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Abstract
Regulator of G protein signaling (RGS) proteins are a class 

of proteins that negatively modulate GPCR-mediated G protein 
signaling. The distribution of subtypes of RGS proteins is brain 
region specific. Several subtypes of RGS proteins are present in the 
mesolimbic dopaminergic pathway and are subjected to modulation 
by psychostimulants. Acute or chronic exposure to psychostimulants 
induces changes in mRNA levels of RGS in a subtype-, brain 
region-, and time-dependent manner. The dynamic changes in the 
abundance of RGS proteins by psychostimulant treatment may be 
associated with dopamine receptor sensitization or desensitization, a 
potential mechanism underlying drug sensitization or tolerance. Small 
molecule RGS inhibitors are useful tools for studying in vivo function 
of RGS proteins and are potential therapeutics for the treatment of 
psychostimulant addiction.

Abbreviations
AMPH: Amphetamine; RGS Proteins: Regulator of G Protein 

Signaling Proteins; VTA: Ventral Tegmental Area; Nac: Nucleus 
Accumbens; DAT: Dopamine Transporter; camp: Cyclic Adenosine 
Monophosphate; NMDA Receptor: N-Methyl-D-Aspartate Receptor; 
GIRK: G-Protein-Coupled Inwardly Rectifying Potassium Channel; 
GABAB Receptor: Γ-Aminobutyric Acid Type B Receptor;  MGlur5: 
Glutamate Receptor5 

Introduction
Addiction to psychostimulant drugs is a chronic and devastating 

disease. According to National Survey on Drug Use and Health in 
2012, there were approximately 1.4 million current cocaine users 
and 12 million lifetime methamphetamine (METH) users in the 
United States [1]. The estimated economic cost to society due to the 
use of illicit drugs including psychostimulants was more than $193 
billion in 2007. However, there are still no effective medications to 
date that are available for treatment of psychostimulant addiction. 
Thus, there is an urgency to identify novel targets that are involved 
in psychostimulant-induced neuroplasticity in order to develop new 
and effective pharmacotherapies for psychostimulant addiction.

Psychostimulants activate the mesolimbic dopamine reward 
system, which consists of dopaminergic neurons originating from 
the ventral tegmental area (VTA) and projecting to forebrain regions 
such as the nucleus accumbens (NAc), prefrontal cortex, amygdala, 
and hippocampus. The addictive property of psychostimulants 
such as cocaine and amphetamine (AMPH) is their ability to 
increase dopamine in the synapse primarily through interaction 
with dopamine transporter (DAT), a major site of action for 
psychostimulants. Cocaine, a DAT blocker, exerts its action by 
increasing synaptic dopamine levels through blockade of dopamine 
reuptake. In contrast, AMPH, a DAT substrate, is able to bind to DAT 
and translocate intracellularly, thereby reversing the transport of 
intracellular dopamine to increase the extracellular dopamine levels. 

Prolonged and repeated dopamine surges in the synapse produced 
by psychostimulants lead to stimulation of dopamine receptors and 
cause profound neuroadaptations in gene transcription, protein 
translation and synaptic activity, which underlie drug-associated 
learning and memory. A pronounced and persistent neurochemical 
phenotype resulting from chronic cocaine exposure is the reduced 
dopamine D2 receptor in the striatal density due to overstimulation, 
which has been reported in drug addicts [2], non-human primates 
[3], and rodents [4,5]. The reduced striatal D2 receptor availability 
has been associated with propensity for drug-taking behavior [6-8]. 
Additionally, midbrain dopamine D2 receptors (autoreceptors) are 
inversely correlated with impulsivity and AMPH craving in humans 
[9]. Therefore, a major pharmacological therapy for psychostimulant 
addiction has emphasized the normalization of dopamine transmission 
by overcoming deficits in dopamine D2 receptor function. Dopamine 
D2 receptors are modulated by a network of proteins such as protein 
kinases, signaling molecules, and trafficking proteins [10]; however 
it has become apparent in recent years that regulator of G protein 
signaling (RGS) proteins can also regulate the trafficking and activity 
of D2 receptors [11,12]. Because the expression of RGS proteins is 
sensitive to psychostimulant treatments (see review in [13]), RGS 
proteins may play an important role in regulation of dopamine 
transmission, thus contributing to the addiction process.  

Dopamine Receptors in Drug Addiction
Dopamine released by psychostimulants activates dopamine 

receptors that are located at the somatodendritic, presynaptic and 
postsynaptic compartments of neurons throughout the mesolimbic 
dopamine pathway. There are 5 subtypes of dopamine receptors in 
the brain. D1-like receptors, consisting of D1 and D5 subtypes, are 
coupled to Gαs protein to stimulate adenylyl cyclase activity and 
thereby increase cellular cyclic adenosine monophosphate (cAMP) 
levels. In contrast, D2-like receptors, consisting of D2, D3 and D4 
subtypes, are coupled to Gαi/o proteins to inhibit adenylyl cyclase 
and thus decrease cAMP levels. Dopamine receptors are integral 
components of the mesolimbic dopamine pathway and have long 
been implicated in drug-seeking and taking behavior. Studies using 
receptor agonists and mice with a deletion of dopamine receptor 
subtype reveal specific roles of each subtype in drug-taking and 
seeking behavior (see review in [14]). For example, blockade of D1 or 
D2 receptors in the NAc decreases cocaine self-administration [15-
17]. Agonists of D2 receptors, but not D1 receptors, reinstate cocaine-
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seeking behavior [18]. Although major efforts have been devoted in the 
past to evaluate the efficacies of novel ligands selective for dopamine 
receptors, especially for D2 receptors, to treat drug addicts, none have 
been shown to be effective to date [19,20]. In recent years, focus has 
been shifted to compounds that are indirect D2 receptor agonists or 
D2 receptor modulators. Recent clinical trials with indirect dopamine 
receptor agonists such as AMPH derivatives are promising [see 
review in [21]. Therefore, it is imperative to understand the regulatory 
machineries underlying receptor adaptations to psychostimulant 
exposure, which will provide opportunities for identifying novel drug 
targets.  

RGS Proteins: Function and Brain Expression

RGS proteins are a class of proteins that negatively modulate the 
function of heterotrimeric G proteins. G proteins are composed of 
single α, β, γ subunits which form two functional subunits, Gα and 
Gβγ. Activation of G protein-coupled receptors (GPCRs) promotes 
the exchanges of GTP for GDP on the Gα subunit and dissociation 
of Gβγ from the Gα subunit. Both the Gα subunit and the Gβγ dimer 
exert their effects on a wide range of intracellular effectors such 
as adenylyl cyclase, phospholipase C, ion channels and mitogen-
activated protein kinase (ERK) pathway. The Gα subunit has a 
weak GTPase catalytic activity, thereby slowly hydrolyzing GTP to 
GDP. The hydrolysis of GTP to GDP on the Gα subunit leads to 
reassembling of the Gβγ with the Gα subunit, terminating signal 
transduction [22]. RGS proteins rapidly accelerate the termination 
of G protein signaling by binding to the Gα subunit and activating 
its GTPase activity (Figure 1). Therefore, RGS proteins negatively 
modulate the strength and duration of GPCR-mediated G protein 
signaling.  

Approximately 37 identified proteins belong to the RGS family, 
which can be further divided into at least 8 subfamilies based on 

the structure and function similarities [23]. All RGS proteins have a 
conserved RGS domain containing 125 amino acids, which is the site 
for binding to the GTP-bound Gα subunit to activate GTP hydrolysis 
[24]. Although most RGS proteins can act on almost all of the Gα 
subunits in the Gαi/o and Gq family, different RGS proteins have 
their own selectivity for Gα subunits. For example, RGS9 proteins 
show a bias toward Gαo over Gαi in the presence of the binding 
partner Gβ5 whereas RGS7 proteins only regulate Gαo signaling 
as determined by kinetics of GTP hydrolysis in HEK293 cells [25]. 
Neither RGS9 nor RGS7 proteins exhibit selectivity for Gq in this 
heterologous expression system. Thus, the RGS domain of RGS 
proteins is an attractive target for pharmacological manipulation 
of the GTPase activity of RGS proteins to alter the functionality of 
associated GPCRs [26]. Moreover, different subtypes of RGS proteins 
contain a wide range of other signaling domains, which include the 
N-terminal cysteine string, the N-terminal amphipathic helix, the 
G protein γ-like domain, the pleckstrin homology domain, and the 
Gαi/o-GDP binding motif. These domains may dictate the subcellular 
localization of RGS proteins and/or confer selectivity for receptors 
or intracellular signaling cascades. For example, the N-terminal 
cysteine residue and amphipathic helix domain of RGS4 proteins 
modulate RGS4 membrane localization, intracellular trafficking and 
functionality [27].

RGS proteins have a unique anatomic and cellular expression 
pattern. The distribution of RGS proteins in the brain is based 
primarily on the mRNA expression determined by in situ 
hybridization due to the lack of specific antibodies for each subtype. 
Each RGS has a distinct brain region-dependent expression pattern 
[28]. Here are a few examples of RGS proteins that are present in the 
mesolimbic dopamine pathway where dopamine D2 receptors are 
abundantly expressed. RGS2 is predominant in the rat cortex and the 
striatum [29,30] and is also notable in the dopamine neurons of the 
VTA [31]. RGS4 is enriched in the rat striatum and hypothalamus 
[28]. RGS9 is exclusively expressed in the mouse striatum, and 
co-localizes with D2 receptors [32,33]. RGS19 is present in the rat 
VTA and NAc and co-localizes with D2 receptors in these regions 
[34]. The distribution of RGS proteins is also cell-type specific. For 
instance, RGS2 and RGS4 are equally distributed in the GABAergic 
neurons of the rat midbrain; however, RGS2 is more notable in the rat 
midbrain dopaminergic neurons than RGS4 [35]. RGS9 is expressed 
in D2-containing GABAergic neurons of the mouse striatum [33,36]. 
Because the mRNA expression does not necessarily translate into 
protein expression, it is warranted in the future to investigate the 
protein expression pattern of various RGS proteins in the mesolimibic 
dopamine pathway when antibodies specific for subtypes of RGS 
proteins become available. The differential distribution of subtypes 
of RGS proteins further supports the notion that RGS proteins may 
confer specificity for receptors in a brain-region dependent manner.

A few subtypes of RGS proteins show specificity in modulation 
of the trafficking and/or functioning of dopamine D2 receptors as 
demonstrated in heterologous expression systems. For example, 
overexpression of RGS4, but not RGS2 and RGS9, causes 
desensitization of D2 receptors measured by quinpirole-induced 
inhibition of cAMP accumulation in the presence of forskolin in 
HEK293 cells [11]. However, overexpression of RGS9, but not RGS4, 
prevents agonist-induced internalization of D2 receptors in HEK293 

Figure 1: A schematic diagram of the G protein cycle. At the basal state, 
the Gα subunit is bound to GDP and forms an inactive heterotrimer with Gβγ 
subunits. When receptor is activated by agonist, it promotes the exchange 
of GDP for GTP on the Gα subunit and dissociation of the Gα from the Gβγ 
subunits. The Gα and Gβγ subunits can interact with downstream effectors 
such as adenylyl cyclase and ion channels to initiate signal transduction. 
The Gα subunit has the GTPase activity, which slowly hydrolyzes GTP to 
GDP. RGS proteins directly bind to GTP-bound Gα subunit and enhance its 
GTPase activity by accelerating the rate of hydrolysis and termination of G 
protein signaling. The GDP-bound Gα subunit then reassociates with Gβγ 
subunits to return to the inactive state.
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cells [12]. This regulation is D2 receptor specific because delta 
opioid receptors are not affected by the presence of RGS9 protein. 
Furthermore, RGS19 is recruited by activated D2 receptors to the 
plasma membrane and attenuates D2 receptor signaling assessed by 
quinpirole-induced production of arachidonic acid and quinpirole-
induced inhibition of cAMP accumulation [34]. Although the 
simplified cell culture systems provide important information on 
potential interactions between D2 receptors and subtypes of RGS 
proteins, it remains to be determined whether these interactions 
occur at the physiological conditions.

RGS mRNA Expression: Modulation by Acute 
Psychostimulant Administration

Because RGS proteins are negative modulators of GPCR activity, 
changes in gene expression profiles are among the most promising 
sites at which to search for molecular mechanisms that might underlie 
acute or chronic behavioral responses to psychostimulant treatments. 
The up- or down-regulation of RGS mRNA levels in responses to acute 
psychostimulant treatment is to provide more or less RGS proteins to 
directly or indirectly dampen further activation of dopamine signaling 
through their interaction with receptors, and may contribute to 
tolerance or sensitization upon further psychostimulant exposure. 
Accumulating evidence indicates that RGS mRNA expression is 
modulated by acute treatment of psychostimulants; however, few 
studies have examined changes in gene and functionality of receptors 
and/or G proteins that are potentially associated with targeted RGS 
proteins in various brain regions. Future research in this direction 
will provide a better understanding of the modulatory effects of RGS 
proteins on G-protein mediated GPCR function and signaling.  

Changes in RGS gene expression by acute psychostimulant 
treatment are brain region- and RGS subtype-dependent (See table 
1). It has been shown that acute cocaine treatment (25 mg/kg, i.p.) 
increases RGS4 mRNA levels in the rat NAc but decreases it in the 
locus coeruleus (LC) [37]. Dopamine D1/D2 receptors and opioid 
receptors are abundant in the NAc and LC, respectively; it needs 
further investigation of whether altered RGS4 mRNA following acute 
cocaine treatment would lead to changes in the function of D1/D2 
and opioid receptors.  Moreover, subtypes of RGS proteins show 
differential responses to acute treatments. For example, acute AMPH  
(7.5 mg/kg, i.p.) treatment produces a sustained increase in the rat 
striatal mRNA levels for RGS3, RGS5 and RGS8 within 4 hrs after the 
AMPH treatment; however, the treatment causes a time-dependent 
decrease in RGS9 mRNA levels and has no effect on RGS16 [38]. 
Additionally, the reported changes in striatal RGS4 mRNA levels 
following acute AMPH exposure are not consistent varying from a 
decrease [39,40] to no changes [38]. Likely confounding factors are 
differences in the animal species, doses of drugs and the time intervals 
between the drug treatment and sample collection (See table 1).  

Although it is unknown how psychostimulants modulate various 
subtypes of RGS mRNA levels, RGS2 mRNA induction in particular 
by psychostimulants seems to be dopamine dependent because 
acute reserpine administration, which rapidly increases synaptic 
dopamine levels through depletion of dopamine from the vesicles, 
causes a transient increase in rat striatal RGS2 mRNA levels [41]. 
This dopamine-dependent induction of RGS2 mRNA is mediated 
by D1 and D2 receptors [42]. Pretreatment with D1 antagonist 

SCH23390 attenuates AMPH-induced increase in RGS2 mRNA 
levels whereas pretreatment with D2 receptor antagonist raclopride 
produces an additive effect with AMPH on RGS2 mRNA. It has been 
further demonstrated that D1 and D2 receptors exert opposing effects 
on RGS2 mRNA induction. D1 agonist SKF82958 causes an up-
regulation of RGS2 mRNA levels whereas the D2 agonist quinpirole 
reduces it [43,44]. Interestingly, RGS2 mRNA can also be regulated 
in a glutamate-dependent manner. Acute treatment with MK-801 or 
phencyclidine, N-methyl-D-aspartate (NMDA) receptor antagonist, 
rapidly reduces striatal RGS2 mRNA levels [45]. It has been 
hypothesized that the cAMP signaling pathway is likely to be involved 
in modulation of RGS2 mRNA by dopamine or NMDA receptors. 
Human RGS2 gene contains a cAMP-response element in its 
promoter region [46]; thus RGS2 expression is affected by drugs that 
regulate cAMP production. D1 and D2 receptors are known to exert 
opposite effects on adenylyl cyclase activity and cAMP production, 
which explains the opposite regulation of RGS2 mRNA expression by 
these two receptors.  Furthermore, blockade of NMDA receptors with 
MK-801 in rats increases the activity of adenylyl cyclase in striatum 
[45], which likely attributes to the observed increase in RGS2 mRNA 
levels following MK-801 treatment.  

RGS mRNA Expression: Modulation by Repeated 
Psychostimulant Administration

Chronic exposure to psychostimulants induces neuroadaptations 
which lead to tolerance, sensitization and dependence to 
psychostimulants. Because RGS proteins are negative modulators 
of GPCR, an up-regulation of an RGS protein could lead to receptor 
desensitization whereas a down-regulation could result in receptor 
sensitization. Thus, changes in RGS mRNA expression following 
chronic psychostimulant treatment may lead to alterations in 
the functionality of associated receptors, resulting in persistent 
dysfunctional dopaminergic systems and thus drug addiction.  

Reports on chronic psychostimulant-induced alterations of RGS 
mRNA levels have been inconsistent (see table 1). One implicating 
factor is the length of withdrawal from chronic drug exposure. 
For example, RGS2 mRNA levels in the mouse NAc are increased 
following 12 days of METH administration (2 mg/kg, i.p., twice 
a day) without withdrawal [47]. In contrast, there is no change in 
striatal RGS2 mRNA levels in mice following 4 days of withdrawal 
from 7 days of METH administration (10 mg/kg, i.p.) [48]. These 
data suggest that METH-induced changes in RGS2 mRNA may be 
transient in mice. Additionally, there is no change in rat striatal RGS4 
mRNA levels following 28 days of withdrawal from repeated AMPH 
administration (1-5 mg/kg, i.p., every other day for 15 injections) 
[49], which is in contrast to a decrease in striatal RGS4 mRNA 
expression in rats that had 21 days of withdrawal from 5 days of 
AMPH treatment (5 mg/kg, i.p.) [50]. Thus, changes in RGS4 mRNA 
by AMPH treatment seem to be short-lived as well. Because addiction 
is a chronic disorder and relapse often occurs after a long period of 
abstinence, it is imperative to study the enduring neuroplasticity in 
the brain that subserves addiction.  Future studies on gene expression 
of other subtypes of RGS proteins following chronic psychostimulant 
exposure may provide potential targets for pharmacological 
intervention of dopamine transmission and thus drug addiction.

The second confounding factor that contributes to inconsistent 
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Species Drug Time interval between 
the last drug and assay

Effect

Acute Male Fischer rats AMPH (7.5 mg/kg, i.p.) <1 hr

Within 4 hrs

Increased RGS2 and RGS3 mRNA levels and decreased RGS9 
mRNA levels in the CPu [38]
Increased RGS5 and RGS8 mRNA levels and no change of RGS4 
mRNA levels in the CPu [38]

Male Fischer rats

Male Sprague-
Dawley rats

Male Sprague-
Dawley rats

Male Sprague-
Dawley rats

Cocaine (25 mg/kg, i.p.)
METH (10 mg/kg, i.p.)

AMPH (2.5 or 5 mg/kg, 
i.p.)

AMPH (2.5 mg/kg, i.p.)

AMPH (2.5 mg/kg, i.p.)

AMPH (5 mg/kg, i.p.)
Cocaine (25 mg/kg, i.p.)

1 hr

3 hrs

3 hrs

3 hrs

1 hr

Increased RGS2 mRNA levels in the CPu [42]

Decreased RGS4 mRNA levels in the CPu [39]

Decreased RGS4 mRNA levels in the pre-limbic cortex, cingulate and 
motor cortex.  No change in RGS4 mRNA levels 1 hr, 6 hrs and 24 hrs 
following AMPH injection [39]

Decreased RGS4 mRNA levels in the CPu [40]

Increased RGS4 mRNA levels in the NAc and CGD by AMPH and 
cocaine treatment and decreased RGS4 mRNA levels in RtTg and LC 
by only cocaine treatment [37]

Chronic Male Sprague-
Dawley rats

Male Sprague-
Dawley rats

Male Sprague-
Dawley rats

Male Fischer rats

Male Sprague-
Dawley rats

AMPH self-administration 
(FR1, 6-hr sessions, 
0.148 mg/kg/infusion for 
5 days)

Cocaine self-
administration (FR1, 2-hr 
sessions, 0.6 mg/kg/
infusion for 10 days)

Cocaine self-
administration (FR1, 4-hr 
sessions, 0.5 mg/kg/
infusion for 15 days)

AMPH (1-7.5 mg/kg 
escalation, i.p., for 4 days)

AMPH (1-5 mg/kg, i.p., 
every other day for a total 
of 15 injections)

18 hrs

21 days

16-20 hrs

8 days withdrawal, no 
challenge

8 days withdrawal, 1hr 
after AMPH challenge

28 days

Increased RGS2 and RGS4 mRNA levels and no change in RGS8 
mRNA levels in the midbrain [31]

Decreased RGS4 mRNA levels in the PFC and DISTR [55]

Increased RGS9 mRNA levels and no change in RGS7 and RGS11 
mRNA levels in striatum [36]

No change in RGS2, RGS3, RGS4 and RGS5 mRNA levels in the 
CPu [42]

Increased RGS2, RGS3, RGS5 mRNA levels in the CPu [42]

Increased RGS2 mRNA levels, decreased RGS9 mRNA levels and no 
change in RGS4, RGS5, RGS7, RGS8, RGS10, RGS14 and RGS19 
mRNA levels in the CPu [49]

Male Sprague-
Dawley rats

AMPH (5 mg/kg, i.p.) or 
cocaine (25 mg/kg, i.p.) 
for 14 days

14 days withdrawal, 
1 hr after cocaine or 
AMPH challenge 

Increased RGS4 mRNA levels in the LC by cocaine or AMPH 
treatment. Cocaine also increased RGS4 mRNA levels in the CGD 
but decreased it in the red nucleus and RtTg. AMPH decreased RGS4 
mRNA levels in the NAc and RtTg [37]

Male Sprague-
Dawley rats

AMPH (5 mg/kg, i.p., for 
5 days)

21 days Decreased RGS4 mRNA and protein levels in the CPu and NAc [50]

Male Sprague-
Dawley rats

Male Sprague-
Dawley rats

Male C57BL/6J mice

Male C57BL/6J mice

Cocaine (20 mg/kg, ip, 3 
injections daily for 10 days)

Cocaine (25 mg/kg, i.p, 
twice a day for 14 days)

Cocaine (20 mg/kg, i.p. for 
7 days)

METH (2 mg/kg, i.p., twice 
a day for 12 days)

21 days

2 days

24 hrs

14 hrs

12 days withdrawal

Decreased RGS4 mRNA levels in the PFC and DISTR [55]

No change in RGS4 and RGS7 protein levels in HPN, amygdala and 
PFC, an increase in Gαq and Gα11 protein expression [69]

Increased RGS4 mRNA levels in the NAc and CP [36]

Increased RGS2 mRNA levels in the CPu [47]

No change in RGS2 mRNA levels in the CPu [47]

Table 1: The gene and protein expression profile of RGS proteins following acute and chronic exposure to psychostimulants.

Note: FR1, fixed ratio 1 reinforcement schedule; AMPH, amphetamine; METH, methamphetamine; CPu, caudate putament; VTA, ventral tegmental area; NAc, 
nucleus accumbens; PFC, prefrontal cortex; DISTR, dorsolateral striatum; CGD, dorsal central grey; RtTg, reticulotegmental pontine nucleus; LC, locus coeruleus; 
HPN, hypothalamic paraventricular nucleus

reports on RGS gene expression is the route of chronic drug treatment. 
There is a wealth of data indicating that non-contingent and contingent 
treatment produce differential profiles in behavioral reinforcement 

[51], gene and protein expression [52], and neurochemical responses 
[53,54]. Given the limited data on alterations of RGS mRNA levels 
produced by self-administration of psychostimulants (See table 
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1), it is difficult to draw a clear conclusion on whether contingent 
and non-contingent treatment of psychostimulants will result in 
differential RGS gene expression profiles. However, it seems that 
RGS4 mRNA levels are reduced following non-contingent and 
contingent cocaine treatment [55]. Cocaine self-administration (0.6 
mg/kg/infusion, 2-hr sessions for 10 days) causes a decrease in rat 
striatal RGS4 mRNA levels after 21 days of withdrawal, which is in 
agreement with reduced striatal RGS4 mRNA expression in rats who 
underwent abstinence for 21 days from chronic treatment of cocaine 
(20 mg/kg, i.p., 3 injections per day for 10 days). A lot of work is still 
needed to determine the gene expression profiles of other subtypes 
of RGS proteins following chronic contingent and non-contingent 
psychostimulant treatment.

Finally, it would be interesting to compare the profiles of RGS 
gene expression following acute and chronic psychostimulant 
treatment. Alterations in RGS mRNA levels by acute and chronic 
treatment will elucidate the temporal changes during the addiction 
process, providing potential molecular mechanisms of receptor 
desensitization and sensitization that are associated with drug 
tolerance and sensitization, respectively. Given the current limited 
data on RGS mRNA expression following acute and chronic treatment 
of psychostimulants, it is also difficult to draw the conclusion at this 
moment. Future research should include designs to study time-
dependent changes in RGS mRNA expression following the same 
length of withdrawal from acute and chronic treatment to address 
this question.  

RGS Protein Functionality: Modulation of Psychostimulant 
Responses 

Due to the lack of specific antibodies and inhibitors for many 
subtypes of RGS proteins, our knowledge of the functional roles of 
RGS proteins in modulation of dopamine transmission and drug 
addiction is largely unknown but with a few exceptions such as 
RGS4 and RGS9 proteins. The availability of RGS protein knockout 
mice and lentiviral gene delivery approaches to manipulate mRNA 
and protein expression in vivo provide feasible means to investigate 
functionality of subtypes of RGS proteins in drug addiction.    

RGS4 protein appears to be involved in mediating the effects 
of AMPH. Abstinence (21 days) following repeated AMPH 
administration (5 mg/kg, i.p. for 5 days) results in behavioral 
sensitization and a reduction in RGS4 mRNA and protein levels 
in rat dorsal and ventral striatum [50]. Therefore, an increase in 
striatal RGS4 protein may dampen AMPH sensitization behavior 
and AMPH-induced signal transduction. As a matter of fact, it 
has been shown that lentiviral RGS4 overexpression in the dorsal 
striatum suppresses acute AMPH-induced locomotor stimulation 
and attenuates AMPH-induced phosphor-ERK level [56]. RGS4 may 
modulate AMPH effects through interaction with glutamate receptor 
5 (mGluR5) because the blockade of AMPH effects by overexpression 
of RGS4 in the striatum parallels to the effect produced by mGluR5 
antagonist [56]. RGS4 forms a complex with mGluR5 and mGluR5 
associated proteins Gαq/11 and phospholipase C-β1 (PLCβ1) in the 
striatum as demonstrated by immunoprecipitation [50]. Although 
repeated AMPH treatment does not alter the total mGluR5 protein 
expression, the levels of Gαq/11 and PLCβ1 proteins are increased 
along with reduced RGS4 proteins [50]. These data suggest that 

repeated AMPH treatment may enhance the coupling efficiency 
between mGluR5 and G proteins to increase mGluR5 function, which 
may partially contribute to AMPH-induced behavioral sensitization. 
It is important to note that RGS4 can also regulate D2 or D3 receptor 
function and signaling through a direct interaction as shown in 
heterologous expression systems [11]. Given the abundant presence 
of D2/D3 receptors and RGS4 proteins in the striatum, it remains 
to be determined whether RGS4 proteins are capable of modulating 
dopamine signaling through D2/D3 receptors in vivo and affect D2 
receptor-associated drug-taking and seeking behavior.

RGS9 proteins have been shown to mediate dopamine-related 
motor and psychostimulant reward behavior.  Reduced striatal RGS9 
protein levels were observed in animal models of Parkinson’s disease 
[57]. RGS9 knockout mice exhibit dopamine-associated motor deficits 
such as decreased motor coordination and abnormal involuntary 
movements by D2 receptor activation [33,58]. Importantly, RGS9 
proteins are also involved in psychostimulant action. It has been 
demonstrated that the level of striatal RGS9 proteins is reduced in rats 
following withdrawal from the repeated AMPH administration, which 
parallels D2 receptor hypersensitivity to agonist treatment [49]. Thus, 
reduced RGS9 protein levels may precipitate addiction-associated 
behavior. In agreement with this notion, lentiviral overexpression of 
RGS9 proteins in the NAc reduces locomotor responses to acute and 
chronic cocaine or AMPH treatment [36]. Although overexpression of 
RGS9 proteins does not change D2 receptor membrane expression, it 
attenuates D2 receptor ability to activate G-protein-coupled inwardly 
rectifying potassium (GIRK). Furthermore, RGS9 overexpression 
also results in a decrease in locomotor activity stimulated by D2 
receptor agonists but not D1 receptor agonists. Conversely, RGS9 
knockout mice exhibit hyperactivity to acute cocaine stimulation 
and augmented reward to repeated cocaine treatment measured by 
conditioned place preference [36]. These data suggest that RGS9 
proteins have specificity for regulation of dopamine transmission by 
interacting with striatal D2 receptors.   

RGS proteins can also indirectly regulate dopamine transmission 
through other targets such as GIRK  channels (see review in [59]). 
RGS proteins accelerate both activation and deactivation kinetics of 
GIRK [60]. Because the opening of GIRK channels reduces the firing 
rates of neurons, changes in RGS proteins in the mesolimbic pathway 
by psychostimulants would impact dopamine neuron excitability 
and dopamine release. Furthermore, recent data indicate that RGS2 
protein specifically modulates the coupling efficiency between 
γ-aminobutyric acid type B (GABAB) receptors and somatodendritic 
GIRK3 channels in dopamine neurons of the VTA [35]. Genetic 
deletion of RGS2 leads to a higher GABAB-GIRK coupling efficiency, 
which was demonstrated by an enhanced sensitivity to baclofen-
induced GIRK current in RGS2 knockout mice compared to wildtype 
controls. In addition to RGS2 involvement in GIRK regulation, 
other RGS proteins such as RGS4 [61], RGS6 [62], RGS7 [63], RGS8 
[64] and RGS9 [36] have been shown to modulate the GPCR-GIRK 
interaction in heterologous expression systems and rodent brain 
slices as well. Future research should focus on understanding whether 
these interactions occur in vivo and what the physiological functions 
of these interactions are.

RGS Proteins as Potential Targets for Drug Abuse

A growing body of literature indicates that dopamine-related RGS 
proteins are subjected to modulation by psychostimulants and may be 
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potential targets for treatment of drug addiction. As described above, 
most RGS proteins display brain region-specific distribution and 
are coupled to specific Gα subunit to modulate receptor-dependent 
signaling. Thus, small molecules that target the RGS domain of RGS 
proteins to interfere with the GTPase activity may be able to restore 
the function of dopamine receptors downregulated or desensitized 
by psychostimulants. There are some identified small molecule 
inhibitors of RGS proteins that show promises in subtype selectivity 
and potency in altering RGS activity, and are being evaluated in 
vivo [65,66]. Furthermore, there are a few reported small-molecule 
RGS inhibitors that are capable of altering G protein signaling by 
disrupting the Gα-RGS interaction through an allosteric modulation 
[67,68]. The availability of RGS protein inhibitors will not only 
provide utility for studying the in vivo function of RGS proteins but 
also provide a potential means for pharmacological intervention of 
psychostimulant addiction.   
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