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Abstract
Prostate cancer is an internationally important health problem of 

the man, particularly in developed countries. Currently the main line 
of treatment for prostatic cancer is based on androgen deprivation. 
The androgen blockade treatment is initially effective on androgen 
dependent cancer, but the disease relapses within a period of around 
two years with a more aggressive form named castration resistant 
cancer. The growth and expansion of castration resistant cancer 
are not dependent on androgen supply anymore and thus is more 
difficult to treat. Understanding the molecular mechanism involved 
in the transition of prostate cancer cells from androgen dependent 
to androgen independent state is the key for designing a biologically 
appropriate strategy for a more effective treatment. Currently, several 
different theories have been brought about to address this transition 
process and based on these theories, several lines of treatments were 
introduced for the castration resistant disease. Despite the advances 
in our knowledge of prostate cancer cell transition, no current 
theoretical explanation can satisfactorily cover all aspects of this 
transition process and no curative treatment of the castration resistant 
disease is available. In this review, we summarized and commented 
several major current theories to explain the molecular pathology 
on the transition of prostate cancer cells from androgen dependent 
to androgen independent state. In addition, we have also briefly 
introduced an alternative mechanism to explain this complicated 
transition process. 

an important factor in the development and function of the prostate 
gland. Androgen receptor (AR) is a steroid receptor and a member of 
the larger nuclear receptor family which act as a transcription factor 
after binding to various binding sites. It is located on Chr Xq12 and 
made of 8 exons and has 8 splice variants (Figure 1) and it consists 
of a DNA binding domain (DBD), a ligand-binding domain (LBD), 
two transcriptional activation domains and a hinge region which 
introduce nuclear localization [2-4]. In the absence of androgen, AR 
is located in the cytoplasm with chaperone proteins such as HSP90, 
HSP40 and HSP23 [5]. When androgen binds to the ligand binding 
site, a conformational change will happen in the structure of the gene. 
The AR then transfer to the nucleus and forms a homodimer which 
then bind to the regulatory regions of other genes that are critical 
for the normal function and differentiation of prostate [5]. The genes 
regulating AR may be critical in the development of PCa but their role 
is not completely clear.  

Androgen- deprivation therapy (ADT) is the main treatment 
for localized PCa. Although the initial response to treatment is very 
good but the relapse of a more resistance and aggressive type of 
cancer is inevitable and invariable. Although the castration resistance 
cells are androgen independent, it is clear that signalling through 
AR continues to be effective for tumour growth under castrations 
condition. This is called castration-resistant prostate cancer (CRPC) 
which is still signalling through AR but with different mechanisms. 
CRPC is the second most common cause of death in American men 
and currently is irredeemable [6]. 

As the CRPC is still depending on AR signalling, the current 
treatments are not targeting the receptors directly, but work 
indirectly to either reduce androgen or block the ligand binding 
site in the AR gene. One group of these drugs is CYP17 inhibitors 
(abiraterone, ketoconazole, orteronel, VN/124-1) which inhibit 
the enzyme that bio-synthesis androgen from its precursor [7]. 
MDV3100 (enzalutamide) is another group of these drugs and is a 
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Introduction
Prostate cancer is the second most common male cancer 

worldwide, and the fourth most common cancer overall, with more 
than 1,111,000 new cases diagnosed in 2012 (15% of male cases and 
8% of the total).Prostate cancer (PCa) is the most common cancer 
in men in Europe. In the UK, it accounts for approximately a 
quarter (24%) of all new male cancer diagnoses with 41,736 men are 
diagnosed with prostate cancer each year (Cancer Research 2011). In 
the UK, an average of 36% of cases were diagnosed in men aged 75 
years and over, and only 1% were diagnosed in the under-50s. The 
incidence rate was 104.7/100,000 and mortality rate was 23.7/100,000 
in 2011 (http://www.cancerresearchuk.org). 

Prostate cancer is a hormone driven cancer which has been 
discovered in the 1940s by Huggins and Hodges [1]. Androgen 
is the key player in regulating the development and maintenance 
of male characteristics through binding to its receptors. The 
predominant and most active androgen is testosterone which is 
mainly (approximately 90%) synthesized by cells in the testes and 
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novel anti-androgen drug which compete with androgen for binding 
to ligand-binding site in AR [8]. In this review, we summarized and 
commented several major current theories to explain the molecular 
pathology on the transition of prostate cancer cells from androgen 
dependent to androgen independent state. In addition, we have 
also briefly introduced an alternative mechanism to explain this 
complicated transition process. 

Why PCa cells become castration resistant

Amplification and/or overexpression of AR

AR is expressed in both mRNA and protein level in all PCa patients 
but its overexpression in CRPC may be due to long term ablation of 
androgen. There is an increase in expression of AR in both mRNA 
and protein level, which is due to the amplification of this gene [9]. 
Chen 2004 demonstrated the overexpression of AR in PCa xenograft 
and its transformation from androgen dependant to androgen 
independent. Also they reported that AR overexpression can change 
the AR antagonist to agonist [10]. Amplification of AR gene has been 
reported in 30% of CRPC cases and gain of copy number has been 
reported in 80% of CRPCs [9,11,12]. The amplification was rarely 
detected in un-treated PCa [9]. High levels of AR amplification have 
also been detected in 38-63% of circulating tumour cells in CRPC 
patients with metastasis [13,14]. Their respond to the second line of 
androgen blockade is also good [15]. Other causes of overexpression of 
AR may be deregulation of miRNAs which regulate AR or shortened 
3’UTR in AR gene [16]. For example down-regulation of miR-let-
7c is inversely correlated with AR expression but Lin28 is positively 
correlated with AR [17]. Also the deregulation of transcription factors 
such as NF-κB has been detected in CRPC and is correlated to AR 
overexpression [18]. NF-κB binds to the promoter region of AR and 
increased both mRNA and protein and NF-κB inhibitor can reduce 
the AR and tumour growth. Another factor that has been correlated 
to overexpression of AR is loss of retinoblastoma protein (RB1). This 
will increase the expression of transcription factor E2F1 and cause 
increase transcription of AR [19]. 

Mutation of the AR gene

Prostate cancer is a highly heterogeneous disease which will be 
achieved by a subset of cell that acquired additional mutations after 
intrinsic and extrinsic stimuli which promote their aggressiveness 
and metastasis [20,21]. AR has the most mutations among the 
hormone receptors with >660 mutations reported. Mutations in 
AR gene are rare in untreated PC but more in CRPC which develop 
in 10-30% of patients after the treatment. Mutations are mainly 
occurring in NTD (37%), LBD (40%) and DBD (9%) region of the AR 
gene and they may result in the activation of AR with weak adrenal 
androgens or they may convert AR antagonist to AR agonist in which 
can activate tumour growth. One of the most common mutations 
in AR which affects the ligand specificity of AR is T877A. In this 
mutation an alanine is replaced by a threonine [22]. This mutation 
alters the stereochemistry of the binding pocket and allows other 
nuclear hormones, corticosteroids and anti-androgens to activate the 
AR[23,24]. Another one of these mutations called F876L which will 
reverse the anti-androgenic effect of enzalutamide to an agonist of 
AR25. The treatment plan for these patients is to target the downstream 
effectors of AR signalling and/or use other anti-androgen drugs such 
as bicalutamide [25]. Several other mutations in LBD have been 
detected such as L701H, H874Y, V715M, V730M and W742C which 
increased the sensitivity of AR to other steroids. L701H mutated cells 
are highly sensitive to glucocorticoids at physiological concentrations 
[26,27]. H874Y was originally detected in CWR22 xenograft and 
CRPC patients treated with flutamide. They are more sensitive to 
hormone and other steroids. This mutation is far from LBD and its 
effect is due to conformational changes in AR protein [24,28]. V715M, 
V730M and W742C are rare mutations in CRPC and increased the 
sensitivity of AR to low concentrations of androgen and also adrenal 
androgen. The tumour growth has been increased in tumours with 
W742C mutation which received bicalutamide and flutamide [29,30]. 
Therefore, this mutation may convert antagonist to agonist. 

Co-Regulators of AR

The regulatory role of AR in the nucleus has been introduced 
through a series of co-regulatory proteins [31]. These co-regulators 

Figure 1:  TRanscript and protein structure of AR gene. a, AR gene, b, AR splice variants, c, AR proteins. H, hingeregion, U, untranslated, ZF, zinc finger. (Egan 
et al, 2014; Hu et al 2009; Guo et al, 2009; Sun et al, 2010, Hu et al, 2011; Ahrens-Fathe et al, 2005.)
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can either enhance (p160/SRC and CBP/p300) or suppress (NCoR 
and SMRT) the transcription through alteration in ligand specificity 
or activation of AR with low levels of androgen [32]. The deregulation 
of co-regulators can result in the development of CRPC [33]. The co-
regulators have different functions, some are chaperons (HSP90), 
some are enzymes which modify histone, SW1/SNF alters chromatin 
and HATs modify histones post-transcriptionally [31,34]. It has been 
reported that increased expression of SRC [encoding v-src sarcoma 
(Schmidt-Ruppin A-2) viral oncogene homolog] family plays a role 
in both AR-dependent and AR-independent PCa. SRC-1, SRC-2 and 
SRC-3 have been bound to NTD in AR and activated it via histone 
acetyltransferase activity. Amplification of SRC-2 has been detected 
in 11% of PCa which may increase the sensitivity of AR to weak 
agonists [12]. The level of SRC-2 is reduced by androgen; therefore 
using ADT will increase the SRC-2 [35]. Phosphorylated SRC-1 can 
activate AR in the absence of androgen with the same scale. Elevated 
level of SRC-3 is associated with a more aggressive form of the disease 
[36].

Forkhead box A1 (FoxA1) is a member of the forkhead family of 
transcription factors and they interact with chromatin as a pioneer 
factor in nuclear receptors [37]. Therefore, absence or deletion of 
FoxA1 can cause loss of AR binding to chromatin. From other hand it 
has been shown that knocking down FoxA1 in prostate cells resulted 
in redistribution of AR binding site and gain in novel binding 
domains [35]. This suggested the double sword effect of FoxA1 either 
as facilitator or trans-repressor of AR binding to chromatin [35,36]. 
This gene is important in the development of CRPC.

Another protein acts as co-activator is TFF3 (trefoil factor 3), 
which is differentially expressed in native PCa compare to CRPC and 
it is involved in the ERG (v-ets erythroblastosis virus E26 oncogene 
homolog) rearrangement. TFF3 is directly regulated by ERG in both 
types of PCa. ERG inhibits the expression of TFF3 in the presence 
of androgen but stimulate it in the androgen free environment 
[37]. This shows the double effect of ERG on the regulation of TFF3 
which depends on the level of androgen in the microenvironment of 
cancer. Induced TFF expression by ERG enhanced the invasiveness 
of CRPC cells which may be due to switching on an AR suppressed 
pathway [37]. ERG can also function independently of AR signalling 
in prostate cancer. Overexpression of ERG in PCa is associated with 
increased invasion and proliferation [38]. It has been shown that 
increased ERG in the presence of aberrant PI3K pathway will induce 
invasiveness of PCa [39]. 

Enhancer of zeste homologue 2 (EZH2), a catalytic subunit of 
polycomb repressor complex 2 (PRC2), has been involved in the 
progression of PCa [40]. In prostate cancer the expression of EZH2 
is higher in more aggressive cancer and high expression is correlated 
to poor prognosis [41]. EZH2 is known as a transcription repressor, 
but it has also acted as a transcription activator. The transformation 
from a repressor to an activator is modulated by phosphorylation 
of serine-21 which is regulated by PI3K/Akt pathway [42]. 
Phosphorylation makes the cells independent of androgen and this 
can be responsible for the development of CRPC. 

Cyclin D1b is another co-regulator of AR. Cooperation of AR 
and Cyclin D1b results in the induction of Slug (SNA12), a member 
of the SNAIL family of transcriptional factors [43]. Slug is a known 

gene in the induction of epithelia-mesenchymal transition in PCa 
and it was reported that knocking down slug suppressed the invasive 
capacity of PCa especially in cells overexpressing Cyclin D1b [43]. 
Also Slug has been reported as an AR co-activator which can enhance 
AR transcriptional activity in CRPC. This works through a positive 
feedback mechanism via slug in which cooperative signalling between 
Cyclin D1b and AR can increase AR functional activity [38]. 

AR Splice Variants

Alternative splicing is a common feature in the cancer and there 
are numerous splice variants that are associated with progression and 
metastasis of cancer. The splice variants somehow adjust themselves 
to be free of growth factors and suppressor genes and they can cope 
easier with hypoxia. This will enable them to escape immune system 
and speared in the body. In PCa the late native splicing has been 
detected in a number of genes. AR is one of them and alternative 
splicing of AR has not been detected in normal prostate tissue [39-41]. 
The most common feature of alternative splicing is the N-terminal 
Domain (NTD) and DNA binding Domain (DBD) and disrupted 
ligand binding domain (LBD) which will cause resistance to drugs 
(Figure 1). The mechanism of splice variant is not clear. There are 
reports of alternative initiation of translation which results in shorter 
AR [42]. The other hypothesis is the proteolytic cleavage of full length 
AR which is a post-transcriptional mechanism [43]. RNAi studies 
show that by targeting the LBD, only the full length is suppressed 
and the shorter variants are still active [44]. AR amplification and 
deletion can also result to alternative splicing. Deletion in exon 5, 6 
and 7 can generate a truncated isoform. The most common variants 
detected in CRPC are AR-V7 and ARv567es and high expression of 
these variants are correlated with poorer patient’s survival [45]. AR-
V7 has been found in tissue samples of CRPC patients and CRPC 
cell line (22RV1) which lack LBD but contain 16 unique amino acids 
[39,40]. In pre-clinical models, levels of AR-V7 cannot be suppressed 
and may be increased by abiraterone and enzalutamide [46,47]. 
Gene expression profiling of variants knockdown cells show that 
AR-Vs and AR-FL regulate distinct characteristic set of target genes 
[47,48]. Up-regulation of AR-Vs in CRPC may be due to an adaptive 
mechanism to the androgen axis treatment. Although the presence 
of AR alternative splices is a venue of interest in prostate cancer, lack 
of antibody for specific isoforms restricts the studies. The RNA level 
does not always reflect the protein level. It has been reported that AR-
Vs in mRNA level may be low in CRPC patients, but their protein 
level could express 32% of the AR-FL [45]. Following the resistance to 
abiraterone and enzalutamide in the CRPC, the presence of a number 
of truncated AR splice variants has been reported in CRPC patients 
[40,49]. The need for N-terminal inhibitors is urgent to determine 
if AR-Vs are contributing mediators of CRPC or biomarkers of 
aggressiveness. However, until N-terminal inhibitors of the AR are 
available for clinical use, it is unlikely the question will be resolved 
experimentally [49]. 

Changes in Cell Signalling Pathways that Modulate AR 
Function

Changes in steroid metabolism within the tumour cells: 
Testosterone produced in the testes can be converted into its active 
form, dihydrotestosterone (DHT), in the prostate. Although ADT 
reduce the amount of testosterone in CRPC patients, the DHT in 
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the tissue is high enough to activate the AR. This may lead to an 
endogenous synthesis of DHT [50]. It was reported that in CRPC the 
increased level of transcripts encoding enzymes involved in androgen 
metabolism can cause intra-tumoral production of DHT [51]. 

Bypass AR pathway by other steroid receptors: The role of 
glucocorticoid receptors (GR) has been studied in CRPC and it 
has been reported that glucocorticoids can slow down disease 
progression in CRPC. This can be achieved through suppression of 
adrenal gland activity and also through changes in TGF- β, IL-6 and 
IL-8 which have anti-proliferative effect. Increased expression of GR 
is due to a bypass system after blockade of androgen and this can 
cause resistance to anti-androgen drugs such as enzalutamide [37,52]. 
There is a high homology between the six steroid receptors (AR, ESR 
α, ESR β, PR, GR and mineralocorticoid receptor) especially in their 
DBD. Therefore, further elucidation is required to see the relationship 
of other steroid receptors to the CRPC. In CRPC, DHT can be 
synthesized from cholesterol. There are reports of up-regulation of 
the steriodogenic acute regulator protein (StAR) in CRPC patients. 
This protein regulates the transfer of cholesterol to mitochondria to 
activate the steroidogenesis pathways [53].

RSK/YB-1 signalling: AR has been overexpressed in most of 
the CRPC cases, with amplification responsible for only 10-20% of 
these cases. The alteration in AR signalling is another reason for AR 
overexpression. One of such involved signalling pathways is RSK/YB1 
pathway. Y-box binding protein-1 (YB-1) is a poleiotropic factor that 
binds to the Y-box sequence (5’ATTGG 3’) in nucleus and modulates 
gene specific translation. YB-1 is up-regulated in prostate cancer and 
it is also correlated with androgen ablation and tumour progression, 
thus plays a role in the progression of PCa to CRPC [54]. It has been 
shown that YB-1 binds to AR promoter and regulates AR transcription 
through the promoter region. YB-1 is highly expressed in CRPC both 
in vitro and in vivo. It has been shown that YB-1 is translocated to 
nucleus due to cellular stress by phosphorylation. Furthermore, 
AKT and p90 ribosomal S6 kinases (RSK) are responsible for YB-1 
phosphorylation [55,56]. The RSK family of Ser/Thr kinases consist 
of four isoforms and RSK1 and RSK2 are overexpressed in human 
prostate cancer.It has been reported that blocking AR signalling 
either by androgen depletion or treatment with anti-androgen agent 
caused the activation of RSK/YB1 signalling pathway which can 
induce AR. Inhibition of this pathway can suppress AR induction and 
the growth of prostate cancer [57]. Using SL0101 (a RSK inhibitor) 
to inhibit tumour initiation by inactivating YB-1 and combination of 
this inhibitor with enzalutamide in CRPC will increase and prolong 
the response to treatment [57]. 

Post-Translational Modification of AR

mircoRNA: miRNAs are short (21-23 bp) non-coding RNAs 
which act as transcriptional or post-transcriptional regulators of gene 
expression. Recent studies have reported the use of these RNAs for 
diagnosis and prognosis of cancer. The first miRNA reported in 
serum of patients with CRPC was mir-21. The serum expression level 
of mir-21 was significantly higher in CRPC compared to androgen 
dependant and localised prostate cancer [58]. Other miRNAs with 
high expression levels in serum and tissue of CRPC patients are miR- 
141, miR-298, and miR-375 [59]. mir-141, miR-298 and miR-375 are 

significantly elevated in serum of metastatic CRPC than localized PCa 
and Mir-141 and miR-375 are also elevated in the tumour tissues [59]. 
MiR-221/-222 is increased in CRPC and miR-23b/27b is repressed in 
CRPC [60]. Suppression effect of miR-23b/27b is obtained through 
reducing Rac1 activity and increasing E-cadherin level [61]. Another 
AR and CRPC related miRNAs are miR-124 and miR-125b. miR-124 
has been reduced in prostate cancer compared to BPH which is due to 
hypermethylation. It acts as a direct target of AR by down-regulating 
miR-125b and up-regulation of p53 [62]. Therefore miR-124-AR-
miR-125b pathway was introduced as a potential novel target. Using 
anti-mir-125b has resulted in apoptosis induction in both androgen 
dependant and independent PCa by affecting on p52, Puma, bak1 and 
p14ARF, releasing mitochondrial CytC, SMAC and activation of Cas3 
[62,63]. To examine the tumour growth in vivo, mice was injected 
with a transfected cells with high levels of mir-125 (19-fold greater). 
Tumour growth was much faster than control and after castration, 
there was a slight regression. When 22RV1 cells were transfected with 
lento-miR-124 (23-fold increase), tumour growth was inhibited and 
AR was lower compared to the control [62]. 

Anti-miR-125b can sensitize PCa to cisplatin or genistein 
treatment. Inhibition of miR-125b will increase p53 which is essential 
for docetaxel sensitivity of PCa [64]. Mir-30 is also important in 
CRPC and is involved in the Src tyrosine kinase activity. Induction of 
miR-30 will inhibit the growth, invasion and migration of CRPC cells 
[65]. miR-30 binds to ERG at 3’ UTR and can affect the downstream 
targets of EGR such as c-MYC [66]. 

lncRNA: Human genome produces both protein coding and non-
coding RNAs but the effect of non-coding RNA was underestimated. 
During the last few years more attention has been made to identify 
lncRNA, as 90% of the human genome transcripts are consisted of 
non-coding RNAs. Therefore revealing the role of lncRNAs in cancer 
can be of great promise for the early detection, prevention and 
treatment of tumours. lncRNAs are RNA molecules >200bp long. 
They are frequently polyadenylated and associated with transcription 
by polymerase II [67]. 

MALAT-1 is a lncRNA and it is involved in regulation of 
metastasis and motility in cancers. It is located on Chr 11q13 and 
consists of more than 8000 nt. The expression of MALAT-1 in prostate 
cancer tissue was much higher than in the normal counterpart and 
among cancer samples, CRPC tumours were demonstrated much 
higher expression.Suppression of MALAT-1 results in reduction of 
the growth of CRPC tumours and metastasis [68]. 

Another lncRNA which has been confirmed to be involved in the 
transition of prostate cancer from androgen-dependent to androgen 
independent form is linc00963 which is located on Chr 9q34.11. 
Using the knockdown strategy, the function of linc00963 on cell 
proliferation, apoptosis, migration and invasion were evaluated in 
highly malignant C4-2 cell line. It was confirmed that the transition 
was via the EGFR signalling pathway [69].

The 3rd lncRNA located in the PCAT-114 gene is SChLAP1 
(Second Chromosome Locus Associated with Prostate-1, also called 
LINC00913). The size is 1.4kb and it composes of up to seven exons. 
It has been reported that SChLAP-1 was highly expressed in around 
25% of prostate cancer and it is more frequent in high Gleason score 
and associated with EST fusion [70]. This has been associated with 
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the progression of prostate cancer and metastasis. High expression 
of SChLAP1 is associated with poor prognosis of patients. It has been 
confirmed that SW1/SNF has an opposite correlation with SChLAP1, 
as loss of SW1/SNF promotes cancer progression. Therefore, high 
SChLAP1 has an antagonistic effect on SW1/SNF [70]. 

Prostate Cancer Associated Transcript-1 (PCAT-1) is another 
lncRNA which is located on Chr 8q24, and approximately 725kb 
upstream of c-MYC. PCAT-1 is highly overexpressed in high grade 
and metastatic prostate cancer. There is a direct correlation between 
the PCAT-1 and EZH2 expression in high grade patients  [71]. It has 
been reported that PCAT-1 is involved in the double strand DNA 
break (DSB) [72]. 

Role of Stem Cells in CRPC

Recently, it has been indicated that cancer stem cells can play 
a role in the epithelial-to-mesenchymal transition (EMT) which 
results in drug resistance [73]. Through EMT, epithelial cells lose 
cell polarity, cell-cell adhesion, and gain mesenchymal characteristic 
such as high capability of migration, invasion, anti-apoptosis and 
disarrangement of extracellular matrix. In prostate cancer, castration 
will induce EMT [74] which may cause the cells to leave epithelium 
and invade distal organs. There are a number of proteins involved in 
the EMT process such as E-cadherin, N-cadherin, Vimentin, snail, 
Zeb1, Zeb 2, TWIST and Slug [75]. E-cadherin is located in the 
surface of epithelial cells and facilitates cell-cell adhesion in normal 
epithelium. In most cancer, E-cadherin is reduced which can drive 
to EMT. Snail, Slug, Zeb1, Zeb2 and TWIST reduce E-cadherin. 
N-cadherin and Vimentin are associated with the initiation of EMT 
and progression to invasive form [76]. In CRPC the expression of 
Zeb1 and TWIST is much higher than the ADT PCa and blockade of 
Twist will increase E-cadherin level [77]. Slug, an EMT transcription 
factor is overexpressed in CRPC and promotes tumour development 
[78]. High expression of N-cadherin has been reported in primary 
and metastatic tumors of patients with CRPC and specific antibodies 
against N-cadherin can suppress tumour growth, metastasis and 
invasion through reduction the activities of Akt and IL-8 [79].

Cancer stem cells (CSCs) are stem-like cells in tumours and have 
ability to grow and differentiate to different tumour cells. They have 
specific surface antigens and retain mesenchymal phenotypes which 
is important in progression to CRPC [73]. It has been proposed 
that androgen independent cells are located in basal layer and the 
number of these androgen independent cells is very small compared 
to androgen dependant cells. After androgen ablation the androgen 
sensitive cells are destroyed but the androgen independent cells 
survived and become dominant CRPC [80,81]. There are a number of 
biomarkers correlated to CSCs in CRPC such as CD166, Sox2, Lgr4, 
Sca-1, CD44, p63 and etc [73]. There are also a number of pathways 
involved in the EMT and CSCs toward CRPC such as AR pathways 
[82-84], growth-factor receptor tyrosine kinase activated pathways 
[85-87], Pten related pathways [88], STAT3 related pathways [89,90], 
Wnt pathway [91-93], Notch and Hedgehog pathways [94-96]. 

Role of fatty acids in CRPC

Fatty acids (FA) and cholesterol have many regulatory functions 
in living cells and they are main precursors for lipids and have proven 
roles in the development and progression of prostate cancer [97,98]. 

In Western countries the increased incidence of prostate cancer 
is associated with high consumption of omega-6 which is in red 
meat, refined vegetable oil and highly processed food [99,100]. On 
the other hand the Western diet lacks omega-3 which has been 
proven to have an inverse effect on the progression of prostate cancer 
[101,102]. It has been reported that maintaining a low omega6/
omega3 ratio can prolong the respond of PCa to androgen treatment 
and delay progression to CRPC [103]. This effect is through affecting 
a number of pathways which are important in the proliferation, cell 
cycle progression and survival of prostate cancer cells. One of these 
pathways is PI3K/Akt/mTOR axis. High consumption of omega-6 
will activate this pathway and the reduced ratio of omega-6/omega-3 
will delay the progression of PCa in a dose dependent manner. 
NFκB is another transcription factor in the downstream of the Akt 
pathway which is increased significantly in CRPC. Reducing the ratio 
of omega-6/omega-3 will cause reduction in NFκB and prevent its 
translocation to nucleus, thus to reduce its transcriptional activity 
[104]. Cyclin D1 is another protooncogene involved in cell cycle and 
its overexpression has been associated with androgen independent 
cancer [105]. Reduction in the omega-6/omega-3 ratio will suppress 
cyclin D1 expression [103]. Another marker which has been changed 
by reduction of omega-6/omega-3 ratio is caspase-3 responsible for 
promoting apoptosis of cells. In CRPC cells this protein is reduced 
and therefore cells don’t respond to treatment. By reducing the 
ratio of fatty acids the level of caspase-3 will increase and delay the 
progression of PCa to CRPC [103]. 

Fatty acids also stimulate steroid synthesis from cholesterol 
in steroidogenic organs [106,107]. SREBP, an AR regulatory 
transcriptional factor, is responsible for androgen synthesis and 
is increased in CRPC [108-110]. They are also responsible for the 
regulation of endogenous fatty acids and cholesterol and central 
precursors of androgen [51,108,111,112].

Another biomarkers involved is the fatty acid transport is 
C-FABP. The expression of this protein is high in androgen 
independent cells (PC3 and PC3M), low in androgen sensitive cell 
(22RV1) or none in androgen dependant cells (LNCaP) [113-115]. 
Fatty acids are sources of nutrition and energy. In weakly malignant 
androgen dependent PCa cells, relatively small amount of fatty acids 
is transported by C-FABP into cells and used as a source of nutrition. 
In highly malignant PCa and CRPC cells with a high level of C-FABP, 
large amount of intracellular fatty acidsis transported into the cells 
and the excessive amount of fatty acids can act as signalling molecules 
to stimulate their nuclear receptor, PPARγ. The activated PPARγ 
may trigger a series of molecular events that lead to a facilitated 
malignant progression through promoting angiogenesis and 
suppressing apoptosis [114]. As the increased cellular uptake of fatty 
acids transported by elevated levels of C-FABP in cancer cells was 
reported, the increased production of fatty acids was also evidenced 
by increased fatty acid synthase (FASN) in CRPC cells [116,117].

Conclusion
A number of mechanisms have been introduced for the transition 

of androgen dependent prostate cancer to androgen independent 
state (Figure 2). The most common mechanism is the amplification of 
the sensitivity of the AR due to androgen deprivation. Transcription 
factor and miRNA deregulation are also important mechanisms. 
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When the cancer cells are deprived of androgen supply in the 
initial round of treatment, cells try to maximize their survival 
ability by increasing the AR sensitivity to make full use of a small 
amount of androgen remains. Therefore, some survived cells with 
an increased ability to use an epsilon quantity of androgen become 
dominant and castration resistant. Mutations are another adaptive 
mechanism which can change antagonist effect of drugs to agonist 
effect which can be harmful to patients and it has to be considered 
before the start of the treatment in CRPC cases. Another mechanism 
which has been highlighted was AR splicing variants which can 
cause resistance to abiraterone and enzalutamide in the CRPC. 
Post-translational modifications can affect the activity, stability, 
localization and interaction with other proteins. Although each 
current theory described above can explain certain aspects of the 
complicated molecular pathology involved in the transition of PCa 
cells from androgen dependent to androgen independent state, no 
single theory can satisfactorily explain every aspect. For example, if 
the AR sensitivity amplification theory is true, we would expect that 
re-expression of AR in AR-negative PCa cells could increase the 
malignancy. But several studies on the highly malignant PC3 cells 
showed that the forced re-expression of AR in PC3 cells actually 
reduced their malignancy [118-120]. Thus further study is needed to 
find out exactly what has made the PCa cell transition. The recent 
discovery of a novel tumorigenicity-promoting signalling pathway 
named C-FABP (fatty acids)-PPARg-VEGF axis provided an 
alternative theory for the transition of PCa cells (Forootan FS, et al, 
in preparation for publication). This theory hypothesized that when 
the cancer cells are deprived of androgen supply in the initial round 
of chemotherapy, the cells are desperate to seek for new sources of 
energy supply and under the heavy selection pressure, most of the 
cells died from starvation. However, some cancer cells may have 
survived the pressure by switching their reliance on androgen to 
fatty acids (transported by C-FABP) as an alternative energy source. 
These cells are the so-called castration resistant cells. This hypothesis 

provided a new window of opportunity to observe this crucial issue in 
prostate cancer research from an entirely different angle.
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