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The Epigenetic Mechanisms of  
Amphetamine

of the JUN family, resulting in the formation of the Activator 
Protein-1 (AP-1). Following binding to cognate DNA sites in the 
promoter regions of genes, AP-1 can either activate or repress 
genes.

Recent studies have shown that a single dose of AMPH 
increases c-fos expression in the murine striatum [19-21]. 
Interestingly though, chronic (7 days) AMPH treatments causes 
instead a strong decrease of c-fos expression [19,20], and a 
several fold increase of ΔFosB [19,22], suggesting that acute 
and chronic AMPH exposures regulate the expression of c-fos 
through different and possibly opposite mechanisms. The 
higher expression of ΔFosB after continuous drug exposure and 
its persistence after several days of withdrawal has suggested 
that ΔFosB might function as a general molecular switch in the 
development of addiction [23-25]. In fact, ΔFosB signal has been 
shown to persist also after several days of cocaine withdrawal, 
and eventually disappear after one to two months. Because 
of the importance of transcription factors in regulating gene 
expression and the access to more affordable genome sequencing 
technologies, an increasing number of epigenetic studies have 
emerged in the field of drug addiction in the last decade. In 
fact, unraveling the mechanisms through which drugs of abuse 
manipulate gene expression will help us to understand how 
drugs of abuse induce addiction.  

Epigenetic Mechanisms 
The term epigenetics, as it is currently used, refers to 

regulatory mechanisms that contribute to or are associated 
with changes in gene expression that do not involve alterations 
to the DNA sequence. These mechanisms, being “above the 
gene”, include changes to chromatin structure, i.e. histone 
modifications and nucleosome positioning, DNA methylation 
and hydroxymethylation, and non-coding RNA-dependent 
mechanisms. Collectively, the sum total of all the epigenetic 
changes in the genome of a cell is referred to as the ‘epigenome’. 
Several groups in recent years have begun to investigate how 
changes to the epigenome contribute to the mechanisms of action 
through which drugs of abuse generate addiction. Indeed, there 
is mounting evidence suggesting that changes in the cellular 
environment caused by drugs result in activation or repression 

Talus J. McCowan, Archana Dhasarathy and Lucia 
Carvelli*
Department of Basic Sciences, University of North Dakota School of 
Medicine and Health Sciences, Grand Forks, North Dakota, USA

*Address for Correspondence
Lucia Carvelli, Department of Basic Sciences, University of North Dakota, 
504 Hamline St. Grand Forks, ND, USA, Tel: 701-777-2293; Fax: 701-777-
0387; E-mail: lucia.carvelli@med.und.edu

Submission: 08 December, 2014
Accepted: 03 February, 2015
Published: 09 February, 2015

Review ArticleOpen Access

Journal of

Addiction & 
Prevention

Avens Publishing Group
Inviting Innovations

Avens Publishing Group
Inviting Innovations

Introduction
Though an addictive compound, amphetamine (AMPH) 

is a drug that has been used to treat a variety of diseases such 
as narcolepsy, obesity and ADHD [1,2]. Initially described as a 
potent sympathomimetic drug with cardiovascular and gastro-
enteric effects, it soon became clear that AMPH has reinforcing 
properties leading to widespread abuse [3]. AMPH readily 
crosses the blood brain barrier and stimulates the mesolimbic 
and mesocortical pathways (reward system) where it raises the 
synaptic concentrations of the neurotransmitters dopamine (DA), 
norepinephrine (NE) and to a lesser extent serotonin (5-HT) 
[4,5]. Under normal conditions, the extracellular concentration 
of these neurotransmitters is maintained at low levels by their 
respective neurotransmitter transporters, namely DAT, NET, and 
SERT, which rapidly reuptake the neurotransmitters inside the 
cells [6,7]. AMPH is a substrate for all three neurotransmitter 
transporters; therefore, via competitive inhibition, it prevents 
the reuptake of DA, NE and 5-HT. Although AMPH can act on DAT, 
NET and SERT, it is well established that its stimulant effects are 
primarily mediated by its ability to bind and reverse the release 
of DA through the DAT [8,9]. In fact, a common feature among 
all drugs of abuse is their ability to increase the extracellular 
concentrations of DA in the reward system, and this phenomenon 
is believed to be the first step in generating addiction [4].

Genome-wide analyses such as microarrays and RNA-
sequencing following acute and chronic exposure to drugs of 
abuse have demonstrated striking changes in expression of genes 
that affect key regions of the brain involved in reward [10-15]. 
These studies have suggested that AMPH’s ability to alter gene 
expression is an important step in the initiation, maintenance 
and relapse to addictive behaviors. For instance, several studies 
have shown that drugs of abuse induce a transient increase of 
the FOS family transcription factors, including c-fos, FosB and the 
truncated splice variant ΔFosB in rats and mice striatum [16-18]. 
All members of the FOS family form heterodimers with proteins 

Abstract
Amphetamine (AMPH) is a psychostimulant and the most 

prescribed drug to treat attention deficit hyperactive disorder (ADHD). 
Although therapeutically used doses are generally well tolerated, 
numerous side effects are still known to occur, such as jitteriness, loss of 
appetite and psychosis. Moreover, AMPH is liable to be abused by users 
looking for increased alertness, weight loss or athletic performance. A 
growing body of evidence indicates that drugs of abuse, including 
AMPH, control gene expression through chromatin modifications. 
However, while numerous studies have investigated the molecular 
mechanisms of AMPH action, only a small number of studies have 
explored changes in gene expression caused by AMPH. This review 
examines the epigenetic changes induced by chronic and acute 
treatments with AMPH and includes, where relevant, data obtained 
with other psychostimulants such as methamphetamine and cocaine.
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of genes. These changes in gene expression are then maintained 
even in the absence of the stimulating signal. For instance, a recent 
study demonstrated that when male rats voluntarily ingested 
cocaine, their male, but not female, offspring exhibited increased 
levels in protein and mRNA of the brain-derived neurotrophic 
factor (Bdnf) in the medial prefrontal cortex [26]. Moreover, 
Feng et al. showed that mice chronically treated with cocaine 
exhibited a unique chromatin signature which correlated with 
altered gene expression. Interestingly, they found that cocaine 
treatments altered expression of only about 100 genes, but it 
induced alternative splicing in over 1700 genes [27]. Collectively, 
these findings highlight the importance of understanding the 
epigenomic changes induced by drug exposures.

In this review, we will summarize research findings that 
describe how the three major mechanisms of epigenetic 
regulation, chromatin structure and histone modifications, DNA 
methylation, and non-coding RNAs, have been linked to gene 
expression changes following AMPH use (Table 1).

Chromatin Structure
In eukaryotes, the negatively charged genomic DNA associates 

with a group of small, positively charged proteins named histones 
(H). The result of this interaction is a nucleosome, 147 base 
pairs of DNA wrapped around a protein octamer comprised of 

two sets of H2A, H2B, H3, and H4 (Figure 1) [28]. Nucleosomes 
and DNA are condensed in a highly complex structure, known 
as chromatin, which forms chromatin fibers of about 10 nm in 
diameter. The chromatin fibers can then be further condensed by 
coiling into 30 nm fibers. The extent of chromatin condensation 
is highly dynamic and varies during the life cycle of the cell, 
e.g. during important cellular functions such as transcription 
and replication. Cells modulate gene expression via protein 
complexes that can modify the chromatin in a non-heritable 
fashion. These chromatin remodeling complexes are often 
recruited to their target genes by DNA-binding transcription 
factors. The chromatin remodeling complexes can alter 
chromatin structure in many ways: (a) they can modify specific 
residues of the N-terminal tails of the histone core proteins 
by acetylation, methylation, phosphorylation, ubiquitination, 
etc. thus altering their affinity for DNA; (b) they can introduce 
variant histones into the chromatin, thus contributing a unique 
or distinct nucleosomal architecture, which in turn can activate 
or repress gene expression; (c) they can utilize the energy of 
ATP hydrolysis to either allow or limit access to DNA sequences; 
or (d) in order to completely silence gene activity, additional 
mechanisms such as DNA methylation have evolved, which 
results in the establishment of a highly quiescent state at genes. 
Often, these different mechanisms occur in combination. For 
instance, epigenetic marks such as methylation of the histone H3 

Mechanism AMPH Treatment Reference Finding

Acetylation

Chronic KaIda et al. 2007 Increase in H4 acetylation which was further increased with the addition of a 
HDACi. HDACi increased behavioral sensitization

Chronic Shen et al. 2008
Increased global H4 acetylation and at the promoter of fosB. The addition of 
HDACi further increased H4 acetylation, CREB phosphorilation and AMPH-
induced locomotion. An increase in AFosB was also observed

Chronic Moretti et al. 2011

HDACi reversed and prevented AMPH-induced hyperactivity. In the PFC, 
striatum, hyppocampus and amygdala, HDACi also reversed and prevented 
the decrease in mitochondrial respiratory -chain complex activity caused by 
AMPH

Acute Schroeder et al. 2013

Cpd-60, an HDAC1/2 inhibitor, reduced AMPH-induced locomotion. Cpd-
60 induced a global increase in histone acetylation and gene expression 
changes. ChIP assay showed a increase in acetylation at the promoter 
region of upregulated genes

Chronic Steckert et al. 2013
HDACi reversed and prevented AMPH-induced behaviors and reduced 
oxidative stress caused by AMPH in the PFC, amygdala, hippocampus and 
striatum

Chronic Stertz et al. 2014 An increase in HDAC activity in the PFC. This increase and the AMPH-
induced hyperactivity were reversed by HDACi

Acetylation/methylation of histone Acute/Chronic Renthal et al. 2008

An increase and decrease of c-fos after acute and chronic AMPH treatments, 
respectively. These effects were associtated with an increase in AFosB at 
c-fos promoter which recruited HDAC1, leading to increased acetylation. 
Additionally, increased H3K9me2 at c-fos promoter was reported

Phosphorlyation of histone Acute Rotllant et al. 2012 Increase in H3 phosphorylation on serine 10 (pH3S10) in NA, CP, and 
increase of c-fos in striam, PFC, central amygdala, NAc and hypothalamus

DNA Methylation
Chronic Deng et al. 2010

An increase of MeCP2 phosphorylation in a subgroup of neurons in the NA. 
Mice with a hypomorphic mutation to MeCP2 have altered NAc synapses 
and plasticity

Chronic Mychasiuk et al. 2013 Increased global DNA methylation in mPFC, OFC, and Nac. Significant 
changes in 25 genes observed two weeks after withdrawal from AMPH

Non -coding RNA
Chronic Lippi et al. 2011 Upregulation of miR-29a/b and miR-182/183 in brain areas important for 

addiction. miR-29a/b expression modulated synaptic morphology

Chronic Saba et al. 2012 Increased miR-181a expression, which modulated the expression of the 
glutamate receptor 2 subunit

Table 1: Current literature on AMPH induced epigenetic modifications.

HDAC: Histone Deacetylase; HDACi: HDAC inhibitor; PFC: Prefrontal Cortex; OFC: Orbital Frontal Cortex; NA: Nucleus Accumbens; CP: Caudate Putamen; miR: 
microRNAs

http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A2975/
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lysine 9 residue (H3K9 trimethylation) and DNA methylation are 
associated with repressed and/or silenced genes [29]. Moreover, 
synergetic connections have also been established between 
histone H3K9 trim ethylation at lysine 9 and DNA methylation in 
many model systems [30].

Histone Modifications
Recent studies have demonstrated that drugs of abuse induce 

chromatin rearrangements. For instance, acetylation has been 
the most reported change at histones during exposure to the 
psychostimulant AMPH (Table 1). Acute AMPH treatments were 
shown to increase H4 acetylation at the c-fos promoter [19], 
and this increase disappears after chronic AMPH treatments. As 
histone deacetylation has been related to gene silencing, these 
results suggest histone deacetylation mediates the repression 
of c-fos expression following chronic AMPH treatments. This 
conclusion was supported by the fact that histone deacetylase 
(HDAC) inhibitors reversed the AMPH-induced reduction of 
c-fos expression observed after chronic treatments [19]. Taken 
together, these data suggest that in drug-naïve animals AMPH 
increases gene expression of c-fos by increasing acetylation of 
the H4 at the c-fos promoter whereas, prolonged treatments with 
AMPH promote gene silencing by inhibiting acetylation.

Studies reporting histone acetylation have been particularly 
prolific thanks to the use of HDAC inhibitors such as butyric 
acid (BA) and valproic acid (VPA). Because of their ability to 
readily cross the blood brain barrier, HDAC inhibitors have been 
broadly used both in in vivo and in vitro studies to investigate 
whether and how histone acetylation changes psychostimulant-
induced behaviors (Table 1). In 2007 Kalda et al. demonstrated 
that while BA or VPA do not generate locomotor effects in mice 

when administrated alone, they potentiated the locomotor 
sensitization induced by repeated AMPH treatments [31]. These 
results correlated with in vitro data showing that co-treatment 
with VPA and AMPH further increased H4 acetylation with 
respect to the levels of acetylation obtained when VPA or AMPH 
were administrated individually. Another study pointed out that 
AMPH and HDAC inhibitors produce synergetic effects [22]. In 
this study, the authors showed that mice chronically treated 
with AMPH exhibited HDAC inhibitor-like effects, i.e. increased 
global acetylation on lysine 12 at histone 4 (H4K12ac) in the 
striatum and specific H4K12ac at the fosB promoter. On the 
other hand, chronic treatments with HDAC inhibitors caused 
AMPH-like effects, i.e. increased protein levels of phosphorylated 
cAMP responsive element binding protein (CREB), and increased 
ΔFosB proteins in the striatum [22]. Moreover, when AMPH and 
HDAC inhibitors were administered together, the levels of H4 
acetylation and phosphorylated CREB were further increased. 
As CREB and ΔFosB are molecular markers of neuroadaptation 
caused by chronic use of psychostimulants [32], the authors 
investigated a potential common mechanism underlying the 
similar effects seen after HDAC inhibitors and AMPH treatments. 
Immuno-precipitation experiments demonstrated that repeated 
AMPH or VPA treatments decreased the amount of CREB 
proteins interacting with a member of HDAC family, HDAC1. 
When AMPH was administered together with VPA, the number 
of CREB proteins bound to HDAC1 decreased even further. These 
data suggest that both AMPH and HDAC inhibitors alter CREB 
phosphorylation, which in turn alter the interaction between 
HDAC1 and CREB. The authors also investigated the effects that 
HDAC inhibitors had on AMPH-induced hyper-locomotion. In 
accordance with data published previously [31], Shen et al. found 
that co-treatment with AMPH and HDAC inhibitors prolonged 

Figure 1: Summary of epigenetic modifications induced by amphetamine - Amphetamine (AMPH) has been shown to induce several epigenetic changes. For 
instance, acute AMPH treatments induce expression of c-fos gene, along with increased histone H4 acetylation at its promoter. On the other hand, chronic exposure 
reduces histone acetylation and represses c-fos expression by increasing expression of Kmt1a, a histone methyltransferase which increases H3K9 dimethylation 
at the c-fos promoter. Chronic AMPH treatments have also been shown to increase Dnmt1 expression, which is accompanied by a global increase in DNA 
methylation. Increased phosphorylation of MeCP2, a protein that associates with methylated DNA, is shown to occur via activation of D1-like dopamine receptors. 
Finally, several miRNAs are up and down regulated following chronic AMPH use.
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AMPH-induced locomotor sensitization whereas, HDAC inhibitors 
did not have any effect when chronically administrated without 
AMPH or when administrated with one single dose of AMPH 
[22]. Taken together, these data suggest that histone acetylation 
is a required step by AMPH to induce drug sensitization during 
prolonged AMPH treatments.

As mentioned above, histone acetylation has been one 
of the most studied AMPH-induced epigenetic modification 
[19,22,31,33,34]. However, while some studies have shown 
HDAC inhibitors potentiate the behavioral effects of AMPH 
[22,31], others have found they decrease and reverse the AMPH-
induced behavioral responses [33,35-38]. For example, Stertz et 
al. reported that sodium valproate reversed the AMPH-induced 
locomotor activity and partially reversed the AMPH-induced 
increase in HDAC activity in nuclear extracts of rat pre-frontal  
cortex [35]. Moreover, Steckert et al. and Moretti et al. found 
that in rats, sodium butyrate (SB) completely reverted and 
prevented the increase of locomotor activity and risk-taking 
behaviors induced by AMPH [33,36]. These discrepancies can 
be caused by the use of different animal strains, different brain 
tissues and different length of AMPH treatment. But, they also 
could be due to differences in the HDAC isoforms targeted by 
HDAC inhibitors. In fact, Schroeder et al. demonstrated that in 
mice the increased locomotor response following acute AMPH 
treatment was decreased by compound 60 (Cpd-60), an inhibitor 
of HDAC1 and HDAC2 but not HDAC3 [34]. Moreover, genetic and 
pharmacological inhibition of HDAC1, but not HDAC2 or HDAC3, 
produced a significant reduction of cocaine-induced sensitivity 
[34]. It is important to point out however, that the HDACs are 
a class of enzymes, known also as lysine deacetylases, which 
remove acetyl groups from lysine-containing proteins, including 
non-histone proteins. Therefore, HDAC might act on proteins 
other than histones. 

AMPH has been widely utilized to develop an animal model 
of mania to study bipolar disorder; in fact, chronic use of AMPH 
causes psychomotor agitation, which is commonly observed 
during mania. Increasing evidences suggest that mitochondrial 
impairment may play a role in the etiology of bipolar disorder 
[39]; therefore, some groups have investigated whether animal 
models of mania exhibit deficiency in the Krebs cycle. Valvassori et 
al. reported that AMPH inhibited the Krebs cycle enzymes activity 
in protein extracts from rat pre-frontal cortex, hippocampus and 
striatum [40]. Specifically, chronic AMPH treatments decreased 
the citrate synthase, malate dehydrogenase and succinate 
dehydrogenase to about 20-50% of their normal activity. 
However, co-treatment with the HDAC inhibitor SB completely 
reversed these effects [40]. Whether SB has a specific effect on 
histones or alters the acetylation status of other proteins remains 
to be verified.

Histone methylation is another mechanism through which 
AMPH alters gene expression. Previous studies showed that 
chronic AMPH treatments increase expression of Kmt1a, a 
methyltransferase enzyme responsible for H3K9 methylation 
[19]. A concurrent increase of methylation at the lysine 9 of 
histone 3 (H3K9me2) on the c-fos promoter was reported under 
the same conditions. As increased expression of H3K9me2 is 

associated with gene repression [41,42], it is likely that prolonged 
treatments with AMPH promote gene silencing by increasing 
H3K9me2 at the c-fos promoter. Interestingly, under the same 
conditions the c-fos promoter also exhibited reduced levels of 
acetylation at the histone 4, which resulted in a reduction of c-fos 
mRNA expression [19]. These effects were probably mediated 
by the enzyme HDAC1 as chronic AMPH treatments caused an 
increase of HDAC1. Taken together, these results demonstrate 
that following chronic AMPH treatment, various repressive 
modifications work co-operatively to decrease c-fos mRNA [19].

The results reported above are the only example, as to date, 
of histone methylation induced by AMPH. However, histone 
methylation changes have been broadly described following 
treatments with various psychostimulants [27,43]. For instance, 
a significant increase of methylation at lysine 4 of histone 3 
(H3K4me3) was reported in protein extracts of the dorsal 
striatum and at the promoter for the chemokine receptor CCR2 
gene following methamphetamine treatments [44]. This increase 
of H3K4me3 correlated with an increase of CCR2 mRNA [43]. 
However, chromatin immunoprecipitation (ChIP) assays did 
not show significant changes in H3K4me3 at the promoters of 
c-fos, fosb, c-jun, and Bdnf. Further investigation is needed to 
understand the physiological impact of these AMPH-induced 
epigenetic modifications. 

DNA Methylation and Hydroxymethylation
DNA methylation refers to the addition of a methyl group 

to the cytosine or adenine DNA nucleotides. In adult somatic 
cells, DNA methylation normally occurs on cytosines in CpG 
dinucleotides [45]. It has been suggested that DNA methylation 
may affect the transcription of genes in different ways which 
in general leads to reduction in gene expression. In fact, the 
inclusion of a methyl group into the DNA may block the binding 
of transcriptional proteins to the gene [46], and/or facilitate 
the binding between the DNA and proteins known as methyl-
CpG-binding domain proteins (MBDs). MBD proteins can in 
turn recruit other remodeling proteins to the locus, for example 
histone deacetylases. DNA methylation has been only recently 
considered as a possible epigenetic mechanism activated by 
AMPH (Table 1). One study, investigating the persistency of 
gene expression after drug withdrawal, found that global DNA 
methylation was increased in rat nucleus accumbens, orbital 
frontal cortex, and medial prefrontal cortex two weeks after 
chronic (14 days) AMPH treatment [47]. These results suggest 
that gene repression might underlie the long-term effects caused 
by the use/abuse of psychostimulants. Interestingly, a recent 
study, investigating the epigeno-type of offspring exposed to 
methamphetamine in utero, found that methamphetamine 
causes DNA hypermethylation in promoters of genes involved 
in learning, memory and synaptic plasticity [48]. These studies 
indicate that the methamphetamine-induced long-term effects 
might be mediated by alterations in DNA methylation.

DNA methyl transferase (Dnmt) enzymes catalyze 
methylation of the DNA. This family of proteins uses S-adenosyl 
methionine as donor of the methyl group. In mammals three 
Dnmt enzymes have been identified and they are named Dnmt1, 
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Dnmt3A and Dnmt3B. Dnmt2 was recently shown to methylate 
RNA rather than DNA [49]. There is a fifth protein, named 
Dnmt3L, closely related to Dnmt3A and Dnmt3B, which is critical 
for DNA methylation but is not active on its own. As of today, 
no study has investigated the effect of AMPH on Dnmt activity, 
however Numachi et al. demonstrated that methamphetamine is 
capable of changing the expression of Dnmt1 [50]. They showed 
that acute and chronic methamphetamine treatments changed 
Dnmt1 levels in rat nucleus caudate, hippocampus, nucleus 
accumbens, and cerebellum. Considering the functional and 
structural homology between AMPH and methamphetamine, 
these results suggest that AMPH might change Dnmt1 activity 
as well. Notably, in the same study, the authors also reported 
that methamphetamine caused different expression patterns of 
Dnmt1 in the two strains of rats they tested, Fisher 344/N and 
Lewis/N. Specifically, acute and chronic methamphetamine 
increased the mRNA of Dnmt1 in the nucleus caudate and 
nucleus accumbens of Fisher 344/N rat, whereas an increase in 
the cerebellum was observed only after acute treatments. In the 
same animals, methamphetamine caused a decrease in Dnmt1 
mRNA in the hippocampus. On the other hand, the Dnmt1 mRNA 
in Lewis/N rats was decreased in the nucleus caudate following 
acute and chronic methamphetamine treatments, and no change 
was observed in the nucleus accumbens and cerebellum. Finally, 
in the Lewis/N hippocampus an increase in Dnmt1 mRNA was 
measured only after acute treatments. The authors suggested that 
the differing patterns of the measured responses might be due to 
a difference in levels of feedback in the hypothalamic-pituitary-
adrenocortical axis between the two strains. The observation that 
the methamphetamine-induced changes in Dnmt1 vary across 
different strains of rat unravels a higher level of complexity of the 
mechanisms through which psychostimulants cause epigenetic 
modifications. 

Methyl CpG-binding protein-2 (MeCP2), a protein repressing 
transcription activity, is another protein recruited after 
methylation of DNA occurs. The importance of MeCP2 in normal 
brain development is highlighted by the fact that in humans, 
mutations in MeCP2 cause the autism spectrum disorder and Rett 
syndrome [51]. MeCP2 has been previously shown to be essential 
in learning and memory formation, and is now being explored as 
a modulator of addiction [52]. Deng et al. investigated the effect 
of AMPH on MeCP2 in adult mice, and found that AMPH induces a 
transient increase of phosphorylated MeCP2 in a small population 
of neurons distributed through the nucleus accumbens of mice 
[20]. If mice were pre-treated with the D1 receptor antagonist 
SCH22390 the AMPH-induced increase of phosphorylated MeCP2 
was partly reduced to control levels, suggesting that activation 
of the D1 receptors mediates MeCP2 phosphorylation. Also, the 
authors showed that viral manipulation of MeCP2 expression in 
the nucleus accumbens modulates AMPH-induced conditioned 
place preference (CPP). Specifically, lentiviral overexpression 
of MeCP2 inhibited the AMPH-induced CPP, whereas lentiviral 
knockdown of MeCP2 augmented both AMPH-induced CPP and 
locomotor activity. Furthermore, mice bearing a hypomorphic 
mutation in MeCP2 exhibited altered behavioral response to both 
acute and chronic AMPH treatments and obstructed dendritic 
plasticity induced by repeated AMPH treatments [20]. These 

results demonstrate that MeCP2 is a crucial component in the 
behavioral response to AMPH.

Recently, 5’-hydroxymethylation of cytosine (5-hmC, the 
‘sixth base’) was revealed to be a new player in the epigenetic 
field [53]. The role of 5-hmC is of particular interest in mental 
disorders because it has been shown to be specifically enriched 
in brain tissues [54]. Further, 5-hmC is inversely correlated with 
MeCP2 expression [55,56]. There is no information regarding 
the role of 5-hmC in gene expression changes following AMPH 
exposure. However, given that AMPH treatment in hypomorphic 
Mecp2 mutant mice resulted in reduced locomotor sensitization 
and place conditioning, and the inverse relationship of MeCP2 
and 5-hmC, it is reasonable to hypothesize that there might be a 
significant association between AMPH treatment and 5-hmC. 

Non-coding RNAs
The discovery of RNA interference phenomenon by Craig 

Mello, Andy Fire and their colleagues [57] highlighted two main 
observations: 1) both sense and antisense RNA preparations 
can cause interference and reduce gene expression, and 2) RNA 
interference persisted well into the next generation [57]. Since 
their discovery, the field has exploded with the discovery of a 
number of non-coding RNAs, including micro-RNAs (miRNAs), 
long, non-coding RNAs (lncRNAs), piwi-RNAs (piRNAs), and 
more recently, circular RNAs (circRNAs) [58], which serve as 
miRNA ‘sponges’ [59]. Originally discovered in C. elegans [60], the 
miRNA were then proven to exist in mammals as well. MiRNAs 
are small RNAs which bind to complementary sequences on their 
target mRNAs, thus repressing translation and silencing gene 
expression. MiRNAs have been also implicated in the mechanism 
of action of drugs of abuse, and changes in miRNAs following 
drug exposure has been shown to down regulate the expression 
of genes that are thought to be involved in drug addiction [61-63]. 
As of today, two studies have reported miRNA changes following 
AMPH treatments (Table 1). Saba et al. demonstrated that in mice 
treated for five days with AMPH or cocaine the expression of 
miRNA increased in a drug-dependent and brain region-specific 
manner [64]. Specifically, they showed that AMPH treatment 
increased the expression levels of a number of miRNAs and, 
particularly miRNA 181 a (miR-181a), in four areas of the brain 
receiving dopaminergic inputs from the ventral tegmental area: 
ventral mid-brain, subcortical limbic forebrain, prefrontal cortex 
and the hippocampus. As miR-181a is also induced by cocaine in 
the dopamine D2-like receptors expressing neurons [65], these 
results suggest that miRNA might have a role in drug addiction. 
Moreover, Lippi et al. showed a robust and significant increase of 
miR-29b, miR-142/5p, miR-183, miR-196b, miR-215, miR-216b, 
miR-217 and 292/3p in the hippocampus of mice treated with 
AMPH for five days [66]. Using the same experimental paradigm, 
the authors also reported that miR-142/5p and miR-216b 
were strongly increased after cocaine or nicotine treatments, 
suggesting that these two miRNAs are common markers of 
addictive drugs. 

Conclusions
Epigenetic modifications caused by addictive drugs play 

an important role in neuronal plasticity and in drug-induced 
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behavioral responses. Although few studies have investigated 
the effects of AMPH on gene regulation (Table 1), current data 
suggest that AMPH acts at multiple levels to alter histone/DNA 
interaction and to recruit transcription factors which ultimately 
cause repression of some genes and activation of other genes. 
Importantly, some studies have also correlated the epigenetic 
regulation induced by AMPH with the behavioral outcomes 
caused by this drug, suggesting therefore that epigenetics 
remodeling underlies the behavioral changes induced by AMPH. 
If this proves to be true, the use of specific drugs that inhibit 
histone acetylation, methylation or DNA methylation might be 
an important therapeutic alternative to prevent and/or reverse 
AMPH addiction and mitigate the side effects generate by AMPH 
when used to treat ADHD. 
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