & 
Turnbull has greatly popularized group sequential design [74]. The 

first book that covers a broad of adaptive design methods by Chow 
and Chang has helped the community to understand what adaptive 
designs really mean [76]. In the following year Chang [44] published 
Adaptive Design Theory and Implementation using SAS and R, 
which enable statisticians to get hands on experiences on adaptive 
designs and simulations, and help them practically implement 
different adaptive trials. The Bayesian Adaptive Method in Clinical 
Trials by Berry et al. greatly popularized the Bayesian adaptive design 
in oncology trials [76].

Chow and Chang give a review of adaptive designs [77]. Bauer 
et al. also give a recent review on adaptive design [8]. Our purposes 
here are different: we give an overview of adaptive design and clarify 
common confusions to statisticians who have limited exposure 
to adaptive trials. For this reason, we cannot avoid some statistical 
formulations to clarify the important concepts.

In particular, we aim to answer the following common sources 
of confusion in adaptive trial design: (1) Adaptive design can be a 
frequentist approach or Bayesian approach, which are based on 
very different philosophies or two different statistical paradigms, (2) 
adaptive design is a relatively new methodology with vast amount 
publications in a short period of time with inconsistent terminologies 
and (3) different test statistics, different error-spending parametric 
function, different stopping boundaries, different adaptations can all 
lead different methods.

  In this paper we will describe trial adaptations including: (1) 
group sequential designs, (2) error-spending designs (3) sample size 
re-estimation designs, (4) pick-the-winner and add-arm designs, (5) 
adaptive randomization designs, (6) adaptive dose-escalation designs, 
and (7) biomarker-adaptive designs. This list is not exhaustive but 
will provide a foundation for readers for further exploration into 
adaptive design literature.

Group Sequential Design
A group sequential design (GSD) is an adaptive design that allows 

for premature termination of a trial due to efficacy or futility based 
on the results of interim analyses. The simplest adaptive trial design 
is the group sequential design (GSD). The idea is no difference from 
the full sequential analysis, first developed by Abraham Wald as a 
tool for more efficient industrial quality control during World War 
II [78]. A similar approach was independently developed at the same 
time by Alan Turin, for messages decoding [79,80]. GSD for clinical 
trials was early suggested by several researchers, including Elfring & 
Schultz, McPherson, but more impactful papers are papers of Pocock, 
O’Brien & Fleming, Lan & DeMets, Wang & Tsiatis, Whitehead & 
Stratton, and Lan & Demets [81-88]. For the practical reasons, in 
group sequential tests the accumulating data are analyzed at intervals 
rather than after every new observation [74].

GSD was originally developed to ensure clinical trial efficiency 
under economic constraints. For a trial with a positive result, early 
stopping ensures that a new drug product can be exploited sooner. If 
a negative result is indicated, early stopping avoids wasting resources 
and exposing patients to an ineffective therapy. Sequential methods 
typically lead to savings in sample-size, time, and cost when compared 
with the classical design with a fixed sample-size. Interim analyses 
also enable management to make appropriate decisions regarding 
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the allocation of limited resources for continued development of a 
promising treatment. GSD is probably one of the most commonly 
used adaptive designs in clinical trials.

There are three different types of GSDs: early efficacy stopping 
design, early futility stopping design, and early efficacy/futility 
stopping design. If we believe (based on prior knowledge) that the test 
treatment is very promising, then an early efficacy stopping design 
may be used. If we are concerned that the test treatment may not 
work, an early futility stopping design may be employed. If we are 
not certain about the magnitude of the effect size, a GSD permitting 
both early stopping for efficacy and futility should be considered. 
In practice, if we have reasonable knowledge regarding the effect 
size, then a classical design with a fixed sample-size would be more 
efficient.

The statistical determination of drug efficacy in a Phase-III trial is 
typically through hypothesis test: 

0 : 0H δ =  (drug is ineffective) vs : 0aH δ >  (drug is effective)

where z₁ and z₂ are the common z-statistics formulated based on 
data collected from each stage (not cumulative data), and I₁, I₂ are the 
information times ( bounded by 0 and 1) or sample size fractions at 
stage one and two, respectively.

  Since 1I   and 2I  are predetermined, 
1 1I z  and 1 2I z  in the 

test statistic are independent. As a result, the probability distribution 
of  1 1T z= and  2 1 1 2 2T I z I z= +  are standard multivariate normal under 
null hypothesis H₀.

  To control Type-I error, stopping rules of a GSD can be specified 
as

Reject H0 (stop for efficacy) if k kT α≥

Accept H0 (stop for futility) if k kT β< ,

Continue trial to the next stage if k k kTβ α≤ <

where the stopping boundary ( 1,..., 1),k k k Kβ α< = −  and 
k kβ α= . For convenience, k kandβ α are called the efficacy and futility 

boundaries, respectively.

  To reach the kth stage, a trial has to pass the 1st to (k-1)th stages. 
Therefore, the probability of rejecting the null hypothesis H₀ at the kth 
stage is given by ψk(αk), where probability function

                               1 1 1 1 1 1( ) Pr( ,..., , )k k k k kt T T T tψ β α β α− − −= < < < < ≥      

   The acceptance probability at the kth stage is given by ϕk(βk), 
where 

   1 1 1 1 1 1( ) Pr( ,..., , )k k k k kt T T T tϕ β α β α− − −= < < < < <                                 

  At the final stage K, the stopping boundary αK= βK.

  For continuous, binary, and survival endpoints, the test statistics 
on z-scale at different stages follow a multivariate normal distribution 
under the large sample size assumption. This multivariate normal 
distribution becomes standard one under the null hypothesis, H₀. 
Stopping boundaries can be determined by: (1) determine how 
much α (Type-I error) we are willing to spend at each stage, denoted 
by πk, π₁+π₂+...πK=α (the overall significance level for the test), (2) 
select a futility stopping boundaries β₁,β₂,...,βK-1, and a small α₁=π₁<α 

(the overall significance level of the test), (3) try different t, through 
multiple integration until ψk(t)=πk, k=2,3,.... The αk values are 
determined progressively from α₂ to αK.

  If βk=0, the stopping rule in (3) implies if the observed treatment 
effect is zero, the trial will be stopped, if βk= -∞, it implies the trial 
will never stop for futility; if βk=1, it implies when the (unadjusted) 
p-value 1 (1) 0.1587p > −Φ = , the trial will stop for futility.

  When the futility boundary, ( ),kβ > −∞ is used, the efficacy 
boundary, αk, is smaller making it easier to reject H₀ in comparison 
to the situation without a futility boundary. This is because with βk, 
some of the Type-I errors when Tk>βk are eliminated. In practice, 
however, the FDA so far has taken a conservative approach, making 
it more difficult to claim efficacy (i.e., αk reduced). The FDA has 
requested that αk be calculated based on the scenario that there is no 
any futility boundary and the assumption that the trial will never stop 
for futility at an interim analysis. The basis for the recommendation 
of this approach is that a company often does not stop for futility 
as specified in the protocol, i.e., the futility boundaries βk are not 
considered formally binding.

GSD is the simplest and well accepted approach for adaptive 
design [89], but it is major limitation is that the timing (information 
time) of the interim analyses is fixed, which is inconvenient in 
practice since the scheduled time of interim analysis (IA) often 
needs to change due to the availability of data monitor committee 
(DMC) members. If the information time changes for the IA, then the 
stopping boundaries are not valid anymore. Because of this practical 
issue, Lan and DeMets developed so-called error-spending approach 
that allows to change the timing and the number of analyses in a GSD 
[85]. For GSD, how to incorporate safety information in the design is 
an area that needs further study.

Error-Spending Approach
The Error-Spending Approach to adaptive trials uses a prespecified 

error-spending function to recalculate the stopping boundaries 
based on the actual timing of the IA. As we discussed in Section 2, 
to determine the efficacy stopping boundaries αk, we need to select 
an amount of the total α that will be spent at each stage: π₁,π₂,...,πK. 
If we want the error-spending to follow certain patterns, e.g., 
monotonically increasing, constant, or monotonically decreasing, we 
can specify a function for the π to follow. This function can be based 
on information time I (sample size fraction) at the interim analyses, 
or simply as a function of stage sequence number.

The main advantage of using an error-spending function of 
information time π(I) is that it allows us to change the timings and 
the number of analyses without α-inflation, as long as such a change 
is not based on the observed treatment difference and an error-
spending procedure is followed. For example, if an interim analysis 
is conducted at information time I=0.3, we will spend π(0.3) at the 
interim analysis regardless of the scheduled time. The error-spending 
approach is an adaptive design method that can be useful when 
DMC members cannot make the schedule time to review the interim 
results. The method that prespecified a error-spending function 
and recalculate the stopping boundary based on the actual interim 
analysis time is called error-spending approach [44,56,85,88,90].
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Commonly used classes of error-spending functions are O’Brien-
Fleming-like spending function, the Pocock-like function, and the 
power-function family. The power-function family, ( ) bI tπ α=
is valuable as it, can approximate the others error-spending functions 
well (see Figure 1).

Error-spending approach solved the practical problems with 
GSD about IA schedule, but the maximum sample size in a GSD may 
not be larger enough when the treatment effect is over-estimated. If 
we use a larger maximum sample size in GSD, it may not be cost-
effective. The sample size re-estimation design is developed to handle 
the situation when there is a great uncertainty about treatment effect, 
but we don’t want to make a large, unnecessary commitment before 
seeing the interim data.

Sample-Size Re-estimation Design
A sample-size reestimation (SSR) design refers to an adaptive 

design that allows for sample-size adjustment or re-estimation based 
on the review of interim analysis results. The sample-size requirement 
for a trial is sensitive to the treatment effect and its variability. An 
inaccurate estimation of the effect size or its variability could lead to an 
underpowered or overpowered design, neither of which is desirable. 
If a trial is underpowered, it will not be able to detect a clinically 
meaningful difference, and consequently could prevent a potentially 
effective drug from being delivered to patients. On the other hand, if 
a trial is overpowered, it could lead to unnecessary exposure of many 
patients to a potentially harmful compound when the drug, in fact, 
is not effective. In practice, it is often difficult to estimate the effect 
size and variability because of many uncertainties during protocol 
development. Thus, it is desirable to have the flexibility to re-estimate 
the sample-size in the middle of the trial.

There are two types of sample-size reestimation procedures, 
namely, sample-size reestimation based on blinded data and sample-
size reestimation based on unblinded data. In the first scenario, the 
sample adjustment is based on the (observed) pooled variance at the 
interim analysis to recalculate the required sample-size, which does 
not require unblinding the data. In this scenario, the Type-I error 
adjustment is practically negligible; in fact, FDA and other regulatory 
agencies typically regard this type of sample size adjustment to be 
unbiased and without any statistical penalty. In the second scenario, 
both the effect size and its variability are re-assessed, and sample-size 
is adjusted based on the updated information. The statistical method 
for adjustment could be based on the observed effect size or the 
calculated conditional power.

The main statistical challenge of SSR compared to GSD is that 
unlike in GSD, in which the 

1 1I z  and 
1 2I z  in the test statistic T2 are 

independent, in SSR, because
1 2I z is a function of the second stage 

sample size n₂ that depends on the observed treatment difference 
or z₁ from the first stage data. The joint distribution of T1 and T2 is 
much more complicated than in GSD. Several solutions have been 
proposed, including the fixed weight method [30], the method of 
adjusting stopping boundary through simulations [44,56], and 
promising-zone methods [31,32].

The fixed weight method for combining test statistics usually takes 
the square-root of the information time at the interim analysis with 
the original final sample size No as the denominator, i.e., 1

0
0

nI
N

=

 2 0 1 0 21T I z I z= + −

  The weighted Z-statistic approach (7) is flexible in that the 
decision to increase the sample size and the magnitude of sample size 
increment are not mandated by pre-specified rules. Chen, DeMets, 
and Lan proposed the Promising-Zone method, where the unblinded 
interim result is considered “promising” and eligible for SSR if the 
conditional power is greater than 50 percent, equivalently, the sample 
size increment needed to achieve a desired power does not exceed 
a prespecified upper bound [31]. The Promising-Zone method may 
be justifiable to effectively put resources on drug candidates that are 
likely effective or that might fail only marginally at the final analysis 
with the original sample size, based on the information seen at the 
interim analysis.

Some researchers prefer using an equal weight for each patient, 
i.e., “one patient, one vote”. The “one patient, one vote” policy for the 
test statistic at the second stage does not follow the above formulation 
because the patients from the first stage (T₁) have potentially two 
opportunities to vote in the decision-making (rejecting or not 
rejecting the H₀), one at the interim analysis and the other at the final 
analysis, while patients from the second stage have at most one time 
to vote when the trial continues to the second stage.

Chen, DeMets, and Lan proposed a variation of the Promising-
Zone method, using a conservative test statistic for the second stage 
[31]:

                 

0 11 1 1
2 1 2 1 2

0 0

min ,N nn n N nT z z z z
N N N N

 − − = + + 
  

          where z₁ and z₂ are the usual Z-statistic based on the subsamples 
from stages 1 and 2, respectively. n₁ is the sample size at the interim 
analysis, No is the original final sample size and N is the new final 
sample size after adjustment based on the interim analysis.

Using this modified test statistic, the authors proved that when 
the conditional probability based original sample size is larger than 
50%, then adjusted sample size, i.e., increasing the sample size when 
the unblinded interim result is promising will not inflate the type I 
error rate and therefore no statistical adjustment is necessary.

Mehta and Pocock proposed another Promising-Zone method, 

Figure 1: Comparisons of Error-Spending Functions.
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in which they define the promising zone as the interim p-value p1 
between 0.1587 (z1=1.206) and 0.0213 (z1=2.027) [32]. They chose 
these values because when one-sided p-value p₁ is larger but close to 
0.1 at the interim analysis with information time τ=0.5, the trial is likely 
to marginally fail to reject Ho at the final analysis with p-value around 
0.06 to 0.15. Those drug candidates are likely clinically effective, thus 
we want to “save” those trials and allow them a better chance to show 
statistical significance by increasing the sample size. If the p1 is, say, 
larger than 0.2 (0.4 for two-sided p-value), we will stop the trial earlier 
at the first stage. For practical purposes, we recommend the following 
approach: combine the futility boundary with the upper bound of 
the promising zone and recommend using β1=0.2 for the one-sided 
p-value at the interim analysis with information time 0.5.

Current SSR methods [30], down weighting patients from the 
second stage, are not very efficient. Tsiatis and Mehta argue that GSD 
is more efficient than SSR design [33]. On the other hand, GSD is 
just a special case of SSR design and “the part” cannot be larger than 
“the whole.” More efficient SSR designs are desirable and need more 
research.

Pick-Winner Design
The multiple-arm dose response study has been studied since 

the early 1990s. Under the assumption of monotonicity in dose 
response, Williams proposed a test to determine the lowest dose 
level at which there is evidence for a difference from the control [91]. 
Cochran, Amitage, and Nam developed the Cochran-Amitage test 
for monotonic trend. For the strong familywise Type-I error control, 
Dunnett’s test and Dunnett & Tamhane based on the multivariate 
normal distribution is most often used and Rom, Costello, Connell 
proposed a closed set test procedure [92-98]. A recent addition to the 
adaptive design arsenal is multiple-arm adaptive designs. A typical 
multiple-arm confirmatory adaptive design (variously called drop-
the-loser, drop-arm, pick-the-winner, adaptive dose-finding design, 
or Phase II/III seamless design) consists of two stages: a selection 
stage and a confirmation stage. For the selection stage, a randomized 
parallel design with several doses and a placebo group is employed. 
After the best dose (the winner) is chosen based on numerically 
“better” observed responses, the patients of the selected dose group 
and placebo group continue to enter the confirmation stage. New 
patients are recruited and randomized to receive the selected dose or 
placebo. The final analysis is performed with the cumulative data of 
patients from both stages [44,99].

Recent additions to the literature include Bretz et al. who studied 
confirmatory seamless Phase II/III clinical trials with hypothesis 
selection at interim. Huang, Liu, and Hsiao proposed a seamless 
design to allow pre-specifying probabilities of rejecting the drug at 
each stage to improve the efficiency of the trial [100,101]. Posch, 
Maurer, and Bretz described two approaches to control the Type I 
error rate in adaptive designs with sample size reassessment and/or 
treatment selection [102]. The first method adjusts the critical value 
using a simulation-based approach that incorporates the number of 
patients at an interim analysis, the true response rates, the treatment 
selection rule, etc. The second method is an adaptive Bonferroni-
Holm test procedure based on conditional error rates of the individual 
treatment-control comparisons. They showed that this procedure 
controls the Type I error rate, even if a deviation from a pre-planned 

adaptation rule or the time point of such a decision is necessary. Shun, 
Lan and Soo considered a study starting with two treatment groups 
and a control group with a planned interim analysis [26]. The inferior 
treatment group will be dropped after the interim analysis. Such an 
interim analysis can be based on the clinical endpoint or a biomarker. 
The unconditional distribution of the final test statistic from the 
‘winner’ treatment is skewed and requires numerical integration or 
simulations for the calculation. To avoid complex computations, they 
proposed a normal approximation approach to calculate the Type-I 
error, the power, the point estimate, and the confidence intervals. 
Heritier, Lô and Morgan studied the Type-I error control of seamless 
unbalanced designs, issues of noninferiority comparison, multiplicity 
of secondary endpoints, and covariance adjusted analyses [103]. 
Further extensions of seamless designs that allow adaptive designs to 
continue seamlessly either in a subpopulation of patients or in the 
whole population on the basis of data obtained from the first stage 
of a Phase II/III design have also been developed. Jenkins, Stone, and 
Jennison proposed design adds extra flexibility by also allowing the 
trial to continue in all patients but with both the subgroup and the 
full population as coprimary populations when the Phase II and III 
endpoints are different but correlated time-to-event endpoints [104].

  Shun, Lan and Soo found that under the global null hypothesis, 
common z statistic Zw from the winner group is approximately 

normal distributed with mean ( ) ,
2w
IE Z
π

=  and var( ) 1
2w
IZ
w

= −  [26]. 

Therefore, they proposed a the test statistic

         
 
                        

* 2

1
2

w
IZ

Z
I
π

π

−
=

−                          

which has approximately the standard normal distribution.

  The approximate p-value can be easily obtained: pA=1-Φ (Z∗)
 

. 
The exact p-value, based on the exact distribution of Zw, is given byp 
=pA+ 0.0003130571(4.444461τ) - 0.00033.

For a general K-group trial, we define the global null hypothesis 
as HG: μ₀ = μ₁ = μ₂...μK and the hypothesis tesm (winner) and the 
control as

                           0 0: ,wH wµ µ= = winner (selected arm)
Under larger sample size assumptions, given the observed values 

xi and standard deviation in group i (i =0 and w),(i=0 for ˆ
,i

i i
xz N
σ

=         
placebo and w for the winner) has a standard normal distribution. 
The test statistic for the comparison between the placebo group and 
the winner group can be defined as

                                                          
0

2
wz zT −

=                 
.

 

Chang and Chang and Wang prove that the distribution of T 
under HG is given by

1( ) ( ( ) ( 2 ) ,
k

i
T i i

tF z d z t dtτ τ φ τ τ φ
τ

∞ ∞

−∞ −∞

 − −
= Φ − 

 
∫ ∫

where the standard normal distribution pdf and cdf, annotated by 
φ and Φ, respectively [27,56].
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  If the purpose of the interim analysis is only for picking 
the winner, the stopping boundary cα can be determined using 

( ) 1TF cα α= − for a one-sided significance level α. Numerical 
integration or simulation can be used to determine the stopping 
boundary and power. For τ=0.5, the numerical integrations give 
cα=2.352, 2.408, 2.451, and 2.487 for K=4, 5, 6, and 7, respectively. 
The power of winner designs can be easily obtained from simulations.

  Pick-winner design can improve the trial efficiency, but how to 
set the selection criteria for winner to optimize the adaptive trial is 
still unclear and requires further investigation.

Add-Arm Design
In a winner design, patients are randomized into to all arms 

(doses) and at the interim analysis, inferior arms will be dropped. 
Compared to traditional dose-finding design, this adaptive design 
can reduce the sample size by not carrying over all doses to the end 
of the trial or dropping the losers earlier. However, it does require all 
the doses have to be explored. For unimodal response curves, Chang, 
Chang and Wang propose an effective adaptive dose-finding design 
that allows adding arms at interim analysis [27,56]. The trial design 
starts with two arms and depending on the response of the two arms 
and the unimodality assumption, we can decide which new arms to 
be added. This design does not require exploration of all arms (doses) 
to find the best responsive dose, therefore may further reduce the 
sample size from the dropping-loser design by as much as 20%.

Under the HG, the cdf of the test statistic T, formulated from the 
placebo and the finally selected arm is given by

*
1( ) ,
2 2 2T T

t z tF z F dt
∞

−∞

+   = Φ   
   ∫

where cdf FT* is given by
      

2
*

1( ) ( ) ( ) 2 ( ) ( ) ,T R R
tF t x x c x c x dxτ τ φ φ

τ

∞

−∞

 − −  = Φ Φ + + − Φ    
 

∫                      

  If we examine the design that only allows us to reject HG at 
the final analysis for the moment: if the  , T cα≥ test  we would reject 
H0. In such a case, the stopping boundary  can be determined using 

( )TF cα  for an one-sided significance level α. Numerical integration 
or simulation can be used to determine the stopping boundary and 
power. For example, the simulation shows rejection boundary to be 
cα=2.267 for a one-sided α=0.025.

Under unimodal response, Chang-Wang’s three-stage add-arm 
design is usually more powerful that the 2-stage drop-arm design 
primarily because the former takes the advantage of the knowledge 
of unimodility of response. If the response is not unimodal, we can 
use that prior knowledge to rearrange the dose sequence so that it 
becomes unimodal response.

In an add-arm design, all arms are usually selected with equal 
chance when all arms have the same expected response, but the 
probability of rejection is different even when all arms are equally 
effective [27]. This feature allows us to effectively use the prior 
information to place more effective treatments in the middle but at 
the same time the two arms in the first stage have a large enough 

separation in terms of response to increase the power.

In an add-arm design, dose levels don’t have to be equally placed 
or based on the dose amount. The arms can be virtual dose levels or 
combinations of different drugs. Furthermore, the number of arms 
and the actual dose levels do not have to be prespecified, it can be 
decided after the interim analyses.

An add-arm design can further reduce the sample size from a 
pick-winner design, but it adds a complexity to the trial: there are 
three stages in an add-arm design, but two stages in a pick-winner 
design. On one hand, reducing sample size will reduce the time for 
the trial. On the other hand, a staggered patient enrollment in three 
stages will take longer than to enroll patients than with two stages.

Adaptive Randomization Design
Response-adaptive randomization or allocation is a randomization 

technique in which the allocation of patients to treatment groups is 
based on the responses (outcomes) of the previous patients. The main 
purpose is to provide a better chance of randomizing the patients 
to a superior treatment group based on the knowledge about the 
treatment effect at the time of randomization. As a result, response-
adaptive randomization takes ethical concerns into consideration.

In the response-adaptive randomization, the response does 
not have to be on the primary endpoint of the trial; instead, the 
randomization can be based the response on a biomarker. Scholars 
including Zelen, Wei and Durham, Wei, et al., Stallard and 
Rosenberger, Hu and Rosenberger, and many others have contributed 
in this area [19,105-108].

Fiore et al. use a response-adaptive randomization based on 
Bayesian posterior distribution of treatment effect given the observed 
response data and discuss the application is a point-of-care clinical 
trial with insulin administration [109]. Fava et al., Walsh et al. and 
Doros, et al. studied two-stage re-randomization adaptive designs 
and analyses in trials with high placebo effect [110-112].

The well-known response-adaptive models include the play-
the-winner (PW) model and the randomized play-the-winner 
(RPW) model. A RPW model is a simple probabilistic model used 
to sequentially randomize subjects in a clinical trial [106,113]. The 
RPW model is useful for clinical trials comparing two treatments 
with binary outcomes. In the RPW model, it is assumed that the 
previous subject’s outcome will be available before the next patient 
is randomized. At the start of the clinical trial, an urn contains a₀ 
balls representing treatment A and b₀ balls representing treatment B, 
where a₀ and b₀ are positive integers. We denote these balls as either 
type A or type B balls. When a subject is recruited, a ball is drawn 
and replaced. If it is a type A ball, the subject receives treatment A; if 
it is a type B ball, the subject receives treatment B. When a subject’s 
outcome is available, the urn is updated as follows: A success on 
treatment A (B) or a failure on treatment B (A) will generate an 
additional a₁ (b₁) type-B balls in the urn. In this way, the urn builds 
up more balls representing the more successful treatment.

RPW can reduce the number of subjects assigned to the inferior 
arm, however, for Phase three trials, imbalanced randomization 
can reduce the power [44,114]. In small studies, response-adaptive 
randomization can be more problematic in causing potential 
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confounders imbalance than a classical design. Ning and Huang 
proposed response-adaptive randomization with adjustment for 
covariate imbalance [115]. There are also several optimal RPW 
designs have been proposed based on proportion difference, odd 
ratio, and relative risk [116]. However, optimal RPW designs in terms 
of power require further development.

Adaptive Dose-Escalation Design
Adaptive Dose-escalation design is a type of adaptive designs that 

is not based on Type-I error control and it is often used for early-
phase studies. Dose-escalation is often considered in early phases of 
clinical development for identifying maximum tolerated dose (MTD), 
which is often considered the optimal dose for later phases of clinical 
development. An adaptive dose-finding (or dose-escalation) design 
is a design at which the dose level used to treat the next-entered 
patient is dependent on the toxicity of the previous patients, based 
on some traditional escalation rules. Many early dose-escalation 
rules are adaptive, but the adaptation algorithm is somewhat ad hoc. 
Recently more advanced dose-escalation rules have been developed 
using modeling approaches (frequentist or Bayesian framework) 
such as the continual reassessment method (CRM) [1,22] and other 
accelerated escalation algorithms. These algorithms can reduce the 
sample-size and overall toxicity in a trial and improve the accuracy 
and precision of the estimation of the MTD.

The CRM is often presented in an alternative forms [24]. In 
practice, we are usually prespecify the doses of interest, instead of any 
dose. Let (d₁,...,dK) be a set of dose and (p₁,...,pK) be the corresponding 
prespecified probability, called the “skeleton”, satisfying p₁<p₂,...<pK. 
The dose-toxicity model of the CRM is assumed to be

    ( ) ( ) ( )expPr   , 1, 2, , ,i i itoxicity at d p i Kαπ α= = = …                                     

where α is an unknown parameter. Parabolic tangent or logistic 
structures can also be used to model the dose-toxicity curve.

 Let D be the observed data: yi out of ni patients treated at dose 
level i have experienced the dose-limiting toxicity (DLT). Based on 
the binomial distribution, the likelihood function is

                    
{ } ( )exp( ) exp( )

1

( | ) 1 i i
yiK n y

i i
i

L D p pα αα α
−

=

−∏
                          .

Using Bayes’ theorem, the posterior means of the toxicity 
probabilities at dose j can be computed by

� exp( )
2 0

1 ( | ) ( ) ,
( | ) ( ) i

o

p L D g d
L D g d

απ α α α
α α α

= ∫∫
                                              where 0 ( )g α is a prior distribution for α, for example, α∼N(0,σ²).

Ivanova and Kim study dose-finding for binary ordinal and 
continuous outcomes with monotone objective function or utility 
function [23]. Ivanova, Flournoy, Chung proposed a method for 
cumulative cohort design for dose-finding. Lee and Cheung proposed 
a model calibration in the continual reassessment method [117,118]. 
CRM designs with efficacy-safety trade-offs are studied by Thall and 
Cook, Yin, Li, and Ji, and Zhang, Sargent, and Mandrekar [119-122]. 
Bayesian adaptive designs with two agents in Phase-I oncology trial 
are studied by Thall, et al., Yin and Yuan [123-125]. Bayesian adaptive 

designs for different phases of clinical trials are covered in the book by 
Berry, Carlin, Lee, Muller [76].

CRM is relatively monitor-intensive adaptive design since it is 
requires calculation to determine the next patients assignment based 
on the real-time data. When there is a delayed response, the efficiency 
of the design will be largely lost. There also rules to prevent too fast 
dose-jump to protect patient’s safety in the trial, which also further 
reduce the efficiency CRM designs.

Randomized Concentration-Controlled Trial
Sanathanan and Peck published a simulation study where they 

investigated the improvement in sample size and efficiency that 
can be gained from the randomized concentration-controlled trial 
(RCCT) design [28]. An RCCT can be considered “individualized 
treatment” or “personalized medicine” because, for each patient, 
dosage is adjusted according to the targeted concentration. Such 
dose modification or adaptation is based on the observed plasma 
concentration of the previous doses. The idea is that since the 
randomization point is moved closer to the clinical endpoint in the 
chain of causal events, randomizing patients to the defined target 
concentrations, as opposed to doses, makes it possible to reduce the 
within-group variability in the response variable in relation to the 
randomization variable [126]. The statistical methods for the dosage 
prediction and adjustments (so-called adaptive feedback strategy) 
can be based on the simple dose-proportionality assumption (AUC 
is proportional to the dose) or to the maximization of the Bayesian 
posterior probability of achieving the target concentration. Research 
showed that RCCT has the following advantages: (1) power will 
increase or sample size will reduce, (2) study power will be less 
sensitive to high variability in PK, (3) less confounded estimation of 
exposure-response, and (4) increased safety with narrow therapeutic 
window drugs [28,29,127]. The idea of RCCT can also be used for 
adjusting doses for each patient based on the target biomarker or PD 
response. Such a trial is called randomized biomarker-controlled trial 
(RBCT).

Since pharmacological effects are driven by the concentration at 
the site of action, the systemic drug concentrations are clearly in the 
causal pathway of drug action. Biomarkers and PD responses, on the 
other hand, may or may not be in the causal pathway, and thus can be 
very misleading markers when they are not (e.g. when the biomarker 
reflects an off-target effect). Moreover, it is well known that many 
biomarkers and PD responses are inherently more variable than 
drug concentration measurements. Thus, there is no “conceptual” 
advantage of the RBCT over the RCCT --- blind employment of 
the RBCT can even lead to greater inefficiency than that of the RCT 
design. Note that both RCCT and RBCT trial outcomes present 
statistical inferential challenges when the frequentist approach is 
employed to assess dose-response, since dose assignment is not 
randomized in either design.

Some common algorithms for adjusting dosage are:

(1) Adjustment based dose proportionality (Cella, Danhof, and 
Pasqua, 2012):

                                      ( ) ( )  
Adjusted dose

Observed Individual AUC
First dose Target AUC×

=
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  (2) Adjustment based on linearity on log-scale (Power model):

LogC = β₀+β₁log d+ε,

where d is dose and ε is the within subject variability.

The parameters β₀ and β₁ can be frequentist or Bayesian posterior 
estimates. After the expected (average) value of dose d to achieve the 
target concentration C can be determined.

Biomarker-Adaptive Design
Biomarker-adaptive design (BAD) refers to a design that allows 

for adaptations using information obtained from biomarkers. 
A biomarker is a characteristic that is objectively measured and 
evaluated as an indicator of normal biologic or pathogenic processes 
or pharmacologic response to a therapeutic intervention [128]. A 
biomarker can be a classifier, prognostic, or predictive marker.

A classifier biomarker is a marker that usually does not change 
over the course of the study, like DNA markers. Classifier biomarkers 
can be used to select the most appropriate target population, or even 
for personalized treatment. Classifier markers can also be used in 
other situations. For example, it is often the case that a pharmaceutical 
company has to make a decision whether to target a very selective 
population for whom the test drug likely works well or to target a 
broader population for whom the test drug is less likely to work 
well. However, the size of the selective population may be too small 
to justify the overall benefit to the patient population. In this case, a 
BAD may be used, where the biomarker response at interim analysis 
can be used to determine which target populations should be focused 
on.

A prognostic biomarker informs the clinical outcomes, 
independent of treatment. They provide information about the 
natural course of the disease in individuals who have or have not 
received the treatment under study. Prognostic markers can be used 
to separate good- and poor-prognosis patients at the time of diagnosis. 
If expression of the marker clearly separates patients with an excellent 
prognosis from those with a poor prognosis, then the marker can be 
used to aid the decision about how aggressive the therapy needs to be.

A predictive biomarker informs the treatment effect on the 
clinical endpoint. Compared to a gold-standard endpoint, such as 
survival, a biomarker can often be measured earlier, easier, and more 
frequently. A biomarker is less subject to competing risks and less 
affected by other treatment modalities, which may reduce sample-
size. A biomarker could lead to faster decision-making. In a BAD, 
“softly” validated biomarkers are used at the interim analysis to assist 
in decision-making, while the final decision can still be based on a 
gold-standard endpoint, such as survival, to preserve the Type-I error 
[56].

We briefly discuss the population enrichment design. Denote 
the treatment difference between the test and control groups by δ₊, 
δ₋, and δ, for biomarker-positive, biomarker-negative, and overall 
patient populations, respectively. The test statistics for the treatment 
effects in biomarker-positive, biomarker-negative, and the overall 
patient populations are denoted by Z₊, Z₋, and Z, respectively.

  The test statistic for overall population is

       0N(0,1) and Hn N nZ Z Z
N N+ −

−
= + �  

where n and N are the sample size for the biomarker-positive patients 
and overall patients in the trial, the correlation coefficient between Z 
and Z₊ is

                                   
n
N

ρ =                                      

The rejection boundary and power calculation can be found in 
the text by Chang [44,56].

For adaptive designs, the information of Z-, Z+, and Z can be used 
to determine/change the randomization - biomarker enrichment 
design [37]. Wang studied the utility of predictive biomarker in 
adaptive design and discovered that the correlation coefficient ρ 
between the biomarker and primary endpoint in a clinical trial is not 
necessarily the main predicting factor [48]. For this reason, Wang and 
Chang developed a two-level hierarchical model, called biomarker 
informed adaptive design [50]. Wang, Chang, and Sandeep developed 
a biomarker-informed add-arm design for unimodal response [49].

The main challenges in utilization of biomarkers in clinical 
trials with classical or adaptive design are (1) usually a small set of 
data available with great uncertainties, and (2) there are often set of 
markers, not single marker, that affect the outcomes of the primary 
endpoint, which will make the model more complicated and require 
more data points or subjects to produce a valid model.

Clinical Trial Simulation
Due to the complexity of adaptive trials, extensive simulations are 

often required during the design and conduct of clinical trials, and 
even in the analysis of trial data, simulation can be used to evaluate 
the robustness of the results.

Clinical trial simulation (CTS), also called Monte Carlo Similation, 
is a process that mimics clinical trials using computer programs. CTS 
is particularly important in adaptive designs for several reasons: (1) 
the statistical theory of adaptive design is complicated with limited 
analytical solutions available under certain assumptions; (2) the 
concept of CTS is very intuitive and easy to implement; (3) CTS 
can be used to model very complicated situations with minimum 
assumptions, and Type-I error can be strongly controlled; (4) using 
CTS, we can not only calculate the power of an adaptive design, but we 
can also generate many other important operating characteristics such 
as expected sample-size, conditional power, and repeated confidence 
interval - ultimately this leads to the selection of an optimal trial 
design or clinical development plan; (5) CTS can be used to study the 
validity and robustness of an adaptive design in different hypothetical 
clinical settings, or with protocol deviations; (6) CTS can be used to 
monitor trials, project outcomes, anticipate problems, and suggest 
remedies before it is too late to make modifications; (7) CTS can be 
used to visualize the dynamic trial process from patient recruitment, 
drug distribution, treatment administration, and pharmacokinetic 
processes to biomarkers and clinical responses; and finally, (8) CTS 
has minimal cost associated with it and can be done in a short time.

In protocol design, simulations are used to select the most 
appropriate trial design with all necessary scenarios considered. In 
trial monitoring, simulations are often used to guide the a necessary 
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adaptations, such as stop or continue the trial, sample-size adjustment, 
evaluation of conditional power or probability of success given the 
interim observed data, shift of patient randomization probability, 
change of target patient population, etc. In the analysis of trial data, 
CTS can be used for evaluation of missing data impact and effect of 
other factors to evaluate the internal validity and external validity of 
the conclusions.

Chang provide comprehensive CTS techniques in classical 
and adaptive designs using SAS and he also provide introductory 
to adaptive design using R [53,56]. For broad coverage of Monte 
Carlo simulations in the pharmaceutical industry, we recommend 
the text “Monte Carlo Simulations in the Pharmaceutical Industry” 
by Chang [129]. The scope covered in the 13 chapters includes: (1) 
Meta-simulation in pharmaceutical industry game, (2) macro-
simulation in pharmaceutical R & D, (3) Clinical Trial Simulation, (4) 
simulation in clinical trial management and execution, (5) simulation 
for prescription drug commercialization, Molecular design and 
simulation, (6) Disease modeling and biological pathway simulation, 
(7) Pharmacokinetic simulation, (8) Pharmacodynamic simulation, 
(9) Monte Carlo for inference and beyond, and others.

A recent book edited by Menon and Zink covers a range of 
adaptive design simulation using SAS. Many adaptive design 
practicians have contributed to the books. It is a good reference in 
adaptive trial designs [130].

Deciding Which Adaptive Design to Use
When we design our first adaptive trial, we will need to know 

how to start and we may even wonder if the adaptive design would 
really be better than a classic design. What if we miss something or 
something goes wrong?

The first step is to choose an appropriate type of adaptive design 
based on the trial objective(s). If it is a Phase III confirmatory trial, 
we may consider group sequential design or SSR design. If the timing 
of the analyses or the number of analyses are expected to change for 
practical reasons (e.g., the availability of DMC committee members 
or safety concern requires more interim analyses), we should choose 
GSD with error-spending approach. If the estimation of effect size is 
very unreliable, we should use SSR. If the number of doses (arms) to 
be considered is more than two (include the control arm) and, for 
example, we don’t know exactly which dose (treatment regimens or 
drug combinations of drugs) is the best (or good enough), we should 
use a winner or add-arm design. Note that an add-arm design is 
usually statistically more efficient than a drop-arm design, but also 
adds a little more to the complexity of the trial design and conduct. 
If a screening test of a stable biomarker is available (and practical) 
and we expect the test drug may have different efficacy and/or safety 
profiles for patients with and without the biomarker, we can use a 
biomarker enrichment design, in which the interim analysis will 
be used for deciding which population should be the target. If the 
biomarker is expected to respond to the drug and it can be measured 
earlier at the interim analysis than the primary endpoint of the 
trial, then we can use a biomarker-informed adaptive design. The 
response-adaptive design can be based on the primary endpoint or 
the biomarker response if the former is not available at the time of 
randomization.

In any setting, we should perform the clinical trial simulations 
to further evaluate and compare the operating characteristics of 
different designs or designs with different parameters. If the trial is 
an early stage design for a progressive disease such as cancer, we can 
use dose-escalation design in which the dose gradually increases to 
protect the patients’ safety. The next step is to determine whether a 
superiority, non-inferiority, or equivalence trial is needed based on 
the primary trial objective and the regulatory requirement and to 
determine the number of analyses points. The timing and number of 
interim analysis will be dependent on the safety requirement (some 
need more frequent safety monitoring), statistical efficiency (more 
interim analyses might reduce the sample size, need CTS to check), 
and practicality (complexity of the trial conduct and associated time 
and cost). We may need to consider some special issues, such as 
paired data or missing data, or other parameters. We would again 
conduct broad simulations with various design features/parameters 
and choose the most appropriate one based on proposed evaluation 
matrix. Finally, we need to consider the practical issues: How long 
will the trial take? Should we halt the trial when we performed the 
interim analysis? How fast can we do the interim analysis including 
the data cleaning. Will the recruitment speed and delayed response 
jeopardize the adaptive design? Who will perform the interim 
analysis and write the interim monitoring plan or DMC Charter? 
Dose the regulatory agency agree on the non-inferiority margin if 
a noninferiority adaptive trial? How the randomization be done? 
Can IVRS (interactive voice response system) support the adaptive 
design? How will the drug be distributed to the clinic sites? How will 
the primary analysis for the adaptive trial data be done? 

Determining design parameters

The trial objectives are generally determined by the study team 
at a pharmaceutical company. The prioritization of the objectives is 
usually based on the clinical and commercial objectives and the trial 
design is optimized to increase the likelihood of success.

After the objectives are determined, we choose the primary 
endpoint (a normal, binary, survival endpoint, etc.) to best measure 
the objectives and the timing of when the endpoints should be 
measured, and decide whether it is based on the change from baseline 
or the raw measure at a post-baseline time point. Next, we estimate 
the expected value for the endpoint in each treatment group based on 
prior information, which might be an early clinical trial, a preclinical 
study, and/or a published clinical trial results by other companies for 
the same class drug. The reliability of the historical data will affect our 
choice of the adaptive design.

For Phase III trials, the Type-I error rate must typically be 
controlled at one-sided significance level α=0.025 for most of drugs. 
For early phase trials, α can be more flexible. A smaller α will reduce 
the false positive drug candidate entering late phase trials, but the 
same time increase the chance of eliminating the effective drug 
candidates from further studies, unless we increase the sample size to 
keep the Type-II error rate β unchanged.

The most important factors (operation characteristics) for 
selecting a design with interim analyses are the expected sample size 
and maximum sample size for a fixed power [56]. If we wish to reduce 
the expected cost, we might want to choose a design with minimum 
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expected sample size; if we wish to reduce the maximum possible cost, 
we might want to consider a design with minimum total sample size. 
In any case, we should carefully compare all the stopping probabilities 
between different designs before determining an appropriate design. 
O’Brien-Fleming’s boundary is very conservative in early rejecting 
the null hypothesis. Pocock boundary applies a constant boundary 
on p-scale across different stages [131]. To increase the probability of 
accepting the null hypothesis at earlier stages, a futility boundary can 
be used. In general, if we expect the effect size of the treatment is less 
than what we have assumed and the cost is your main concern, we 
should use an aggressive futility boundary to give a larger stopping 
probability at the interim in case the drug is ineffective or less 
effective. On the other hand if we worry about the effect size might 
be under-estimated, we should design trial with aggressive efficacy 
stopping boundary (Pocock-like rather than O’Brian-Fleming-like) 
to boost the probability early efficacy stopping in case the drug is very 
effective.

Evaluation matrix of adaptive design

To choose an adaptive design among several options, we have to 
consider the trial objective, the cost, the duration of the study, the 
recruitment challenges, execution challenges, how to get the team 
and the regulatory authority buy-in. We can consider the impact of 
failure and success of the trial using a utility function [56]:

( ) ( ) ( )U R w R f dθ θ θ= ∫
where θ is the design input parameter vector, R is outcome or result 
vector component or operating characteristics, w is the corresponding 
weight function w(R), measuring the relative importance of R among 
all possible Rs, and f(θ) is the prior distribution of θ.

Practically, we may select three or more typical scenarios for 
the main evaluation: Ho, Hs, and Ha. Their weighted average N, the 
maximum sample size Nmax, number of analyses, power, utility, 
safety management, complexity of the trial design and conduct can 
compose the evaluation matrix and it is convenient to summarized in 
a Table like Table 1.

Controversies and Challenges
Equal weight principle

There are criticisms about the “unequal weights” in sample size 
reestimation with the fixed weight approach. However, even in the 
group sequential design without sample size reestimation, the “one 
person one vote” principle is violated because earlier enrolled patients 
have more chances to vote in the decision-making (rejecting or 
accepting the null hypothesis) than later enrolled patients. In two-
stage group sequential design, the first patient has two chances to 
“vote”, at the interim and final analyses, while the last patient has only 
one chance to vote at the final analysis. The impact of each individual 
vote is heavily dependent on the alpha spent on each analysis, i.e., the 
stopping boundaries.

From an ethical point of view, should there be equal weight for 
everyone, one vote for one person? Should efficacy be measured by 
the reduction in number of deaths or by survival time gained? Should 
it be measured by mean change or percent change from baseline? All 
these scenarios apply a different “equal weight” system to the sample. 
Suppose you have a small amount of a magic drug, enough to save 
only one person in a dying family: the grandfather, the young man, 
or the little boy. What should you do? If you believe life is equally 
important for everyone regardless of age, you may randomly (with 
equal probability) select a person from the family and give his/her the 
drug. If you believe the amount of survival time saved is important 
(i.e., one year of prolonged survival is equally important to everyone), 
then you may give the drug to the little boy because his life expectancy 
would be the longest among the three family members. If you believe 
that the impact of a death on society is most important, then you may 
want to save the young man, because his death would probably have 
the most negative impact on society. If these different philosophies 
or beliefs are applied to clinical trials, they will lead to different 
endpoints and different test statistics with different weights. Even 
more interesting, statisticians can optimize weights to increase power 
of a hypothesis test.

Biasedness

In statistics, the bias of an estimator is the difference between 
this estimator’s expected value and the true value of the parameter 
being estimated. If there is no difference, the estimator is unbiased. 
Otherwise the estimator is biased. Thus the term, bias, in statistics 
is an objective statement about a random function, different from 
commonly used English “bias”. Bias can also be measured with 
respect to the median, rather than the mean (expected value), in 
which case one distinguishes median-unbiased from the usual mean-
unbiasedness property.

An estimate is most time different from the truth, but that does 
not make the estimator or the estimation method bias. If an estimation 
method (estimator) of the treatment effect is the same average value 
as the true treatment effect under repeated experiments, the estimator 
or method is unbiased for estimating that parameter (i.e., treatment 
effect).

Bias has usually nothing to do the sample size, though a smaller 
sample size usually gives a less precise estimate. When an estimator 
is approaching the truth of the parameter as the sample size goes to 
infinity, we call the estimator is “consistent”. In adaptive design bias 
can be defined differently under repeated experiments: conditional 
on the stage when the trial stops or unconditionally average over 
the all estimates regardless when the trial stops. From Bayesian’s 
perspective, the statistical biasedness is not a concern. One of the 
arguments is that the same experiment naiver repeats.

Why is the naive or maximum likelihood estimate biased in 
an adaptive trial? To use a simple example to illustrate, if in a GSD 
trial with possible early efficacy stopping, then data that are extreme 
positive will be excluded from the final analysis because the extreme 
positive results will lead to early stopping of the trial. The result is a 
downward bias of MLE estimate of the treatment effect.

If we view from the pharmaceutical company’s perspective, we 
can see all the trial results whether is positive or negative, but patients 

Design Nave Nmax Safety Complexity Power Utility

1

2

Table 1: Group Sequential Design Evaluation Matrix.
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only see the positive results of marketed drugs, which include the true 
positive or false positive. What the FDA and regulatory agencies see 
is somewhere in between. If we average what people can see, then 
patients and FDA have biased views on treatment effect, statistically.

Conditional Biasedness and correction has be studied by Jennison 
and Turnbull, Pickard and Chang, Luo, Wu and Xiong, Sampson and 
Sill, Stallard, Todd, Whitehead, Tappin, Liu et al., Tsiatis, Rosner, & 
Mehta, and Whitehead among others [66,71,74,132-138].

Type-I error control and multiplicity

The controversies surrounding the Type-I error control and 
multiplicity of hypothesis testing will never be completely resolved, 
even though there are major advancement in methodology [139-141]. 
Here we are going to discuss the controversies particular to adaptive 
designs.

Patient-Statistician Paradox: Suppose new compounds A and 
B for cancer treatment were tested in the same clinical trial with a 
common control [57,58,139]. For drug A, only one analysis was 
performed at the final analysis with 500 patients treated in drug A 
and 500 patients in control; the null hypothesis was rejected and drug 
is claimed to be efficacious. For drug B, a GSD is used with 10 analyses 
performed at each 50-patient increment, at each analysis 10% α were 
spent, and unfortunately, every time the rejection Ho was just missed. 
Therefore, drug B is not efficacious based on statistical hypothesis 
testing. At the final analysis, however, the observed median survival 
time was two years for drug B and only 6 months for drug A. The 
question is: a patient who is a statistician would take drug A or B? On 
one hand, as a statistician he may believe importance of Type-I error 
control and determine not to take drug B. On the other hand, as a 
patient he really wants to survive two year rather than six months! It 
is not based on one’s intuition, but one can justify it by saying: “The 
chemical structure of the drug will not change just because statistical 
method changes, thus the interim analyses should not affect one’s 
choice of the drug”.

Here, we can see two different concepts of the effectiveness of a 
drug. One is the physical properties of the test compound, which will 
not change as the hypothesis test procedure changes (e.g., one test 
versus multiple tests). The other is the statistical property that will 
change since it reflects an aggregated attribute of a group of similar 
things - the similarity principle of sciences [58].

At the moment, for early phase trials, Type-I error control is not 
strictly enforced, Bayesian methods can also be used in those trials 
[1,20,25,76,140]. CRM we discussed earlier is a typical Bayesian 
adaptive design for earlier clinical trials. Personalized medicine is 
the future for the patients, however, to be able to effectively develop 
personalized medicine, adaptive design can be a great tool [142].

Practical challenges

There are challenges associated with adaptive design. Statistical 
methods are available for most common adaptive designs, but for 
more complicated adaptive designs, the methodologies are still in 
development.

Operationally, an adaptive design often requires real-time or 
near real-time data collection and analysis. In this regard, data 

standardizations, such as Clinical Data Interchange Standards 
Consortium (CDISC) and Electronic Data Capture (EDC), are very 
helpful in data cleaning and reconciliation. Note that not all adaptive 
designs require perfectly clean data at interim analysis, but the cleaner 
the data are, the more efficient the design is. Adaptive designs require 
the ability to rapidly integrate knowledge and experiences from 
different disciplines into the decision-making process and hence 
require a shift to a more collaborative working environment among 
disciplines.

From a regulatory standpoint, there is a draft (not for 
implementation) FDA’s guidance for adaptive designs at the moment. 
Adaptive trials are reviewed on a case-by-case basis. Naturally there 
are fears that a protocol using this innovative approach may be 
rejected, causing a delay.

The initial fear that the interim unblinding may potentially cause 
bias and put the integrity of the trial at risk is still there, but, level 
of anxiety is reduced as the knowledge and experiences of Adaptive 
design are accumulating. Therefore, the unblinding procedure should 
be well established before the trial starts, and frequent unblinding 
should be avoided. Also, unblinding the premature results to the 
public could jeopardize the trial.

Summary
Adaptive designs can reduce time and cost, minimize toxicity, 

and help select the best dose for the patients and improve selection 
of the target populations. With adaptive design, we can develop 
better science for testing new drugs, and in turn, better science for 
prescribing them. Adaptive design will promote the personalized 
medicine to get the right drug to the right patient with right amount 
at the right time.

Adaptive design may require fewer patients, less trial material, 
sometimes fewer lab tests, less work for data collection and fewer 
data queries to be resolved. Adaptive design is a sequential data-
driven approach. It is a dynamic process that allows for real-time 
learning. It is flexible and allows for modifications to the trial, which 
make the design cost-efficient and robust against the failure. Adaptive 
design is a systematic way to design different phases of trials, thus 
streamlining and optimizing the drug development process. In 
contrast, the traditional approach is composed of weakly connected 
phase wise processes. Adaptive design is a decision-oriented, 
sequential learning process that requires up-front planning and a 
great deal of collaboration among the different parties involved in the 
drug development process. To this end, Bayesian methodology and 
computer simulation play important roles. Finally, the flexibility of 
adaptive design does not compromise the validity and integrity of the 
trial or the development process.

Adaptive design methods represent new territory in drug 
development, representing a revolution in pharmaceutical research 
and development. Using adaptive designs, we can increase the chances 
for success of a trial with a reduced cost. Bayesian approaches provide 
a powerful tool for optimizing trial designs and clinical development 
plans. Clinical trial simulations offer a powerful tool to design and 
monitor trials.

This innovative approach requires careful upfront planning 
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and the ability to rapidly integrate knowledge and experiences from 
different disciplines into the decision-making process, require a shift 
to a more collaborative working environment among disciplines.
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