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Validated Models Using EHRs 
or Claims Data to Distinguish 
Diabetes Type among Adults

Introduction
The Centers for Disease Control and Prevention (CDC) estimates 

that 13% of adults in the United States have undiagnosed or diagnosed 
type 1 or type 2 diabetes mellitus (T1DM, T2DM) [1]. T1DM and 
T2DM are distinct conditions with unique epidemiology, treatment, 
and complications. As the prevalence of T2DM in adolescents and 
young adults continues to increase [2], there is a growing need for 
diabetes surveillance systems to distinguish between the types of 
diabetes to help in planning and budgeting for public health diabetes 
programs; to measure the cost and quality of care for the two types; 
and to trend type-specific pathophysiology, prevalence, morbidity 
and mortality especially for the more rare T1DM and youth onset 
T2DM [3-6].

To measure national diabetes prevalence among adults, CDC 
relies upon national surveys such as the National Health Interview 
Survey and the National Health and Nutrition Examination Survey 
(NHANES). However, it is difficult to use surveys for estimating 
prevalence by type because, when surveyed, individuals with diabetes 
may be uncertain about their diabetes type diagnosis and/or their 
prescribed diabetes-related medications. 

Aside from surveys, another approach to diabetes type 
classification and surveillance is through the use of electronic 
health record (EHR) data. As more health systems in the U.S. 
have implemented EHR data ware houses and health information 
exchanges, EHR clinical data provides the opportunity for efficient 
and timely disease surveillance through modeling [7-9].

Within the youth population with diabetes, EHR-based methods 
to distinguish between T1DM and T2DM have been well-developed 
and validated [10-15]. However, among adults with diabetes, the 
studies on EHR-based models have either a) had access to diabetes 
onset information from a registry, b) not performed validation on 
both Type 1 and Type 2 classification, or c) validated on a small 
sample of cases [16-19].

One notable effort to develop an EHR-based algorithm for 
classifying diabetes type among adults has been the work of Klompas 
et al. and SUPREME DM. The SUPREME DM algorithm, includes 
a combination of criteria from diagnoses codes, drug use, and 
laboratory results for positive auto antibodies and c-peptide results 
to identify adults with T1DM or T2DM [18,20]. Schroeder et al. 
subsequently validated the SUPREME DM algorithm, however chart 
review for the study was only performed for T1DM patients and, 
therefore, the validation only reported T1DM positive predictive 
value (96.4%) [21].

While the field develops phenotyping models using EHR-data, in 
reality, there remains the interoperable challenge of combining EHR 
data across multiple providers’ systems. For this reason, to perform 
these models at the regional or state level, researchers are more likely 
to use larger-scaled claims databases supplemented with medication 
data. Therefore, as part of our study, we removed from our full EHR 
model BMI and laboratory data (i.e., data often unavailable in claims 
data) to simulate a claims + medication-based (“simulated claims”) 
model and compared the models’ performance.
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Abstract
Purpose: Clinical data provides the opportunity for efficient and 

timely disease surveillance. We developed and validated advanced 
phenotyping models to classify adult patients with diabetes to type 1, 
type 2, or other/indeterminate using structured fields from EHR data. 
To simulate the use of claims data supplemented with medication 
information, we compared model performance before and after the 
removal of body mass index (BMI) and laboratory results.

Methods: We used 3 years of EHR data from a sample of 2,465 
adult patients with diabetes from a health care system’s clinical data 
warehouse. A weighted ratio of type 1 diabetes codes to all diabetes 
codes was created by down-weighting codes from care settings that 
do not treat diabetes. We developed two multinomial regression 
models and a machine learning conditional inference tree to classify 
patients to type 1, type 2, or other/indeterminate. The models were 
validated by calculating sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) relative to a gold 
standard.

Results: For all models, the weighted ratio of type 1 diabetes was 
the strongest predictive factor. The models had validation statistics ≥ 
93% for sensitivity; ≥ 87% for specificity; ≥ 88% for PPV, and ≥ 93% for NPV. 
After removal of BMI and laboratory data from the regression model 
the largest decline in performance from the full model was in type 2 
diabetes specificity (90.8% to 89.2%).

Conclusion: Prediction models and machine learning conditional 
inference trees using either structured fields from EHR data or claims 
data supplemented with medication data can be used to accurately 
distinguish diabetes type among adults. The inclusion of BMI and 
laboratory results improves model specificity for type 2 diabetes.



Adv Diabetes Endocrinol 7(1): 1 (2023) Page - 02

ISSN: 2475-5591

Citation: Campione JR, Nooney JG, Kirkman MS, Pfaff E, Mardon R, et al. Validated Models Using EHRs or Claims Data to Distinguish Diabetes Type 
among Adults. Adv Diabetes Endocrinol 2023;7(1): 4.

Material & Methods
Data source and population

We used EHR data from the University of North Carolina’s 
(UNC) affiliated health system, called UNC Health, which consists 
of 12 hospitals and over 200 practices across the state of North 
Carolina. During the study time period, UNC Health used the Epic 
EHR system and stored the data in the Carolina Data Warehouse 
for Health (CDW-H). The CDW-H is refreshed daily and contains 
clinical, research, and administrative data sourced from UNC Health, 
covering over 2.7 million unique patients since 2004. The population 
for the study included adults ≥ 18 years of age who had at least one 
diagnosis code for non-gestational diabetes and two or more office 
visits at a UNC Health outpatient facility during the 18 months 
4/1/2016 - 9/30/2017. This identified 100,743 recently active patients 
with at least one diagnosis code for diabetes. 

Diabetes case identification and sample selection

Within this population, we aimed to identify a stratified random 
sample highly likely to have diabetes since patients who do not actually 
have diabetes are not useful for developing models to distinguish 
diabetes type. Our first step was to use diabetes case-finding criteria 
(see Appendix Table 1) based on diabetes diagnosis codes, diabetes-
related laboratory results, and diabetes-related medications, similar 
to prior “straw man” criteria [18,22].

We then narrowed the population to include only patients who 
had at least one visit to the following clinic types that are likely to 
address diabetes: endocrinology, family medicine, general internal 
medicine, and obstetrics/gynecology. Women with a diagnosis code 
for abnormal glucose in pregnancy or gestational diabetes were 
excluded. These restrictions reduced the sample by 59%, resulting in a 
sample frame of 41,614 adult patients with presumed non-gestational 
diabetes.

We selected a stratified random sample of 2,500 adult patients 
with diabetes. To facilitate detection of the rarer T1DM, we 
oversampled probable T1DM by identifying patients with two or 
more T1DM codes on separate occasions OR one T1DM code on 
the patient’s problem list AND no outpatient prescription for non-
insulin hypoglycemic medications. The sample was further stratified 
by three age categories, sex, and race/ethnicity to allow for equal 
representation across these demographics. Once the sample was 
finalized, each patient in the sample was assigned a sample weight 
calculated as the inverse of the selection probability in their stratum 
for the purpose of validating the model on the health system’s “real” 
patient population of adult patients with type 1 or type 2 diabetes. 
Thus, the sum of the sampling weights equaled 41,614.

From the CDW-H, relational data files of structured EHR data 
were pulled for the 2,500 patients during October 1, 2014 - September 
30, 2017. Structured EHR data include patient demographics, health 
care service dates and settings, diagnoses codes, patient vital signs 
such as blood pressure and body mass index (BMI), laboratory 
results, and prescription medication information. Structured fields 
do not include physician’s notes. The laboratory results file included 
hemoglobin A1c, lipids, c-peptide, auto antibodies, and triglycerides. 
Using EHR data for distinguishing diabetes can be challenging when 
information is not contained in structured data elements. 

Gold standard classification

Currently, there can be considerable overlap in the diagnoses that 
physicians list in the patient records of adults with unclear diabetes 
type. Thus, there is no existing gold standard for diabetes type. For 
this study, to develop a gold standard diabetes type (T1DM, T2DM, 
and Other/Indeterminate type) we did chart review using REDCap 
electronic data capture tools on patients with any inconsistency in 
diagnosis codes [23]. For these patients, trained abstractors reviewed 
the patient’s information to collect age at diagnosis, historical use 
of insulin and oral antidiabetic medications, and other elements 
not available in the EHR structured fields. We then applied two 
quantitative models independently to each case - a decision tree 
and a weighting equation. A decision tree used sequential rules to 
classify patients based on clinical factors and a weighting equation 
simultaneously considered twelve clinical factors using a scoring 
system in which clinical characteristics weighed towards or against 
Type 1 or Type 2. Both methods permitted a classification of 
“indeterminate.” When the two methods did not agree, or when both 
models assigned the individual to Other/Indeterminate type (n=282), 
the study’s endocrinologist reviewed and classified those cases. The 
other forty-one percent of the sample were straightforward cases that 
were already distinguishable – these patients had two or more of only 
one type-specific diabetes diagnosis code and consistent medication 
associated with that type (i.e., T1DMs with evidence of insulin only 
and T2DMs with no evidence of insulin not on insulin). The gold 
standard classifications were also used for the validation of new 
survey questions, in a separate study [24].

After chart review, we excluded thirty-five patients found to not 
have any diabetes or recently deceased. Among the 2,465 remaining, 
the sample consisted of 52% females. The race distribution was 
33% Non-Hispanic white; 28% Non-Hispanic black; 23% Hispanic 
and 16% Non-Hispanic other. The gold standard classification was 
663 T1DM, 1,738 T2DM, and 64 Other/Indeterminate types. After 
applying the sample weights, the gold standard prevalence was 4.8% 
T1DM, 94.6% T2DM, and 0.5% Other/Indeterminate type; similar to 
survey-based national estimates of T1DM and T2DM among adults 
diagnosed with diabetes [25]. Hence, a measure of internal validity, 
The Other/Indeterminate type includes secondary diabetes due to 
genetic defects of beta-cell function or insulin action, diabetes after 
a pancreatectomy or other surgery (i.e., post-procedural diabetes), 
secondary diabetes not elsewhere classified, and case types that were 
indeterminate.

Calculation
Development of Model Variables

Patient information found in the EHR data between October 1, 
2014 - September 30, 2017 was used to develop the model variables. 
Prior algorithms to classify T1DM among patients with diabetes 
included the use of the ratio of T1DM codes to the sum of T1DM and 
T2DMdiagnosis codes [10,18,20]. Therefore, we created weighted 
diagnosis-based ratios for T1DM, T2DM, and Other/Indeterminate 
type. To do this, we categorized each diabetes code found into one 
of four subgroups: 1) High Value (HV): when the code was linked 
to a visit with one of UNC Health’s diabetes / endocrinology clinics, 
primary care clinics, or when the visit type was “Return Diabetes”; 
2) Problem List (PL): when the code was on the Patient Problem 
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List; 3) Primary Diagnosis (PD): when the code was not from a high 
value setting, but listed as the primary diagnosis; and 4) All Other 
(AO) diabetes diagnosis codes found. The AO subgroup was down-
weighted to reduce the influence of diabetes diagnosis codes from 
care settings that do not treat diabetes because these codes may be less 
reliable than codes from health care settings that do treat diabetes. For 
each subgroup, type-specific ratios were created by dividing the type-
specific count of codes (i.e., numerator) by the count of all diabetes 
codes. The all diabetes count excluded diagnosis codes for gestational 
diabetes, diabetes mellitus due to underlying condition (Version 10 of 
International Classification of Diseases Clinical Modification (ICD-
10-CM) E08), and drug or chemical induced diabetes mellitus (ICD-
10-CM E09). The final weighted ratio for each type was the weighted 
average of the subgroup ratios.

Using laboratory result data, we found patients’ highest value for 
hemoglobin A1c and triglycerides and their lowest value for high-
density lipoproteins (HDL). Indicator flags were created if a patient 
had positive auto-antibodies or a c-peptidevalue < 0.1ng/mL.

Prescribed medications were put into one of six categories: 
1) Metform alone, 2) insulin, 3) Sulfonylurea, 4) other oral agents, 
5) non-insulin injectables (i.e., liraglutide and exenatide) or 6) 
Glucagon. Insulin use is universal for patients with T1DM, with 
the exception of those newly diagnosed with T1DM, and oral 
hypoglycemic medications (alone or with insulin) are often used to 
treat patients with T2DM. We aggregated the counts of metformin 
alone, oral agent, and non-insulin injectables to create a patient’s 
count of all oral agents. The count values of the six categories and 
of all oral agents were used to develop two indicator variables: “Oral 
Agent Use Only” and “Insulin Use Only”. 

Development of Regression Model 

After variable development, we randomly cut the sample in half. 
One half was used for model development (n=1,233) and the other half 
for model validation. To choose the candidate variables for predicting 
diabetes type among adults we reviewed the correlations of each 
variable to each gold standard type, and considered the factors used 
in previously published models to distinguish diabetes type in light of 
our clinical knowledge [17,20]. This resulted in a list of 26 candidate 
variables, not including patient race, age category, or gender as these 
characteristics were used for stratification and weighting.

We then estimated and refined several multinomial regression 
models on the development sample. For each patient, multinomial 
model produced a probability of T1DM, T2DM, and Other/
Indeterminate type. The highest of these probabilities is that model’s 
predicted type for that case. We refined the models using Least 
Absolute Shrinkage and Selection Operator (LASSO) to assist in 
finding the subset of variables that best predicted diabetes type [26]. 
We prioritized the use of continuous values when possible, however, 
we also explored the use of cut points for continuous variables such 
as age, highest observed BMI, highest hemoglobin A1c results, and 
diagnosis ratios. We reviewed the area under the curve (i.e., c-statistic) 
to choose the best performing model within the development sample 
taking into account clarity, simplicity, and clinical plausibility, as well 
as statistical performance. The data preparation and the regression 
models were developed using SAS version 9.4 (SAS Institute Inc., 
Cary, NC).

Development of Inference Tree 

As an alternative to regression modeling, we applied a supervised 
machine learning (ML) approach to develop a conditional inference 
tree that classified each patient into one of the three gold standard 
types. Supervised learning, in which the machine learning program 
is provided a set of input variables (e.g. the 26 study variables) and 
a known output variable (e.g., gold standard type), is a common 
approach used for disease prediction and diagnosis [27]. The 
conditional inference tree was built using the ctree function from 
party package in R version 3.6.0 [28]. As part of the process, first the 
ML program uses a significance test procedure in order to select key 
variables, and then, when necessary, determines implicit binary splits 
for continuous variables [29-30]. The overall criterion for the tree was 
optimal balanced sensitivity, specificity, PPV and NPV.

Validation

After model development, we validated both the multinomial 
regression model and the conditional inference tree in the validation 
sample (n=1,232). For each model, we calculated the weighted 
sensitivity, specificity, PPV, and NPV for both T1DM and T2DM 
relative to the gold standard. To assist with comparison of model 
performance, we also looked at the combined accuracy score defined 
as all correct predictions divided by total sample. Lastly, we tested 
and validated the SUPREME DM algorithm (Appendix Table 2) for 
classifying diabetes type [20].

Results
The frequencies or mean values of the twenty-six EHR candidate 

variables used in model development are reported in Table 1 by the 
full sample’s gold standard classification and in total. Interestingly, 
among the patients classified with Other/Indeterminate type, 54.7% 
took insulin only and 15.6% had one or more conditions qualifying 
them for the T1DM flag. 

Multinomial Regression Model Estimates

The final multinomial regression model included seven variables. 
Table 2 shows the regression model’s odds ratios and maximum 
likelihood estimates (i.e., model coefficients) for predicting T1DM 
and Other/Indeterminate type, with T2DM as the reference outcome. 
Three factors significantly increased the likelihood for T1DM in 
comparison to T2DM: higher weighted T1DM ratio (p < .001), 
insulin use only (p < .001), and higher glucagon count (p = .04). 
Three variables significantly decreased the likelihood for T1DM in 
comparison to T2DM: older patient age (p = .01), oral agent use only 
(p < .001), and higher BMI (p < .001). For example, for each kg/m2 

unit increase in highest observed BMI, the likelihood or probability 
of an individual having T1DM in comparison to T2DM decreases 
by 0.207. For the dichotomous variables, it is easier to interpret the 
meaning of the odds ratio. For example, for patients that only used 
insulin, the probability of having T1DM rather than T2DM is 11 
times that for patients that did not use insulin only. In predicting 
Other/Indeterminate type, the weighted T1DM ratio (p < .001) was 
the only factor that increased the likelihood for Other/Indeterminate 
type in comparison to T2DM. Two variables significantly decreased 
the likelihood for Other/Indeterminate type in comparison to T2DM: 
older patient age (p = .01) and highest observed BMI (p = .002).
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Table 1: Characteristics of study sample based on the twenty-six EHR-based variables used in developing the models to predict diabetes type (N=2,465 adults; Data 
from 10/1/14 – 9/30/17).

Frequency (%) for Dichotomous Variables or Mean for Continuous Variables
GS T1DM (n=663) GS T2DM (n=1,738) GS Oth/Ind (n=64) Total (N=2,465)

Diagnoses-Related
Total count of diabetes diagnosis codes* 30.9 20.9 32.0 23.9
Weighted Ratio of T1DM to all diabetes diagnosis codes* 83.0% 2.5% 39.1% 25.1%
Weighted ratio of T2DM to all diabetes diagnosis codes* 15.4% 96.0% 49.3% 73.1%
Ratio of Other DM to all diabetes diagnosis codes* 1.6% 1.7% 12.5% 2.0%
T1DM Flag of one or more of the six factors below 29.7% 2.2% 15.6% 9.9%
  1. Insulin pump use 6.9% 0.2% 3.1% 2.1%
  2. Celiac disease 1.5% 0.1% 0% 0.5%
  3. Diabetic ketoacidosis without T2DM diagnosis 11.2% 0.5% 9.4% 3.2%
  4. Hypoglycemia 10.6% 1.2% 1.6% 3.7%
  5. C-peptide result < 0.1 (lab result) 7.1% 0.0% 1.6% 2.0%
  6. Positive diabetes autoantibodies (lab result) 4.5% 0.4% 3.1% 1.6%
Polyneuropathy and under age 40 years 11.2% 7.8% 18.8% 9.0%
Retinopathy under age 40 years 1.6% 3.0% 1.0% 1.6%
Medication-related
Glucagon prescription count 0.7 0.1 0.7 0.3
Insulin use only 90.5% 9.7% 54.7% 32.6%
Count of non-inpatient insulin prescriptions 7.0 2.0 6.2 3.4
Oral agent use only 0.0% 47.2% 3.1% 33.4%
Count of oral agent prescriptions 0.2 4.0 1.3 2.9
Sulfonylurea prescription count 0.00 1.08 0.27 0.77
Other Laboratory Results
Patient’s highest triglyceride (mg/dL) 136.2 213.5 263.1 194.0
Patient’s highest Hemoglobin A1C (%) 9.2 8.7 10.0 8.9
Patient’s lowest HDL (mg/dL) 55.7 43.5 48.0 46.9
Other
Outpatient visit count 22.3 24.3 24.6 23.7
Patient’s highest body mass index (kg/m2) 28.2 35.4 30.5 33.3
Patient Age (years) 44.2 54.3 44.0 51.4
Family histories only included T1DM 3.5% 1.3% 0.0% 1.8%

EHR = Electronic Health Record; GS = Gold Standard; T1DM = type 1 diabetes; T2DM = type 2 diabetes. *The denominator for this measure excludes gestational 
diabetes, diabetes mellitus due to underlying condition (ICD-10-CM E08), and drug or chemical induced diabetes mellitus (ICD-10-CM E09).

Table 2: Results from multinomial regression model for 1,323 adult patients with diabetes with service dates from 10/1/14 – 9/30/17. (Development sample with gold 
standard T2DM as the reference) 

Factor Odds ratio for T1DM T1DM Estimate Estimate P-value Odds ratio for Oth/Ind Other DM Estimate Estimate P-value
Full Model
Intercept 1.762 0.4272 7.2339 0.0212

Patient age 0.960 -0.041 0.0129    0.962 -0.0383 0.0087
Weighted T1DM Ratio 1.149  0.139 < .0001    1.091  0.0868 < .0001

Oral agent use only 0.003 -5.927 0.0005    0.004 -3.3147 0.0126
Insulin use only 11.307  2.425 0.0007    0.330 -1.1101 0.3578
Glucagon count 2.466  0.903 0.0431    2.688 0.9887 0.0472

Highest observed BMI 0.813 -0.207 < .0001    0.732 -0.3116 0.0016
T1DM Flag* 1.659 0.506 0.5735    2.297 0.8317 0.3644

Akaike information criterion (AIC) = 2222.75
Reduced Model without BMI and Laboratory Results

Intercept -6.317 < .0001 -4.564 < .0001
Patient age   0.990 -0.010 0.5841    1.006 -0.006 0.7929

Weighted T1DM Ratio   1.136 0.127 < .0001    1.079 0.076 < .0001
Oral agent use only 0.003 -5.881 < .0001    0.038 -3.276 < .0001

Insulin use only 14.818 2.696 < .0001    0.492 2.696 0 .0087
Glucagon count   2.005 0.695 0.0387    2.054 0.720 0.0436

T1DM Flag without lab results**   1.841  0.610 0.4059    3.745  1.321 0.0383
Akaike information criterion (AIC) = 2696.87

T2DM = type 2 diabetes; T1DM = type 1 diabetes; Oth/Ind = Other/Indeterminate; BMI = body mass index
Note: Positive estimates indicate increase risk and negative estimates indicate decrease risk over T2DM (reference).Odds ratios are per one unit increase for age, 
weighted T1DM ratio, glucagon count, and highest BMI. The AIC statistic represents sample fit used for model selection; a lower AIC statistic is better.
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Table 2 also shows the results of the multinomial regression 
model after the removal of three risk factors not easily accessible in 
claims data: the two laboratory results included in the T1DM Flag 
(positive auto-antibodies and c-peptide results) and BMI. When the 
two laboratory results and BMI were removed, the model fit decreased 
only slightly in comparison to the full model.

Conditional Inference Tree Results

The machine learning approach chose only three variables for the 
conditional inference tree to classify diabetes type: weighted T1DM 
ratio, insulin use only, and DKA without T2DM codes. The tree 
made two binary splits of the weighted T1DM diagnosis ratio: 18.78% 
full sample and 42.99% among insulin users. Because these precise 
split values “over fit” the development sample, the split values were 
smoothed and rounded up to 20% and 50%, respectively. Figure 1 
display how the inference tree classifies patients from the test sample, 
with each box at the end of a branch displaying the number of patients 
classified to the type of diabetes.

Table 3 shows the weighted classification results from both the 
regression model and the inference tree using the test sample, cross-
tabulated with the gold standard classifications. The full regression 
model and the inference tree each had an accuracy of 98.9%. The 
reduced regression model without laboratory results and BMI had an 
accuracy of 98.8%.

Validation Results

As shown in Table 4, the regression models and the inference 
tree had similar T1DM sensitivity (93.5% and 93.4%) and were 
significantly higher than SUPREME DM’s T1DM sensitivity (88.1%). 
The reduced regression model’s T2DM specificity (89.2%) decreased 
by 1.6 percentage points in comparison to the full regression model 
(90.8%), yet was still higher than both the inference tree (87.2%) and 
SUPREME DM (76.1%).

The full regression model misclassified 58 cases (4.7% 
unweighted), the reduced regression model misclassified 65 cases 
(5.3% unweighted) and the inference tree misclassified 70 cases (5.7% 
unweighted). Forty-nine of the inaccurate cases were classified to 
the same type by the full regression model and the tree: 20 T1DM, 

28 T2DM AND 1 Other/Indeterminate types. We investigated these 
49 cases and found that 41 cases (84%) had required a review by the 
study’s endocrinologist during the gold standard process. Twenty-six 
of the 49 cases (53%) had a gold standard type of other/Indeterminate, 
several with cystic fibrosis-related diabetes. All 49 patients took 
insulin. There were 6 patients that used oral medications, as found by 
the gold standard chart review, yet no evidence of oral medications 
in the EHR structured fields. Furthermore, among cases incorrectly 
classified as T1DM, the patients had valid T1DM factors such as a 
high weighted T1DM ratio and/or a prescription for glucagon.

Discussion
We developed an EHR-based regression model, a simulated 

claims-based regression model, and an EHR-based inference tree 
to distinguish diabetes type among adults. All three models yielded 
≥ 89% accuracy on a test set comprising 1,232 adult patients with 
diabetes. The results offer enhanced models to classify diabetes 
type among adults using EHR or claims data for the purposes of 
surveillance, targeting interventions, evaluating treatment processes, 
and measuring type-specific patient outcomes [8,31]. The full EHR-
based multinomial regression model had very strong performance, 
especially T1DM sensitivity, and may be ideal for analysts with access 
to diabetes-related medication data, BMI values, c-peptide results, 
and auto antibodies. Interestingly, the machine learning inference 
tree approach did not use BMI or laboratory results to distinguish 
type. Therefore, our tree model may be ideal for researchers using 
claims data supplemented with medication data.

The conditional inference tree displayed the ability of machine 
learning to successfully find optimal cut-points of the weighted T1DM 
ratio variable twice, resulting in high performance. For example, for a 
person with ≥ 20% T1DM ratio and insulin use only the tree’s upper 
branches assigns that person to T1DM type, whereas the SUPREME 
DM algorithm would have not classified those patients as T1DM 
(unless they had positive autoantibodies or c-peptide result < 0.1 ng/
mL) because the SUPREME DM algorithm uses a T1DM ratio cut 
point of > 50% for T1DM classification.

The weighted T1DM ratio was the strongest factor in the models. 
Because of the increased granularity of ICD-10-CM compared to 
ICD-9-CM, we suspect the ratio variable would gain precision in 
phenotyping models that are no longer using ICD-9-CM codes [32]. 
Clinicians now must choose among one of five categories when 
coding a diabetes-related condition or complications under ICD-10-
CM: 1) E08: Diabetes mellitus (DM) due to underlying condition, 
2) E09: Drug or chemical induced DM, 3) E10: Type 1 DM, 4) E11: 
Type 2 DM, and 5) E13: Other specified diabetes mellitus. Yet, 
having to make this choice can be difficult at diabetes onset, even for 
endocrinologists. Therefore, future research is needed to measure 
physician accuracy and consistency of their coding especially among 
specialty-type providers who do not usually diagnose diabetes.

Most often, adults with diabetes may be incorrectly identified as 
having T2DM. Notably, among the models validated in this study, 
we found that the full multinomial regression model, with use of 
c-peptide results, positive auto antibodies, and BMI values, was better 
than the reduced model and the inference tree at detecting T2DM 
true negatives. More specifically, this clinical information enhances 
the ability to distinguish when an adult should not be classified as 

 

Figure 1: Conditional Inference Tree Unweighted Results using Test Sample 
(n=1,232 adult patients; 10/01/14- 9/30/17).
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Table 3: Full Regression Model and Inference Tree Weighted Classification Results by Gold Standard on Test Sample (N= 1,232 adult patients; Data from 10/1/14 – 9/30/17)

Gold Standard Diabetes Classification
Other/ Indeterminate Type 1 Type 2 Total Weighted Test Sample
Regression Model Classification

Other/Indeterminate type 13.8 5.0 12.2 31.0
Type 1 51.8 936.2 63.1 1,051.0
Type 2 42.0 59.7 19,506.0 19,608.0
Total 108 1,001 19,581 20,690

Accuracy* = 98.9%
Reduced Regression Model Classification without BMI and Laboratory Results

Other/Indeterminate type 0 2.4 1.9 4.2
Type 1 51.1 935.1 69.6 1,055.8
Type 2 56.4 63.5 19,509.8 19,629.7
Total 108 1,001 19,581 20,690

Accuracy* = 98.8%
Inference Tree Classification

Other/Indeterminate type 0.0 12.1 7.1 19.2
Type 1 19.8 935.0 43.5 998.3
Type 2 87.7 53.8 19,531.0 19,672.5
Total 108 1,001 19,581 20,690

Accuracy* = 98.9%

*Accuracy = (# of True Positive cases) divided by all patients. Example: Tree accuracy = (0 + 935 + 19531) / 20,690 = 98.9%.  
Note: The regression model is a prediction model using multinomial logistic regression. The inference tree is a sequential decision true developed with machine 
learning.

Table 4: Performance of Regression Model, Inference Tree, and SUPREME DM among the test sample (N=1,232).

Measure Percent and 95% Confidence Interval
Validation Measure Full Regression Model1 Reduced Regression Model1 Inference Tree1 SUPREME DM2

T1DM Sensitivity 93.5%
(88.5%, 98.6%)

93.4%
(88.4%, 98.5%)

93.4%
(88.3%, 98.6%)

88.1%
(84.5%, 91.8%)

T1DM Specificity 99.4%
(98.9%, 99.9%)

99.4%
(98.9%, 99.9%)

99.7%
(99.6%, 99.8%)

99.8%
(99.8%, 99.9%)

T1DM PPV 89.1%
(80.3%, 97.8%)

88.6%
(79.8%, 97.3%)

93.7%
(91.1%, 96.2%)

95.9%
(94.3%, 97.4%)

T1DM NPV 99.7%
(99.4%, 99.9%)

99.7%
(99.4%, 99.9%)

99.7%
(99.4%, 99.9%)

99.4%
(99.2%, 99.6%)

T2DM Sensitivity 96.6%
(99.2%, 100%)

96.6%
(99.2%, 100%)

99.7%
(99.62%, 99.9%

99.9%
(99.8%, 99.9%)

T2DM Specificity 90.8%
(85.9%, 95.7%)

89.2%
(84.2%, 94.1%)

87.2%
(80.3%, 94.2%

76.1%
(63.7%, 88.4%)

T2DM PPV 99.5%
(99.2%, 99.8%)

99.4%
(99.1%, 99.7%)

99.3%
(98.8%, 99.7%)

98.6%
(97.7%, 99.5%)

T2DM NPV 93.0%
(86.1%, 100%)

93.3%
(86.2%, 100%)

95.0%
(92.7%, 97.4%)

97.3%
(95.9%, 98.6%)

T1DM = type 1 diabetes; T2DM = type 2 diabetes; PPV = positive predictive value; NPV = negative predictive value; SUPREME-DM = Surveillance, prevention, and 
management of diabetes mellitus.
1 The regression models and inference tree validations were performed on the weighted test sample (n=20,690). 
2SUPREME-DM validation was performed on the weighted full sample (n=41,614). Details about SUPREME-DM are accessible at 
https://www.sentinelinitiative.org/sites/default/files/Methods/Mini-Sentinel_Methods_Validating-Diabetes-Mellitus_MSDD_Using-SUPREME-DM-DataLink.pdf

EHR data can provide more comprehensive, timely, and longitudinal 
information for patients who change insurers [33]. Additionally, most 
health care providers’ EHR databases are updated continually, and 
thus, automatic programs against EHR data can analyze the data on 
a routine basis to produce timely, granular, and detailed surveillance 
summaries and/or patient predicted type [34]. We have provided in 
the Appendix the definition of the 7 variables in the model (Table 3), 
the SAS Code® for the multinomial regression model (Table 4), and 
the code using the SAS/STAT® Proc PLM SCORE statement to apply 
the coefficients (Table 5) [35].

Lastly, the study has limitations. Because we developed and 

TD2M and, thus, considered to have T1DM or other rare type of 
diabetes. This is important to improve patient-centered care and the 
public health monitoring of diabetes trends. Thus, more research is 
needed to develop phenotyping models that include the processing 
of free text notes and other factors that will assist in classifying adult 
patients that have other types of diabetes. 

We found that claims data with medication information is a 
sufficient data source for classifying diabetes type. The removal of 
BMI and laboratory data had little impact on the regression model’s 
performance with the exception of a slight decline in detecting 
T2DM true negatives. Nevertheless, in comparison to claims data, 

file:///C:\Users\bvy8\AppData\Local\Microsoft\Windows\INetCache\Content.Outlook\EYLC2F7U\are accessible at https:\www.sentinelinitiative.org\sites\default\files\Methods\Mini-Sentinel_Methods_Validating-Diabetes-Mellitus_MSDD_Using-SUPREME-DM-DataLink.pdf
https://www.sentinelinitiative.org/sites/default/files/Methods/Mini-Sentinel_Methods_Validating-Diabetes-Mellitus_MSDD_Using-SUPREME-DM-DataLink.pdf
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tested our algorithm among patients from one health system’s EHR 
database, it is possible that a patient received health care outside of 
UNC Health, and thus, have incomplete clinical data in our analysis 
[8,36]. Forty-one of the patients did not have the REDCap chart review 
performed offering the possibility of gold standard misclassification 
and also inflating the validation results. We randomly sampled 30 
of these “clean cases” for chart review (blindly) and found 100% 
compliance to the classification. Although 41% of the patients did not 
undergo chart review, only 8 of those patients were misclassified by 
the full model and the tree model. This suggests that classification 
of the non-chart reviewed patients was accurate, remaining the same 
after adding in age, laboratory results, BMI, and the T1DM flag.

Conclusion
This study was the first to validate the classification of both type 

1 and type 2 diabetes among adults from data fields commonly 
available in EHR data and claims data supplemented with medication 
information. Validation of the models against a gold standard 
classification found that a regression-based prediction model and a 
conditional inference tree using EHR data or claims plus medications 
data could be used to accurately distinguish diabetes type.
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