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Abstract
Background: Type 2 Diabetes (T2D) is a multifactorial disease that 
encompasses environmental risk factors and the contribution of 
multiple genomic variants. Studies on the genetic components 
of T2D revealed many T2D-associated genetic polymorphisms in 
various populations. Lack of studies on the relation between gene 
polymorphism and T2D in Palestinians prompted us to examine the 
association between 16 known single nucleotide polymorphisms 
(SNPs) and T2D in this unexplored population.
Method: In this case-control study, 100 T2D male patients and 100 
control men were examined. The two groups were genotyped 
for the 16 genes polymorphisms using PCR-Restriction Fragment 
Length Polymorphism (PCR-RFLP) technique. Body Mass Index 
(BMI), and essential clinical parameters were measured for all the 
study participants. The relation between the 16 SNPs and T2D were 
statistically analyzed using appropriate tests.
Results: Significant association was evident between IGF2BP and T2D, 
followed by CDKN2A/B (rs10811661) (OR=2.35, P-value=0.003), COL8A1 
(rs792837) (OR=2.03, P-value=0.015), KCNQ1 (rs2237892) (OR=0.184, 
P-value=0.017), and KCNJ11 (rs5219; E23K) (OR=1.81, P-value=0.04), 
based on Armitage trend test. Among the 16 tested polymorphisms, a 
highly statistically significant association was evident between IGF2BP2 
(rs4402960) and T2D [Odds ratio (OR)=3.28, P-value=7.46x10-8]. 
Conclusion: IGF2BP, CDKN2A/B, COL8A1, KCNQ1, and KCNJ11 gene 
variants are associated with T2D in the investigated population. This 
preliminary study sheds some light on the genetic components of T2D 
in Palestine.

Introduction
Type 2 Diabetes (T2D) is a global health concern with more than 

300 million patients worldwide, and its prevalence is continuing to 
escalate in many populations [1], including Palestine. The estimated 
prevalence of diabetes in Palestinians, by the year 2010, was around 
14% [2].

T2D is multifactorial disease that develops and progresses as a 
result of interaction between multiple genomic (both genetic and 
epigenetic) variants and various environmental factors [3,4]. 

Genetic alterations, in the form of single nucleotide polymorphisms 
(SNPs), in more than 80 loci have been associated with the susceptibility 
of having T2D in various populations, Caucasians in particular [5,6]. 
Functional studies have shown that many of those loci are related to the 
main aspects of T2D pathophysiology namely, insulin secretion and 
insulin resistance (and its underlying obesity) in peripheral tissues 
[7]. 

The gene polymorphisms investigated in the present study and 
their potential pathomechanisms in T2D were previously reported 

[8-12]. Earlier studies have shown that, at least for certain genetic 
polymorphisms, gender influences the outcome of association 
with T2D and that men and women genotypes should be assessed 
separately [13,14].

The Gaza strip is a small area (365 km2) located in the south-
western part of Palestine. It lies at the Mediterranean southeast coast. 
The strip is inhabited by around 2 million people. 

Palestinians genetic susceptibility to T2D is largely unexplored, 
therefore this preliminary study was undertaken in order to identify 
some of the genetic risk alleles at reported SNPs.

Methods
Ethics approval and consent to participate

Written informed consent was obtained from all participants, 
and approval for conducting the study was obtained from the local 
Helsinki ethics committee. 

Subjects

Two hundred males, including 100 unrelated T2D patients and 
100 controls without diabetes, were enrolled in this study. T2D 
patients were recruited from Governmental Diabetes clinics in Gaza 
strip. BMI and relevant clinical parameters of the study participants 
are indicated in Table 1. All subjects were in the age range of 35 to 
50 years.

DNA extraction 

The DNA was isolated from whole blood samples using Wizard 
DNA extraction kit (Promega, USA) as described by the manufacturer.

SNP Selection and Genotyping 

Sixteen SNPs validated for association with T2D in other 
populations have been investigated in this study (Table 2). SNPs were 
selected on basis of their consistent association with T2D reported in 
diverse populations [8-12]. 
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PCR-RFLP was used for genotyping the selected SNPs. The 
PCR primers for genotyping COL8A1, WFS1, ZBED3, KLF14, and 
GLIS3 SNPs were designed using online Primer3 software (http://
primer3.ut.ee/) based on the genomic sequence of each SNP (http://
www.ncbi.nlm.nih.gov/snp/). Then restriction enzymes required for 
the PCR-RFLP identification of each SNP were selected from New 
England Biolabs (NEB) database by using NEBcutter V2.0 online 
software (http://nc2.neb.com/NEBcutter2/). Genotyping of the FTO 
polymorphism was carried out using allele-specific PCR. Primers, 
enzymes, and reaction conditions for the rest of the SNPs were as 
previously reported [15-23,32]. Sequences of the PCR primers 
employed in this work are presented in Table 3.

PCR was performed to amplify each required fragments. In a 
reaction mixture of 20 µL containing: 10 µL master mix (Promega, 

USA), 10 mmol/L of each primer, and 100ng genomic DNA. A 
typical 35 amplification cycles consisted of 30 seconds at 96 °C, 45 
seconds at annealing temperature (Table 3), and 30 seconds at 72 °C. 
The final elongation step was 5 minutes at 72 °C. Restriction enzyme 
digestion was carried out as instructed by the manufacturer (NEB, 
Ipswich, MA, USA). The restricted PCR products were visualized by 
electrophoresis in 3% agarose gel stained with ethidium bromide. 
Alleles and genotypes were assigned according to the product sizes 
indicated in Table 3.

Statistical analysis

The genotype/allele frequencies in T2D patients and the controls 
were analyzed by standard Chi-square test. Logistic regression 
was used for computing “unadjusted” odds ratios and their 
corresponding 95% confidence intervals (CIs) considering diabetes as 
the dependent variable and the genotypes as independent variables. 
Student’s t-test was used to evaluate the differences of the continuous 
variables (presented as mean ± standard deviation) between cases 
and controls. Hardy-Weinberg equilibrium (HWE) was tested using 
freely available software (http://www.oege.org/software/hwe-mr-calc.
shtml). The Armitage trend test was applied to assess for the presence 
of association between the different groups of genotypes.

Results
Genotype and allele frequencies of investigated polymorphisms

Table 4 illustrates genotype/allele frequencies, odds ratios, 95% 
confidence intervals, crude P values and Armitage P trend values for 
the tested genes’ polymorphisms among T2D patients and controls. 
Statistical analyses of genotypic and allelic frequencies for the 
tested SNPs revealed significant trend (all P trend values are <0.05) 
difference between T2D patients and controls in 5 of the tested 
genes (COL8A1, IGF2BP2, CDKNA2A/B, KCNJ11, and KCNQ1) 
polymorphisms. The remaining SNPs do not seem to impact T2D risk 
in the investigated population.

Apart from WFS1 (rs10010131), ZBED3 (rs4457053) and 
CDKNA2A/B (rs10811661) genotypes, which showed the 
corresponding P-values for those three SNPs were: <0.001, 0.008, and 
0.008, all the other tested SNPs’ genotypes were in Hardy-Weinberg 
equilibrium in the control group. 

As presented in the Table 4, the strongest significant association 
(a common OR=3.28) was evident between IGF2BP2 variant and 
T2D where the minor (T) allele and the TT genotype have a clear 
impact on the risk of disease in the patient group in an additive 
manner. To a lesser extent, the CDKNA2A/B polymorphic (T) allele 
polymorphism has a moderate effect on T2D development. A lower, 
but significant effect was also observed for COL8A1, KCNJ11, and 
KCNQ1 polymorphisms. 

In COL8A1, IGF2BP2, CDKNA2A/B and KCNJ11, the minor 
allele and its homozygous genotype (when available) presented the 
risk-associated allele. In KCNQ1, however, the polymorphic allele 
seems to be protective.

Discussion
Genetic variation, in terms of SNPs in more than 80 loci are reported 

as risk alleles for T2D in various populations [5,6,24]. Variations in 

Table 1: Summary of the main characteristics of the study subjects.

Parameter T2D Patients Controls P-value
BMI (kg/m2 ±SD) 30.27±4.60 27.89±3.98 <0.01
C-peptide (ng/ml±SD) 1.80±0.86 1.95±0.75 0.2
Total Cholesterol (mg/dL±SD) 191.44±32.27 193.10±36.75 0.74
Triglycerides (mg/dL±SD) 181.39±95.54 148.50±100.98 0.02
HDL-C (mg/dL±SD) 49.55±3.04 49.68±3.39 0.78
LDL-C (mg/dL±SD) 109.80±32.24 115.45±34.10 0.23
HbA1c (%±SD) 8.46±1.73 5.40±0.31 <0.01

BMI: Body Mass Index; HbA1c: Haemoglobin A1c; HDL-C: High-Density 
Lipoprotein Cholesterol; LDL-C: Low-Density Lipoprotein Cholesterol.

Table 2: Summary of the gene SNPs tested in the current study.

SNP Nearest 
Gene(s)

Chr. 
(Location) Probable Role in T2D

rs1801282 C/G PPARG 3p25.2 
(Exonic) Adipocyte differentiation

rs792837 G/C COL8A1 3q12.1 
(Intronic) Pancreatic cell functioning

rs4402960 G/T IGF2BP2 3q27.2 
(Intronic) Insulin pathway regulation

rs10010131 A/G WFS1 4p16.1 
(Intronic)

Βeta-cell function/insulin 
response

rs4457053 A/G ZBED3 5q13.3 
(Intergenic) Unknown

rs10946398 A/C CDKAL1 6p22.3 (Intonic) Βeta-cell function/insulin 
secretion

rs972283 G/A KLF14 7q32.2 
(Intergenic)

Body mass index and insulin 
associated

rs13266634 C/T SLC30A8 8q24.11 
(Exonic)

Βeta-cell function/insulin 
secretion

rs10811661 C/T CDKN2A/B 9p21.3 
(Intergenic) Βeta-cell formation

rs7034200 A/C GLIS3 9p24.2 
(Intronic)

Β-cell function/regulation of 
insulin expression

rs1111785 G/A HHEX/IDE 10q23.3 
(Intergenic) Β-cell function/insulin secretion

rs793146 C/T TCF7L2 10q25.2 
(Intronic) Β-cell function/insulin secretion

rs5219 C/T KCNJ11 11p15.1 
(Exonic) Β-cell function/insulin secretion

rs2237892 C/T KCNQ1 11p15.5 
(Intronic) Β-cell function/insulin secretion

rs680 A/G IGF2 11p15.5 
(Exonic)

Pancreatic β-cell growth and 
development

rs8050136 A/C FTO 16q12.2 
(Intronic) Body mass index-associated

http://primer3.ut.ee/
http://primer3.ut.ee/
http://www.ncbi.nlm.nih.gov/snp/
http://www.ncbi.nlm.nih.gov/snp/
http://nc2.neb.com/NEBcutter2/
http://www.oege.org/software/hwe-mr-calc.shtml
http://www.oege.org/software/hwe-mr-calc.shtml
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Table 3: Primers and restriction enzymes used for genotyping of the investigated SNPs.

SNP Enzyme Primers 5'-3' Annealing Temp. (°C) Product size

PPARG
rs1801282 HpaII F: CAAGCCCAGTCCTTTCTGTG

R: GCTATGACCAGTGAAGGAATCGCTTTCC 63
247 bp

G: uncut
C: 217+30 bp

COL8A1
rs792837 MmeI F: CAGCCTGATCAGCATGAATCT

R: CAGTCCTAATGAACAGCTTGTGA 57
704 bp
T: uncut

C: 472 bp+232 bp

IGF2BP2
rs4402960 MseI F: CCCATCCTGAGGCAGTAAGA

R: GGAGTTTGAGACCAGCCTTG 59
500 bp

G: uncut
T: 294 bp+206 bp

WFS1 rs10010131 BsmFI F: GCATCCTTCCCTGGTAACCA
R: GGGGTTGAGCTTCCAGTACA 58

247 bp
A: uncut

T: 132 bp+115 bp

ZBED3 rs4457053 AclI F: TAATCAATGCCCTGGCTACC
R: CCCACCAGAGGGGAAGTAAT 59

701 bp
A: uncut

G: 403 bp+298 bp

CDKAL1
rs10946398 AciI F: CTGCTTGCTGTTGGGGAAGA

R: CTCAATGCTGTTCATCAGGCAC 58
157 bp

G: uncut
C: 121+36 bp

KLF14 rs972283 SexAI F: ATCAGTGCAGGGTCTCTAGC
R: AGGGAGGGAGGAAGATCTGT 58

245 bp
A: uncut

G: 140 bp+105 bp

SLC30A8
rs13266634 HpaII F: GAAGTTGGAGTCAGAGCAGTC

R: TGGCCTGTCAAATTTGGGAA 60
256 bp
T: uncut

C: 176+80 bp

CDKN2A/B
rs10811661 BspHI F: CCGGCCCATTTTCTTTGTCA

R: CAAAGCGCTGGGATCATAGG 61
232 bp

C: uncut
T: 164 bp+68 bp

GLIS3
rs7034200 AccI F: ACGCCAACAGATTTCTCAAACA

R: TGCCATTTCATTCACACTCTATG 56
198 bp

C: uncut
A: 118 bp+80 bp

HHEX/IDE
rs1111785 XbaI F: CATCATAACTTCTCACTCCCTTCC

R: GCTGCTTATGGAAACTGCATTACT 60
161 bp

G: uncut
A: 111bp+50 bp

TCF7L2
rs793146 RsaI F: ACAATTAGAGAGCTAAGCAC

R: GTGAAGTGCCCAAGCTTCTC 59
188 bp
T: uncut

C: 159+29 bp

KCNJ11
rs5219 BanII F: GACTCTGCAGTGAGGCCCTA

R: ACGTTGCAGTTGCCTTTCTT 62
210 bp

E: 150,32,28 bp
K: 178,32 bp

KCNQ1
rs2237892 MspI F: CTTGTGCCCTTGTCACCCAC

R: GGCTTCCAGCCTCCAAGCTG 61
354 bp
T: uncut

C: 269+85 bp

IGF2
rs680 ApaI F: CTTGGACTTTGAGTCAAATTGG

R: CCTCCTTTGGTCTTACTGGG 55
236 bp

A: uncut
G: 175 bp+61 bp

FTO
rs8050136 -

F-normal: TGCCCACTGTGGCAATA
F-mutant: TGCCCACTGTGGCAATC

R-common: AGACTTTCTAGCCCTGAGATTGT
57 246 bp

the genome- SNPs in particular-affect the level and function of gene 
expression and may modify the risk for having T2D. In this work, 
we could replicate the association between five documented SNPs 
and T2D in a Palestinian population. The significantly associated 
loci belong to one important aspect of T2D namely, pancreatic β-cell 
function/insulin secretion [7,25]. Additionally, the replication of 
those loci in Palestinian subjects further extends the trans-ethnic 
importance of many T2D genetic variants. The relatively small sample 
size employed presents one limitation of the current study and may 
reduce the chance of detecting the true effect of the investigated 
variants. Therefore, significant polymorphisms, in particular, need to 
be tested on a larger sample. On the other hand, selecting only middle 
age male subjects for the study makes the association between genetic 
variants and T2D more reliable.

Relevant to the pancreatic β-cell function/insulin secretion, 
our results showed that the genotype/allele frequencies of COL8A1 
(rs792837 G>C), IGF2BP2 (rs4402960 G>T), CDKN2A/B 
(rs10811661 C>T), KCNJ11 (rs5219 C>T; E23K), and KCNQ1 
(rs2237892 C>T) are significantly different between T2D patients 
and controls. Consistent with our results, significant association of 
these SNPs have been revealed also in other populations of diverse 
ancestries [26-32]. 

Despite their well-documented role in T2D in many genome-
wide association studies and meta analyses [24,33], TCF7L2 
(rs793146), CDKAL1 (rs10946398), and SLC30A8 (rs13266634) did 
not show the same trend in our population. Still, lack of association 
of those polymorphism with T2D has been reported in some other 
populations [5,10,34,35]. 
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SNP Allele T2D Patients Controls Odds Ratio (95% CI) P-Value Armitage trend test
OR (P value)

PPARG
rs1801282

CC 88 (88%) 89 (89%) Reference -

1.10 (0.82)
CG 12 (12%) 11 (11%) 1.10 (0.46 to 2.63) 0.825
GG 0.0 (0.0%) 0.0 (0.0%) 1.01 (0.02 to 51.53) 0.996

C allele 188 (94%) 198 (94.5%)
0.91 (0.39 to 2.12) 0.83

G allele 12 (6%) 11 (5.5%)

COL8A1
rs792837

GG 50 (50%) 67 (67%) Reference -

2.03 (0.015)
GC 50 (50%) 33 (33%) 2.03 (1.15 to 3.60) 0.015
CC 0 (0%) 0 (0%) 1.34 (0.03 to 68.52) 0.885

G allele 150 (75%) 167 (83.5%)
1.69 (1.03 to 2.76) 0.037

C allele 50 (25%) 33 (16.5%)

IGF2BP2
rs4402960

GG 10 (10%) 49 (49%) Reference -

3.28 (7.46e-08)
GT 67 (67%) 40 (40%) 8.21 (3.74 to 17.99) 1.48E-08
TT 23 (23%) 11 (11%) 10.24 (3.81 to 27.56) 1.63E-08

G allele 87 (43.5%) 138 (69%)
2.90 (1.92 to 4.35) 0.0001

T allele 113 (56.5%) 62 (31%)

WFS1
rs10010131

AA 20 22 Reference -

1.12 (0.73)
AG 80 78 1.13 (0.57 to 2.23) 0.73
GG 0 0 1.10 (0.02 to 57.89) 0.96

A allele 120 122
0.96 (0.64 to 1.43) 0.84

G allele 80 78

ZBED3
rs4457053

AA 47 (47%) 58 (58%) Reference -

1.56 (0.12)
AG 53 (53%) 42 (42%) 1.56 (0.89 to 2.72) 0.12
GG 0 0 1.23 (0.02 to 63.24) 0.917

A allele 147 (73.5%) 158 (79%)
1.36 (0.85 to 2.16)

0.19
G allele 53 (26.5%) 42 (21%)

CDKAL1
rs10946398

AA 44 (44%) 47 (47%) Reference -

1.24 (0.26)
AC 44 (44%) 48 (48%) 0.98 (0.55 to 1.75) 0.94
CC 12 (12%) 5 (5%) 2.56 (0.83 to 7.87) 0.1

A allele 132 (66%) 142 (71%)
0.79 (0.52 to 1.21) 0.28

C allele 68 (34%) 58 (29%)

KLF14
rs972283

GG 46 (46%) 29 (29%) Reference -

0.74 (0.08)
GA 38 (38%) 55 (55%) 0.44 (0.23 to 0.81) 0.009
AA 16 (16%) 16 (16%) 0.63 (0.27 to 1.45) 0.278

G allele 130 (65%) 113 (56.5%)
0.70 (0.45 to 1.05) 0.082

A allele 70 (35%) 87 (43.5%)

SLC30A8
rs13266634

CC 55 (55%) 53 (53%) Reference -

1.05 (1.00)
CT 38 (38%) 42 (42%) 0.87 (0.49 to 1.56) 0.56
TT 7 (7%) 5 (5%) 1.35 (0.40 to 4.52) 0.55

C allele 148 (74%) 148 (74%)
1.00 (0.64 to 1.57) 1

T allele 52 (26%) 52 (26%)

CDKN2A/B
rs10811661

CC 37 (37%) 58 (58%) Reference -

2.35 (0.003)
TC 63 (63%) 42 (42%) 2.35 (1.33 to 4.15 ) 0.003
TT 0 (0%) 0 (0%) 1.56 (0.03 to 80.32) 0.83

C allele 137 (68.5%) 158 (79%)
1.73 (1.10 to 2.72) 0.018

T allele 63 (31.5%) 42 (21%)

GLIS3
rs7034200

AA 30 (30%) 29 (29%) Reference -

0.82 (0.32)
AC 52 (52%) 44 (44%) 1.14 (0.60 to 2.19) 0.69
CC 18 (18%) 27 (27%) 0.644 (0.29 to 1.41 0.27

A allele 112 (56%) 102 (51%)
1.22 (0.82 to 1.81) 0.31

C allele 88 (44%) 98 (49%)

HHEX/IDE
rs1111785

GG 48 (48%) 59 (59% Reference -

1.31 (0.17)
AG 45 (45%) 35 (35%) 1.58 (0.88 to 2.83) 0.124
AA 7 (7%) 6 (6%) 1.43 (0.45 to 4.55) 0.54

G allele 141 (70.5%) 153 (76.5%)
0.73 (0.47 to 1.15) 0.17

A allele 59 (29.5%) 47 (23.5%)

Table 4: Genotype and allele frequencies and their effects on T2D risk for the 16 tested genes' polymorphisms.
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TCF7L2
rs793146

CC 23 (23%) 35 (35%) Reference -

1.46 (0.06)
CT 52 (52%) 47 (47%) 1.68 (0.87 to 3.25) 0.48
TT 25 (25%) 18 (18%) 2.11 (0.97 to 4.72) 0.07

C allele 98 (49%) 117 (58.5%)
0.68 (0.46 to 1.01) 0.06

T allele 102 (51%) 83 (41.5%)

KCNJ11 rs5219

GG 53 (53%) 62 (62%) Reference -

1.81 (0.04)
GA 35 (35%) 35 (35%) 1.45 (0.82 to 2.54) 0.2
AA 12 (12%) 3(3%) 4.68 (1.25 to 17.47) 0.01

G allele 141 (49%) 159 (79.5%)
0.62 (0.39 to 0.97) 0.04

A allele 59 (29.5%) 41 (20.5%)

KCNQ1
rs2237892

CC 98 (98%) 90 (90%) Reference -

0.184 (0.017)
CT 2 (2%) 10 (10%) 0.18 (0.04 to 0.86) 0.017
TT 0 (0%) 0 (0%) 0.92 (0.02 to 46.79) 0.97

C allele 198 (99%) 190 (95%)
5.21 (1.13 to 24.09) 0.035

T allele 2 (1%) 10 (5%)

IGF2
rs680

AA 17 (17%) 22 (22%) Reference -

1.11 (0.65)
AG 63 (63%) 57 (57%) 1.43 (0.69 to 2.96) 0.33
GG 20 (20%) 21 (21%) 1.23 (0.51 to 2.97) 0.64

A allele 97 (48.5%) 101 (50.5%)
1.08 (0.73 to 1.60) 0.68

G allele 103 (51.5%) 99 (49.5%)

FTO
rs8050136

AA 26 (26%) 27 (27%) Reference -

1.29 (0.18)
AC 39 (39%) 51 (51%) 0.79 (0.35 to 1.08) 0.51
CC 35 (35%) 22 (22%) 1.65 (1.02 to 3.57) 0.19

C allele 109 (54.5%) 95 (47.5%)
1.32 (0.89 to 1.96) 0.16

A allele 91 (45.5%) 105 (52.5%)

Conflicting results are a common place in genetic association 
studies performed on different populations. Possible explanations for 
discrepant results include one or more of the following: differences 
in the ethnicity (genetic background), the sample size (i.e. statistical 
power), the characteristics of the study subjects (e.g. undefined chronic 
illnesses), presence of nucleotide polymorphism(s) somewhere else 
in the examined genes, epigenetic alterations, linkage disequilibrium 
to other sequence variants in the vicinity of the studied locus, and 
prevailing environmental conditions. It should be emphasized that 
frequency of T2D risk alleles and/or their effect size may be ethnicity-
related and in turn influence the detection of their association with 
T2D in a given population. Overall, T2D susceptibility variants may 
be categorized as common and ethnicity-specific that needs to be 
identified for each population [5].

Conclusion

Results of the present study revealed that the five of investigated 
polymorphisms are significantly associated with T2D and could 
represent the first elements of “SNPs panel” for predicting T2D risk 
in the investigated population, particularly IGF2BP2. Future work 
should be directed towards testing those polymorphisms in T2D 
female patients, confirming the current findings with a larger sample, 
and examining additional SNPs that may help in characterizing 
additional genetic components of T2D.
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