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Abstract
We developed a dynamic model to determine the growth 

patterns of toxin-producing bacteria on tomatoes during their storage 
and distribution. Dynamic temperature profiles were also recorded 
while tomatoes were stored, and during their distribution to three 
cities. Tomatoes were inoculated with Staphylococcus aureus and 
Bacillus cereus, and the bacterial cell counts were then enumerated. 
The Baranyi model was fitted to the cell counts to calculate death 
rate and lag phase duration (LPD). These parameters were then fitted 
to a second order polynomial in the inverse temperature to evaluate 
the effects of temperature fluctuations. The developed model was 
validated with observed values, and the root mean square error (RMSE) 
was calculated. A dynamic model was then developed with the results 
of the secondary model, and S. aureus growth patterns were simulated. 
Death rates of S. aureus ranged from −0.157 to −0.024 log CFU/g/h, 
depending on the storage temperature. No difference in the death 
rates was observed among storage temperatures, and LPD was not 
observed for all storage temperatures. The model performance was 
appropriate with 0.55 of RMSE. B. cereus cell counts decreased rapidly 
and thus, predictive model was not developed. In conclusion, S. 
aureus cell counts on tomatoes may not be changed at ≥10 °C, but 
B. cereus cannot survive on the produce. In addition, the developed 
model should be appropriated to describe the fate of S. aureus on 
tomato. 

Introduction
Tomatoes are widely consumed across the world [1]. When 

tomatoes are left at room temperature for a prolonged period, there 
is an increased risk of their contamination with pathogens [2]. There 
were also reports related to the identification of pathogenic bacteria 
on tomatoes [3]. Therefore microbiological management is necessary, 
especially for toxin-producing bacteria. 

The bacteria Staphylococcus aureus and Bacillus cereus are 
associated with major food-borne illnesses [4]. Gram-positive 
S.  aureus is known to produce harmful toxins [5], and can grow 
at pH 4.5–9.3 with an Aw in excess of 0.83, and a sodium chloride 
concentration up to 20% [6]. Therefore, S. aureus is prevalent in a wide 
variety of foods [7]. In addition, S. aureus on worker’s hands might 
be transferred to tomatoes during harvesting and packaging. Gram-
positive B. cereus is a spore-forming, toxin-producing bacterium [8]. 
This pathogen is widely distributed in nature and found in various 
foods. It is also known to cause food-borne illnesses in humans 
associated with vomiting and diarrhea [9]. The spread of B.  cereus 
is facilitated by spores, while the toxin it produces is responsible for 
illness. B. cereus can be grown at pH 4.3–9.3 and even in low moisture 
such as 0.91 of Aw [10,11]. Also, vegetative cells and spores of B. 
cereus can be cross-contaminated to tomatoes from soil.  

Predictive microbiology is useful in studying and predicting 

the growth and death of microorganisms by using mathematical 
equations [12]. The purpose of predictive microbiology is to ensure 
food safety in advance, allowing stakeholders to address all possible 
risk factors in advance [13]. Most predictive models have been 
developed for constant temperatures, with environmental changes, 
such as temperature and humidity, during food distribution not 
usually considered. The development of a dynamic model using 
primary and secondary models is considered appropriate to describe 
the fate of bacteria in changing environments.

The objective of our study was to develop a dynamic model of 
toxin-producing S. aureus and B. cereus on tomatoes and predict their 
behavior.

Materials and Methods
Preparation of inocula

Considering strain variation, five-strain mixtures for S. aureus 
and B. cereus were prepared as inocula as follows. Five S. aureus strains 
[ATCC13565 (SEA; staphylococcal enterotoxin A), ATCC14458 
(SEB), ATCC23235 (SED), ATCC27664 (SEE), and NCCP10826 
(SEC)] and five B. cereus strains (KCTC1013, KCTC1014, KCTC1092, 
KCTC1094, and KCTC3624) were cultured in 10  ml of tryptic soy 
broth (TSB; Becton, Dickinson and Company, Sparks, MD, USA) at 
35 °C for 24 h. Aliquots (0.1 ml)  of cultures were transferred into 
10 ml fresh TSB for subculture at 35 °C for 24 h. For each bacterial 
species, the cultures of the five strains were mixed. Each mixture was 
then centrifuged (1,912 × g, 15 min, 4 °C), and the cell pellets washed 
twice with phosphate-buffered saline (PBS; 0.2 g of KH2PO4, 1.5 g of 
Na2HPO4, 8.0 g of NaCl, 0.2 g of KCl, 1 l of distilled water, pH 7.4). 
Cell suspensions of the two bacterial species were diluted with PBS to 
6–7 log CFU/ml.
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Inoculation and enumeration of bacterial cell counts

The 0.1 ml aliquots of S. aureus or B. cereus were inoculated on 
the surface of intact tomatoes at approximately 5 log CFU/g, and left 
for 15 min to allow for the attachment of bacterial cells. Following 
inoculation with S. aureus, tomatoes were placed in plastic containers 
and stored at 4, 10, 15, 20, 25, and 30 °C for up to 7 days, with samples 
analyzed every 24 h. Tomatoes inoculated with B. cereus were stored 
at 30 °C for up to 3 h. Every tomato (180  ±  20  g) was aseptically 
transferred to a filter bag (3MTM, Seoul, Korea) containing 100 ml of 
0.1% buffered peptone water (BPW; Becton, Dickinson and Company, 
Sparks) and homogenized for 30 s (BagMixer®, Interscience, St. Nom, 
France). Homogenates were serially diluted with 9  ml BPW, and 
0.1 ml of the diluents was plated on tryptic soy agar (TSA; Becton, 
Dickinson and Company) for total bacteria, mannitol salt agar (MSA; 
Becton, Dickinson and Company) for S. aureus, and mannitol-salt 
egg-yolk polymyxin agar (MYP; Becton, Dickinson and Company) 
for B. cereus. Plates were incubated at 35 °C for 24 h. After microbial 
analysis, the pH values of the homogenates were measured with a 
digital pH meter (Accumet®, Denver Instruments, Arvada, CO, USA).

Enterotoxin measurement

Because 78% of S. aureus intoxication is caused by SEA [14], SEA 
production was measured. To measure SEA production by S. aureus 
on tomatoes during storage, 1 ml aliquots of the homogenates used 
for the quantitation of bacterial populations at 25 and 30 °C were 
analyzed using a Tecra Staph Enterotoxins Visual Immunoassay 
(3MTM, North Ryde, NSW, Australia) according to the manufacturer’s 
instructions. Since B. cereus cell counts decreased rapidly on tomatoes, 
the enterotoxin production was not measured. 

Model development

The Baranyi model [15] was fitted to the S. aureus cell count data 
to estimate kinetic parameters such as death rate (log CFU/g/h) which 
is defined as µmax in a growth curve, and lag phase duration (LPD; 
h), and initial cell concentration (N0; log CFU/g) and the lowest cell 
concentration in a death curve (Nmax; log CFU/g) with DMFit (http://
www.ifr.ac.uk/safety/dmfit/; Institute of Food Research, Norwich, 
UK) which is an Excel add-in to fit curves with the Baranyi model 
[15] as follow:
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Where Nt is the S. aureus cell counts at time t, and N0 and 
Nmax is the initial and the lowest S. aureus cell counts in a death 
curve, respectively. At is the adjustment function, which denotes 
physiological status of S. aureus cell to define the LPD [15].

We use a second order polynomial in the inverse temperature to 
describe the effect of temperature on death rate values as follows:

0 1 2
2[    / / ]Death rate a a T a T= + +                                                 (2)

Where ai is the coefficient and T is the storage temperature 
(°C). To describe the growth patterns of S.  aureus under changing 
temperatures which also simulates the conditions of tomato 
distribution, the equation (1) was used.

Validation

Given that S. aureus growth data on tomatoes was not available 
in the published literature, additional experiments at 12, 18, and 23 
°C were conducted. The observed data were then compared with 
predicted S. aureus cell counts (log CFU/g), which were calculated by 
developed models. The model performance was evaluated using root 
mean square error (RMSE) [16]:

[RMSE = square root [Ʃ (observed values – predicted values)2 /n]] (3)

Where n represents the number of data points. 

Changes in temperature during the distribution of tomatoes to 
three cities were recorded using a Testo 174H electronic temperature 
recorder (Testo, Sparta, NJ, USA). To evaluate the performance of 
the model when temperatures were changing, S. aureus population 
data were collected as the temperature fluctuated and compared with 
predicted S. aureus populations as simulated by a dynamic model.

Results and Discussion
During storage, the growth of S. aureus was not observed at all 

investigated temperatures. The death rate of S. aureus ranged from 
−0.157 to −0.024  log  CFU/g/h, and was dependent on the storage 
temperature (Table 1). At 4 °C, the decrease in S. aureus cell counts 
was obvious with −0.157  log  CFU/g/h of death rate. However, at 
10–30 °C there was only a minimal decrease in S. aureus cell counts 
(Table 1). The correlation coefficients (R2) for the primary models 
varied from 0.733–0.811 (Table 1). In addition, no SEA production 
by S. aureus was observed (data not shown). Cell counts of B. cereus 
rapidly decreased below detection limit (0.5  log  CFU/g/ml), thus a 
primary model was not developed. The lack of significant bacterial 
growth on tomatoes could be due to evaporation occurring at the 
surface of tomatoes during storage [17], or their waxy surface, which 
likely protects them from bacterial penetration [18].

Our results indicate that even if S. aureus contaminates a tomato, 
the pathogen did not grow, while B.  cereus is quickly inactivated. 
Although no significant S. aureus growth was observed at all storage 
temperatures, a secondary model was necessary for the development 
of a dynamic model. The effect of temperature on death rate could be 
described by an inverse second order polynomial model. Our results 
showed that temperature had no significant effect on death rate (Figure 
1). To evaluate the performance of the models, S. aureus cell counts 

Storage 
temperature 

(oC)

Death rate
(log CFU/g/h)

N0
(log CFU/g)

Nmax
(log CFU/g) R2

4 -0.157±0.161 4.10±0.36 2.00±0.36 0.733

10 -0.050±0.013 4.43±0.38 2.05±0.31 0.764

15 -0.029±0.021 4.03±0.14 2.03±0.65 0.779

20 -0.024±0.012 3.97±0.44 2.01±0.29 0.811

25 -0.085±0.101 3.23±0.34 0.89±0.43 0.782

30 -0.027±0.020 3.56±0.38 1.32±0.36 0.780

Table 1: The parameters calculated by the Baranyi model for Staphylococcus 
aureus growth inoculated on tomato during storage (Baranyi and Roberts [15]).

N0: Initial cell concentration.
Nmax: Maximum cell concentration.

http://www.ifr.ac.uk/safety/dmfit/
http://www.ifr.ac.uk/safety/dmfit/
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at 12, 18, and 23 °C were conducted but not used in the development 
of the model. The observed S. aureus cell counts were compared with 
those predicted by the combined primary and secondary models 
at the given temperatures. To evaluate model performance, many 
researchers have used accuracy (A) and bias (B) factors. However, it 
has been pointed out that A and B factors have significant limitations 
and can result in the incorrect evaluation of model performance [19]. 
In the current study, we calculated RMSE to evaluate performance. 
The RMSE values were around 0.55, indicating that the developed 
model was appropriate. For fluctuating temperatures, S. aureus cell 
counts were predicted and the values compared with experimental 
values. The observed S.  aureus cell counts were lower than the 
predicted values by approximately 1  log  CFU/g (Figure 2). This 
result indicates that our model slightly overestimates under dynamic 
temperature conditions. A predictive model for B.  cereus was not 
developed because the bacterial cell counts were below detection limit 
after 3 h (Figure 3).

In conclusion, S. aureus cell counts on tomatoes were decreased 
slightly during storage at ≥10 °C, while B.  cereus was not able 

to survive on tomatoes. In addition, the developed primary and 
secondary models should be useful in predicting the behavior of 
S. aureus on tomatoes.
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