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Abstract
A growing interest has been shown in the potential uses of 

carnitine in medical practice and animal/poultry industry. The 
molecular mechanisms accounting for the positive effect of LC on 
livestock animals are not yet fully understood but many protective 
effects of LC in various stress conditions reported in literature, have 
been related to its antioxidant action. Based on the analysis of the 
recent publications presented in the review it could be concluded 
that antioxidant actions of carnitine are associated to much extent 
with redox signaling in the cell. Indeed, LC is shown to upregulate Nrf2 
and PPARs and downregulates NF-κB leading to anti-apoptotic and 
anti-inflammation actions of carnitine. In fact, Nrf2-mediated synthesis 
of antioxidant enzymes, including SOD, GSH-Px, GR, GST and GSH, in 
response to carnitine supplementation could be a main driving force 
of antioxidant action of carnitine and its derivatives. Furthermore, LC 
and its derivatives are shown to affect vitagene networks resulting 
in increased adaptive ability to stresses via additional synthesis 
of protective molecules, including heat shock proteins (HO-1), 
upregulating sirtuins, thioredoxins and SOD. It seems likely that in 
biological system in vivo the interactions of the aforementioned 
mechanisms provide an important place for carnitine to be a crucial 
part of the integrated antioxidant systems of the animal and human 
body. Furthermore, direct scavenging ROS and chelating properties 
of carnitine would be very much relevant to the antioxidant system of 
the gut. Taking into account low carnitine content in grains and poultry 
and pig diet formulations with limited amounts of animal proteins, 
carnitine requirement and possible inadequacy in commercial 
poultry and pig nutrition should receive more attention. Furthermore, 
protective roles of carnitine in stress conditions of commercial poultry 
and pig production, including its immunomodulating properties, are of 
great importance. Therefore, a development of carnitine-containing 
antioxidant compositions supplying via drinking water seems to be an 
important way forward in decreasing the detrimental consequence of 
various stresses in poultry and pig production.
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Abbreviations
 ALC: Acetyl-L-Carnitine; AREs: Antioxidant Response Elements; 

BSA: Bovine Serum Albumin; b.w.: Body Weight; CoQ: Coenzyme 
Q; eNOS: Endothelial Nitric Oxide Synthase; FFA: Free Fatty 
Acids; γGCS: γ-Glutamate Cysteine Ligase; GRα: Glucocorticoid 
Receptor-α; GR: Glutathione Reductase; GSH: Glutathione; GSH-
Px: Glutathione Peroxidase; GST: Glutathione Transferase; HO: 
Heme Oxygenase; HSP: Heat Shock Protein; IL: Interleukin, ICAM1: 
Intercellular Adhesion Molecule 1; IFN-γ: Interferon Gamma; i.p.: 
Intraperitoneal; LA: Lipoic Acid; LC: L-Carnitine; L-NAME: N-nitro-
L-arginine Methyl Ester; LPS: Lipopolysaccharide; MCP-1: Monocyte 
Chemoattractant Protein-1; MDA: Malondialdehyde; NF-κB: 
Nuclear Factor-kappa B; Nrf2: Nuclear Factor-erythroid-2-related 
Factor 2; NQO1- NAD(P)H: Quinone-oxidoreductase-1; PHA: 
Phytohemagglutinin; PHS: Pulmonary Hypertension Syndrome, 

PGI2: Prostaglandin I2 (prostacyclin); PPARα: Peroxisome 
Proliferator Activated Receptor Alpha; RGCs: Retinal Ganglion Cells, 
ROS: Reactive Oxygen Species; RNS: Reactive Nitrogen Species; SOD: 
Superoxide Dismutase; TNFα: Trx-thioredoxins.

Introduction
 For the last 30 years carnitine has received considerable 

attention in medical sciences and animal production due to its diverse 
functions and beneficial effects in various stress conditions. Carnitine 
functions in the body are diverse and include: a) transport of activated 
long-chain fatty acids from the cytosol to the mitochondrial matrix 
for oxidation and energy production; b) transfer of the products of 
peroxisomal β-oxidation, including acetyl-CoA, to the mitochondria 
for oxidation to CO2 and H2O in the Krebs cycle; c) modulation of 
the acyl-CoA/CoA ratio; d) storage of energy as acetyl-carnitine; 
e) modulation of toxic effects of poorly metabolized acyl groups 
by excreting them as carnitine esters; f) preservation of membrane 
integrity and mitochondria functions as well as apoptosis inhibition; 
g) participation in redox-signaling and vitagene activation; h) 
maintenance of the antioxidant systems of the body [1,2]. In the 
first part of the review [2] it has been clearly shown that antioxidant 
action of carnitine were, firstly, related to free radical scavenging 
and metal chelating, which could be relevant to the maintenance 
of the antioxidant-prooxidant balance in the gut. Secondly, and 
more importantly, carnitine participates in mitochondria integrity 
maintenance and prevents free radical formation in the electron 
transfer chain in mitochondria and inhibits activities of some ROS-
generating enzymes. However, it seems likely that main antioxidant 
effect of carnitine is mediated via its participation in redox signaling 

https://en.wikipedia.org/wiki/Intercellular_adhesion_molecule
https://www.google.co.uk/search?q=lps lipopolysaccharide&start=0&spell=1
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and transcription factor regulation as well as affecting vitagene 
networks. Therefore, the main aim of the review is to analyse possible 
roles of LC and its derivatives in regulation of transcription factors 
and vitagene networks with a special attention to possible practical 
applications of the protective carnitine properties in poultry 
production.

Oxidative Stress and Transcription Factors
Oxidation-reduction (redox) based regulation of gene expression 

is a fundamental regulatory mechanism in cell biology acting at the 
cell-signaling level. Since ROS are damaging to many biological 
molecules, the antioxidant systems are responsible for prevention of 
the damages. However, a basal level of oxidative stress is essential for 
cell adaptation and survival. Therefore, a moderate level of oxidative 
stress can create adaptive responses and improve adaptive ability 
to stressful challenges/conditions [3]. Indeed, in animals, redox-
signaling pathways use ROS as signaling molecules to activate genes 
responsible for regulation of various functions including growth, 
differentiation, proliferation and apoptosis. Furthermore, the 
antioxidant defence systems are also under regulation by various 
transcription factors [4-7]. These pathways operate in coordinated 
manner being critically important for animal adaptation to various 
stresses. In particular, they include Keap1/Nrf2, NF-κB, PPARs, 
MAPK, AP1, etc. [8]. In recent years great attention has been paid to a 
basic leucine zipper transcription factor, Nuclear factor-erythroid-2- 
(NF-E2-) related factor 2 (Nrf2) and NF-κB. 

Transcription factor Nrf2

It is known that Nrf2 is the redox-sensitive master regulator of 
oxidative stress signaling and oxidative stress responses and is critical 
for cell survival in stressful conditions [9]. It has been shown that 
the Nrf2 antioxidant response pathway is an important player in the 
cellular antioxidant defense. Indeed, it is responsible for activation 
of a variety of genes involved in early defence reactions of higher 
organisms [10,11]. High expression of Nrf2 in organs that face 
environmental stresses including lungs and small intestine [12] 
is a confirmation of its importance in stress adaptation processes. 
Clearly, Nrf2 has a significant role in adaptive responses to oxidative 
stress being involved in the induction of the expression of various 
antioxidant molecules to combat oxidative and electrophilic stress 
[13-16]. 

It is suggestive that under normal physiological conditions, Nrf2 
is kept in the cytoplasm by forming an inactive complex with the 
negative regulator, Kelch-like-ECH-associated protein 1 (Keap1), 
which is anchored to the actin cytoskeleton. In fact, Keap1 sequesters 
Nrf2 in the cytoplasm and forwards it to a Cul3-based E3 ligase with 
the following rapid ubiquitin-proteasome degradation leading to a 
short (about 20 min) half-life of Nrf-2 under physiological conditions 
(for review see [17]). It seems likely that, Keap-1 is an important 
cellular redox sensor and upon exposure to oxidative or electrophilic 
stress, critical cysteine thiols of Keap1 are modified/oxidised and 
Keap1 loses its ability to ubiquitinate Nrf2 resulting in preventing 
its degradation. There are also other ways of Nrf2 activation. 
For example, phosphorylation of Nrf2 at specific serine and/or 
tyrosine residues also causes an Nfr2-Keap1 dissociation resulting 

in Nrf2 release and translocation to nucleus, where it combines 
with a small musculoaponeurotic fibrosarcoma protein called Maf 
to form a heterodimer [18]. Indeed, by binding to the ARE in the 
upstream promoter region of genes encoding various antioxidant 
molecules, Nrf2 regulates the expression of antioxidant proteins, 
thiol molecules and other protective molecules. This includes 
enzymes of the first line of the antioxidant defence, namely SOD, 
GSH-Px and Catalase, detoxification enzymes (HO-1, NQO1, and 

GST), GSH-related proteins (𝛾-GCS), NADPH-producing enzymes 
and others stress-response proteins contributing to preventing 
oxidative and inflammatory damages [19,20]. In fact, hundreds of 
cytoprotective genes are regulated by Nrf2 [12] and gene products 
(proteins) are involved in the maintenance and responsiveness of 
the cellular antioxidant systems. Indeed, an orchestrated change 
in gene expression via Nrf2 and the ARE is a key mechanism of a 
protective effect against oxidative stress [21]. It is suggestive that, 
Nrf2 is controlled through a complex transcriptional/epigenetic and 
post-translational network that provides regulatory mechanisms 
ensuring Nrf2 activity increases in response to redox disturbances, 
inflammation, growth factor stimulation and nutrient/energy fluxes 
orchestrating adaptive responses to diverse forms of stress [22]. 

As mentioned above, there is a range of Nrf2 activating 
mechanisms, including stabilization of Nrf2 via Keap1 cysteine thiol 
modification and phosphorylation of Nrf2 by upstream kinases 
[23,24]. It is proven that effects of Nrf2 on the adaptive ability of cells 
is quite broad and is beyond activation of synthesis of antioxidant 
molecules. Indeed, Nrf2 also contributes to homeostasis by up-
regulating the repair and degradation of damaged macromolecules, 
and by modulating intermediary metabolism conducting directs 
metabolic reprogramming during stress [20]. 

Recently molecular mechanisms of regulating roles of transcription 
factors in cellular adaptation to stress have been extensively studied. 
In particular, it has been suggested that low intensity oxidative 
stress is predominantly sensed by Keap1/Nrf2 system [8] with the 
following downstream up-regulation of the protective AO genes. It 
is interesting to note that intermediate oxidative stress also increases 
the activity of antioxidant enzymes, but mainly via NF-κB and AP-1 
pathways [8]. Furthermore, at both, low and intermediate intensity 
oxidative stresses, MAP-kinases and other kinases seem to be 
involved in signal sensing and cellular response, leading to enhanced 
antioxidant potential [20]. Emerging evidence clearly indicates that 
Nrf2 can interact with other transcription factors, including heat 
shock factor (Hsf1; [25]) to provide additional options for AO system 
regulation. As mentioned above, the Nrf2 stress pathway intimately 
communicates with mitochondria to maintain cellular homeostasis 
during oxidative stress [12].

Carnitine and Nrf2 regulation: The aforementioned evidences 
indicate that main protective effects of LC and ALC were associated 
with preservation or increased activity of antioxidant enzymes and 
GSH in various tissues affected by stress conditions. The mechanisms 
involved in the regulation of antioxidant enzymes by LC in vivo have 
not been precisely determined yet. However, it seems likely that 
transcription factors, including Nrf2, are involved in this regulation. 
First, it was shown in vitro that treatment of astrocytes with ALC 
(30-100 µM) induces HO-1 in a dose- and time-dependent manner 
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and that this effect was associated with up-regulation of HSP60 as 
well as high expression of the redox-sensitive transcription factor 
Nrf2 in the nuclear fraction of treated cells [26]. Adipocytes cultured 
in the presence of LA and/or ALC (0.1, 1 and 10 µM) for 24 h were 
characterised by increased expression of Nrf2 [27]. However, the 
treatments with LA or ALC alone at the same concentrations showed 
little effect on mitochondrial function and Nrf2 expression. Nrf2 
regulated augmented antioxidant response on administration of ALC 
was shown to be a crucial factor in ameliorating hypoxia-induced 
neurodegeneration and memory impairment [28]. Indeed, a decrease 
in free radical generation, lipid peroxidation and protein oxidation was 
also observed along with a concomitant increase in thioredoxin and 
reduced glutathione levels on administration of ALC during exposure 
to hypobaric hypoxia. It was also demonstrated that administration of 
ALC to hypoxic rats effectively protected hippocampal neurons from 
mitochondrial dysfunction, excitotoxicity, and neurodegeneration 
[29]. Furthermore, ALC caused increased expression of Nrf2 in the 
nuclear fraction of rats with a concomitant decrease in expression of 
the protein in the cytosolic fraction. In addition, ALC administration 
resulted in PPAR-γ coactivator-1α and nuclear respiratory factor-
1-induced mitochondrial biogenesis, the expression of which was 
regulated by an extracellular-related kinase-nuclear factor erythroid 
2-related factor 2 (ERK-Nrf2)-mediated mechanism. Indeed, ALC-
administered hypoxic rats showed increased DNA-binding ability 
of Nrf2 along with upregulation of Nrf1. The authors provided 
evidence for Nrf2-mediated regulation of mitochondrial biogenesis 
through Nrf1 following ALC supplementation [29]. Administration 
of LC to L-NAME-induced hypertensive rats prevented decrease in 
Nrf2 expression in the renal cortex [30]. Indeed, it was shown that 
LC can also significantly protect ischemia-reperfusion injury due to 
the overexpression of HO-1 induced by activated Keapl-Nrf2-ARE 
signaling pathway [31]. Furthermore, ALC administration to human 
lens epithelial cells treated with homocysteine, restored (increased) 
the levels of antioxidant proteins, including SOD, GSH-Px, Catalase, 
Nrf2, Keap1 and GSH [32]. Indeed, the aforementioned data clearly 
indicate modulating effects of LC and its derivatives on the Nrf2 
system in various tissues.

Transcription factor NF-κB

The nuclear factor-kappa B (NF-κB) is an inducible transcription 
factor that regulates many cellular processes including immunity 
and inflammation. NF-κB consists of a group of five related proteins 
that are capable of binding to DNA. This transcription factor is 
activated by a wide range of stimuli including oxidative stress. It has 
been shown that NF-κB regulates the transcription of many different 
genes, including pro-inflammatory cytokines and leukocyte adhesion 
molecules, acute phase proteins and anti-microbial peptides [33-35]. 
There are some similarities in regulation of Nrf2 and NF-κB. For 
example, in physiological conditions, NF-κB is found in cytoplasm in 
an inactive state associated with the inhibitory IκB proteins preventing 
its binding to target sites. It has been proven that activation of NF-
κB is an effective mechanism of host defense against infection and 
stress [36]. As a result of action of cytokines and other stressors, IκB 
proteins are rapidly phosphorylated by IκB kinase on specific serine 
residues, with following ubiquitination, and degradation by the 26S 
proteasome. The following release of NF-κB and its translocation 
to the nucleus is responsible for the transcription of target genes, 

responsible for cell survival and involved with inflammation, 
immunity, apoptosis, cell proliferation and differentiation [37]. NF-
κB transcription factors, such as p65, can combine to form hetero- and 
homo-dimers of different composition, providing a tool for effective 
regulation of different sets of gene targets [38]. There is a range of 
additional stimuli implicated into the NF-κB activation including, 
cell-surface receptors, inhibitory κB kinases, IB proteins, and factors 
that are involved in the posttranslational modification of the Rel 
proteins, etc. [33-37]. Accumulating evidence indicates that there is 
a complex interplay/crosstalk between Nrf2 and NF-κB pathways. 
For example, several Nrf2 activators can inhibit NF-κB pathway. NF-
κB may also directly antagonize the transcriptional activity of Nrf2 
(for review see [33]). In recent years, several compounds, including 
LC, have been shown to have inhibitory activities against multiple 
components of NF-κB activation pathway.

Carnitine and NF-κB regulation: Initially, it was shown that ALC 
selectively induces the expression of metabotropic glutamate receptor 
2 by acting as a donor of acetyl groups, hyperacetylating p65/RelA 
and thus changing the activity of the NF-κB family of transcription 
factors [39]. Indeed, the in vitro proneurogenic effects of ALC appear 
to be mediated by affecting the NF-kB pathway and in particular 
by p65 acetylation, and subsequent NF-κB-mediated upregulation 
of metabotropic glutamate receptor 2 (mGlu2) expression [40]. In 
vivo, PLC treatment for 15 days after injury resulted in a reduction 
of relative rat aortic intimal volume, an increase of apoptosis, Bax up-
regulation without changing the Bcl-2 level, and a reduction of NF-
κB [41]. The authors also showed that the PLC-induced attenuation 
of NF-κB activity in intimal cells was due to the increase of IκB-α 
bioavailability, as the result of a parallel induction of IκB-α synthesis 
and reduction of phosphorylation and degradation. LC (8.3-13.1 
mM) was found to significantly inhibit LPS-induced transactivation 
of NF-kB in LPS-stimulated macrophage cells [42]. Recently, it 
has been confirmed that the molecular regulation of antioxidant 
enzymes through an inhibition of the renin-angiotensin system and 
a modulation of the NF-κB/IκB system seems to be responsible for 
the antioxidant effect of carnitine [43]. A decrease in the expression 
of transcription factors Nrf2 and PPARα, together with an increase 
in NF-κB expression, was observed in the renal cortex of L-NAME-
induced hypertensive rats compared with control rats (0.3-, 0.8-, 
and 13-fold, respectively). The simultaneous administration of LC 
attenuated these alterations, reaching values similar to those found 
in control rats [30,44,45]. Recently it has been shown that LC reduces 
NF-κB transactivational activity and then the production of TNFα, 
ICAM1, and MCP-1 in carboplatin-treated renal tubular cells [46]. 
Therefore inhibitory effects of carnitine on the NF-κB activated by 
various stress factors could be an important protective mechanism 
of the antioxidant defences in the body. It has also been reported that 
LC can activate another transcription factor, namely the peroxisome 
proliferator activated receptor alpha (PPARα).

Transcription factors PPARs

The peroxisome proliferator-activated receptors (PPARs) are 
a group of three nuclear receptor isoforms, PPARγ, PPARα, and 
PPARδ/β, identified in the 1990s in rodents and named after their 
property of peroxisome proliferation [47]. PPARs are ligand-
regulated transcription factors that control gene expression by 
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binding to specific response elements (PPREs) within promoters and 
they affect various important cellular events including proliferation, 
differentiation, and apoptosis [48]. PPARs are shown to form a 
heterodimer with retinoid-X receptor (RXR) and bind a peroxisome 
proliferator response element (PPRE) on target genes [49]. It is proven 
that PPARs control expression of various genes that are crucial for 
lipid and carbohydrate metabolism being ‘master’ transcriptional 
regulators of nutrient metabolism and energy homeostasis that 
modulate the expression of unique constellations of genes [50]. In 
particular, PPARγ is considered to be the master transcription factor 
for adipogenesis, while PPARα mainly dis tributes in the tissue with 
a high efficiency of mitochondrial fatty acid oxidation, which highly 
expresses in the liver whereas PPARβ/δ expression is found to be 
very high in the small intestine and keratinocyte [51]. It seems likely 
that expression levels of PPARs are subject to regulation by diets 
and nutrient status in a tissue-dependent manner and the activities 
of PPARα and PPAR (gamma) can be regulated by phosphorylation 
[52]. It is also known that the three PPAR members share a high 
degree of homology however; they differ in tissue distribution, ligand 
specificity, and physiological roles [48]. In fact, all three PPARs play 
essential roles in lipid and fatty acid metabolism by directly binding 
to and modulating genes involved in fat metabolism [53]. Recently, a 
considerable number of papers have reviewed PPARs importance in 
regulation of various physiological and biochemical processes within 
the body [47,50,51,54-57] and the evolutionary pattern and regulation 
characteristics of PPARs have been analysed [58]. In particular, 
PPARα is activated by adiponectin and could inhibit NF-κB pathway, 
while PPAR (gamma) enhances insulin action, FFA oxidation, 
adipo nectin secretion, and inhibits secretion of pro inflammatory 
cytokines [57]. It seems likely that PPAR signaling is a part of the 
body’s antioxidant system playing an important role in various stress 
conditions. In fact, the antioxidant effect of PPARα has been shown 
and PPAR-responsive elements (PPREs) have been identified in the 
promoter regions of several antioxidant genes, including catalase and 
Cu2+/Zn2+-SOD. Therefore, PPARα can bind to PPREs to promote the 
expression of antioxidants to inhibit oxidative stress [59-62] having a 
regulatory effect over the production of oxidative, proinflammatory 
and profibrotic mediators [63]. Furthermore, induction of PPARα by 
PPARα agonist WY14643 treatment ameliorated the oxidative stress 
and severity of liver injury and restored expression of genes altered by 
ethanol treatment [64].

A synergistic relationship between PPAR-signaling and the 
HO-system exists related to the regulation of various physiological 
functions. For example, PPARs suppress inflammation/oxidative 
stress and attenuate excessive immune responses, while agonists 
of PPARγ and PPARα have been shown to upregulate the HO-
system. At the same time, the HO-system can enhance PPARα, and 
potentiates the expression and activity of PPARγ. Similar to PPARs, 
the HO-system has been shown to suppress inflammation/oxidative 
stress and modulate immune response [56].

Carnitine and PPARs regulation: The experimental evidence is 
accumulating from current studies in rats, mice and pigs to establish 
an essential role for PPARα in the regulation of carnitine homeostasis 
[65]. Indeed, an essential role for PPARα in the regulation of carnitine 
uptake and carnitine biosynthesis in rodents and pigs has been 
clearly established. For example, genes encoding proteins involved 

in carnitine uptake and carnitine biosynthesis are transcriptionally 
regulated by PPARα [65]. On the other hand, molecular mechanisms 
of carnitine action, including its antioxidant functions, can also be 
mediated via PPARs. In fact, PPARα protein levels in the nucleus of 
murine liver cells increase constantly after LC supplementation and 
it was shown that transcription levels of the PPAR-binding protein 
(PPARbp) are also inducible by LC [66]. Indeed, the activation of 
PPARα is considered to play an important role in inhibiting the NF-
κB-induced expression of proinflammatory mediators, including 
vascular cell adhesion molecule-1, interleukin (IL)-6, endothelin-1, 
and tissue factor in various cells [46,67]. For example, in renal tubular 
cells an anti-apoptotic effect of LC through PGI2-mediated PPAR-α 
activation has been reported. In fact, it was found that in NRK-52E 
cells LC increased PPARα activity more than 5-fold. These results 
reveal the crucial role of PPARα activation in the LC protective 
function on gentamicin-induced apoptosis in NRK-52E cells [68]. In 
fact, LC prevents carboplatin-mediated apoptosis through AMPK-
mediated PPARα activation [46]. LC ameliorates colonic cancer 
cachexia in mice by regulating the expressions of PPARα and PPARγ. 
Indeed, LC supplementation significantly decreased expression of 
proinflammatory mediators, namely TNF-α and IL-6, and increased 
mRNA and protein expressions of PPARα and PPARγ in mice 
[69]. Carnitine also regulates myocardial metabolism by increasing 
expression of PPARα in alcoholic cardiomyopathy [70]. As mentioned 
above, a decrease in the expression of PPARα was observed in 
the renal cortex of L-NAME-induced hypertensive rats and the 
simultaneous administration of LC attenuated these alterations, 
reaching values similar to those found in control rats [30,44,45]. 
From in vivo and in vitro studies it is obvious that protective effects 
of LC against hypertension-associated renal fibrosis occur in a PPAR-
γ-dependent manner [45]. The authors suggested that the beneficial 
effect of LC supplementation was associated with upregulation of 
both antioxidant enzymes and eNOS, and with a downregulation 
of both NADPH oxidase and RAS components. It seems likely that 
PPARα plays an important role in LC anti-apoptotic effect in renal 
tubular cells [71]. It is important to emphasize that LC not only 
positively regulated the pathways involved in oxidative stress defence 
but also improved AKT activation and downstream cellular signaling 
pathways involved in skeletal muscle atrophy process prevention 
[72]. Clearly effect of LC on PPARs was well demonstrated in various 
model system and need further investigation.

Effect of Carnitine on Vitagene Network
Considering molecular mechanisms of antioxidant protective 

action of carnitine it is necessary to consider its possible involvement 
in vitagene regulation. Indeed, it has been suggested that carnitine 
can affect signaling pathways that result in activation of vitagene 
network encoding survival proteins and affecting redox-sensitive 
intracellular pathways [73]. The term “vitagene” was introduced 
in 1998 by Rattan and later vitagene concept has been further 
developed and modified by Calabrese and colleagues [73-89] (Table 
1). According to Calabrese et al. the term vitagenes refers to a group 
of genes that are strictly involved in maintenance and preservation of 
cellular homeostasis during stress conditions and the vitagene family 
includes heat shock proteins (HSPs), heme oxygenase-1 (HSP32, HO-
1), HSP60 and HSP70, the thioredoxins (Trx)/thioredoxin reductase 
(TrxR) system and sirtuins [75,85]. The list of potential candidates to 
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vitagene family is growing. In particular, special attention should be 
paid to SOD, a major inducible enzyme of the first level of antioxidant 
defence, which can meet selecting criteria to be included into the 
vitagene family [90]. The products of the vitagenes are responsible 
for detecting and controlling diverse forms of stress and cell injuries. 
The molecular mechanisms of the vitagene network operation have 
been reviewed in recently published comprehensive reviews [84-88] 
proving an essential regulatory role of the vitagene network in cell 
and whole organism adaptation to various stresses.

HO-1 and other HSPs

First, it was shown in vitro that ALC (30-100 μM) induces vitagene 
HO-1 in astrocytes in a dose- and time-dependent manner. This 
effect was associated with up-regulation of another vitagene HSP60 
[91]. Similarly, ALC (150 mg/kg b.w orally for 4 months) induced 
vitagenes HO-1, HSP70 and SOD-2 in senescent rats. This protective 
effect of ALC was associated with other changes: upregulation of 
GSH levels, prevention of age-related changes in mitochondrial 
respiratory chain complex expression, and decrease in protein 
carbonyls and HNE formation [92]. In an in vitro study with human 
endothelial cells in culture carnitine and its acyl derivatives (at 0.5-2 
mM) were shown to increase gene and protein expression of HO-1 
[93]. Similarly, in humans and in an animal model it was shown 
that carnitine-mediated improvement in response to erythropoietin 
involves induction of HO-1 [94]. ALC 100 μM was also effective 
in primary cortical neuronal cultures: significantly attenuating 
amyloid-beta peptide 1-42-induced cytotoxicity, protein oxidation, 
lipid peroxidation, and apoptosis in a dose-dependent manner by 
upregulation of HSPs [95]. It seems likely that ALC exerted protective 
effects against oxidative stress in part by up-regulating the levels of 
GSH and HSPs. Indeed, LC treatment can increase level of HO-1 
in the retinal ganglion cells [96]. It was shown that LC (50 μM, 100 
μM and 200 μM) had protective effects on high glucose-induced 
oxidative stress in the retinal ganglion cells (RGCs). Indeed, in high 
glucose stimulated RGCs, LC treatment was associated with an 
increased level of Nrf2, HO-1 and γ-glutamyl cysteine synthetase 
[96]. Furthermore, ALC administration to human lens epithelial 
cells treated with homocysteine had a protective effect indicative by 

restored (increased) levels of antioxidant proteins, including SOD, 
GSH-Px, Catalase, Nrf2, Keap1 and GSH [32]. Therefore, LC and its 
derivatives can perform their antioxidant function via activating HO-
1. Indeed, HO induction occurs together with the induction of other 
heat shock proteins during various stressful conditions. Particularly, 
manipulation of endogenous cellular defence mechanisms, via the 
heat shock response, through nutritional antioxidants, including 
carnitine, may represent an innovative approach to therapeutic 
intervention in diseases [89] and protection against stresses. Indeed, 
by maintaining or recovering the activity of vitagenes, it is possible 
to improve adaptive ability of animals/poultry to withstand various 
stresses.

Sirtuins

It seems likely that carnitine can affect sirtuins, another vitagene 
playing an important role in cell adaptation to various stresses. In 
fact, both oxidative stress and mitochondrial damage are associated 
with reduced levels of renal sirtuin 3. Therefore, as expected, 
treatment with ALC restored SIRT3 expression and activity, 
improved renal function, and decreased tubular injury in mice [97]. 
It has been shown that ALC and sirtuins together affect mitochondria 
acetylation/deacetylation and thereby have the potential to regulate 
the cellular redox state, energy homeostasis and cell adaptation to 
stress [98]. From the aforementioned data it is clear that carnitine 
can be considered as an important regulator of the vitagene network.

Sparing Effects of Carnitine on Vitamin E
It is well known that vitamin E is main chain-breaking 

antioxidant in biological membranes having a unique role in the 
antioxidant systems [99,100]. In particular, vitamin E recycling 
mechanisms are considered to be the most important part of vitamin 
E efficacy in antioxidant defences. Indeed, when all essential elements 
of vitamin E recycling are present together with other antioxidant 
mechanisms, even low vitamin E levels in membranes, for example, 
in brain, can be sufficient to effectively protect the tissue against 
lipid peroxidation [99-101]. It seems likely that as a part of the 
antioxidant systems carnitine can have a sparing effect on vitamin 
E absorption and assimilation. For example, dietary LC (150 mg/
kg diet) increased the rates and amounts of lymphatic absorption 
of α-tocopherol and fat in ovariectomized rats [102] and enhanced 
liver α-tocopherol in aging ovariectomized rats [103]. Similarly, 
carnitine dietary supplementation decreased lipid peroxidation and 
promotes increased concentrations of retinol and α-tocopherol in 
free-living women [104]. Furthermore, administration of LC (1.5 g/L 
with drinking water) to rats intoxicated with ethanol significantly 
decreased lipids and proteins oxidation in the serum and liver and the 
level of vitamin E was increased by about 20% in the liver and blood 
serum in comparison to the ethanol group [105]. In the irradiated rats 
treated with LC 1.5 mg/kg b.w, i.p. concentrations of vitamins E were 
higher than in those rats that were only exposed to 2.45-GHz radiation 
[106]. Furthermore, metabolomics analysis shows that α-tocopherol 
deficiency in rats was associated with a compensatory increase in 
carnitine content in the liver [107]. Therefore, molecular mechanisms 
of carnitine-vitamin E interactions need further investigation, but the 
effect of such interactions on the total antioxidant systems of the body 
could be quite significant.

Molecular level Cellular level

AO defense Cell proliferation

DNA-repair systems Cell differentiation

Transfer of genetic information Stability of cell membrane

Stress protein synthesis Stability of intracellular milieu

Proteosomal function Macromolecular turnover

Tissue and organ level Physiological and redox control 
level

Neutralization and removing toxic 
chemicals Stress response

Tissue regeneration and wound healing Hormonal response

Tumor suppression Immune response

Cell death and cell replacement Thermoregulation

Neuronal response

Table 1: Major components of the vitagene network (adapted from [2,74,75])
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Carnitine as a Part of Antioxidant Mixtures
Based on the concept of integrated antioxidant systems in the 

body it is obvious that dietary supplementation of synergistic mixtures 
of various antioxidants could have higher protective effects in 
comparison with individual antioxidants, including carnitine. Indeed, 
it is the case in biological systems. For example, LC and vitamin E 
in combination are shown to be effective in ameliorating ochratoxin 
A-altered hematological and serum biochemical parameters in White 
Leghorn cockerels [108]. A combination of LC and vitamin C was 
shown to decrease the risk of ischemia-induced necrosis in damaged 
tissues in rats [109]. Similarly, supplementation of vitamin E, vitamin 
C, and LC in combination can attenuate the oxidative stress associated 
with intermittent hypobaric hypoxia in rats [110]. There are a number 
of studies showing antioxidant protective effects of carnitine in 
combination with another mitochondria-related antioxidant, namely 
lipoic acid [111-119]. Similarly, a more complex antioxidant mixture, 
containing CoQ, LC, α-tocopherol and selenium was effective in 
decreasing DNA damage in the liver of fumonisin B1-treated rats 
[120]. Furthermore, a synergistic combination of ALC, folate and 
vitamin E provided a protection against oxidative stress resulting 
from exposure of human neuroblastoma cells to amyloid-beta [121]. 
In this system, vitamin E prevents de novo membrane oxidative 
damage, folate maintains levels of the endogenous antioxidant GSH 
and ALC prevents A-beta-induced mitochondrial damage and ATP 
depletion providing superior protection to that derived from each 
agent alone [121]. Supplementation of pregnant and lactating sow 
diet with carnitine-containing bioactive substances (a blend of flax 
seed, rapeseed, linden inflorescence, taurine, LC and tocopherol 
acetate) improved maturation of the small intestinal epithelium in 
their offspring during the early postnatal period [122]. Recently, it 
has been demonstrated that ALC, L-α-lipoic acid and silymarin 
had similar antioxidant effects in cisplatin-induced myocardial 
injury [123]. It would be advisable to assess antioxidant effects of a 
combination of carnitine and silymarin taking into account that both 
are considered to be hepatoprotectors and both are characterised by 
antioxidant properties [90]. In fact, it is proven that the therapeutic 
effect of silymarin combined with LC on non-alcoholic fatty liver 
disease in patients was higher than in silymarin used alone [124].

From the data presented above it is clear that the development 
of carnitine-containing antioxidant mixtures could be considered 
as an important step in stress prevention and treatment of stressed 
livestock animals.

Specific Protective Effects of Carnitine in Poultry 
Production

Based on the aforementioned data it is clear that protective effects 
of carnitine and its derivatives are most pronounced in various stress 
conditions. Indeed, by decreasing negative consequences of stresses 
carnitine can improve productive and reproductive performance and 
general health of growing chickens, parent stock, and commercial 
layers [125,126].

Stresses in poultry production

From a physiological point of view stress is related to deviation 
from optimal internal and external conditions causing disturbances 
in homeostasis. In poultry and pig industry, there are three major 

types of stress: environmental, nutritional, and internal stresses 
[127]. Environmental stresses started from the moment when 
egg is laid, since temperature variation could cause embryo to 
start developing (high environmental temperature) or die (low 
temperature or fast temperature changes). Furthermore, hatchability 
of fertile eggs declines with length of storage and there is increase 
in percentages of early and late embryonic mortality with length of 
storage period [128,129] and most likely this could affect epigenetic 
mechanisms determining chicken growth and development in later 
life. Additional time in hatchery during hatching is also a stress 
causing detrimental changes in antioxidant defences of the chick 
[130]. High environmental temperature is shown to be one of the 
most serious factors adversely affecting the laying performance in 
poultry. Egg production [131,132], egg weight [132-135], eggshell 
thickness [131,135-137], eggshell percentage [135], eggshell density 
[131], and eggshell breakage [136] were negatively affected by 
high ambient temperature stress. Elevated temperatures are also 
shown to increase mortality in both layers [133] and broilers [138]. 
Furthermore, the gastrointestinal tract is particularly sensitive to 
various stressors, which can cause a variety of changes, including 
alteration of the normal, protective microbiota [139] and decreased 
integrity of the intestinal epithelium [138]. Furthermore, heat stress 
is proven to inhibit the activity of digestive enzymes and reduce 
absorption and immune functions of intestinal mucosa [140]. The 
calbindin concentration was prominently decreased in ileum, cecum, 
colon, and eggshell gland under heat stress conditions which could be 
related to the deterioration of eggshell quality characteristics under 
heat stress conditions [135]. Broilers subjected to the heat stress 
were found to be characterised by reduced average daily gain and 
feed intake; lower viable counts of Lactobacillus and Bifidobacterium 
and increased viable counts of coliforms and Clostridium in small 
intestinal contents; shorter jejunal villus height, deeper crypt depth, 
and lower ratio of villus height to crypt depth [141]. 

The chick placement is also stressful time and the first 24 h of the 
chick’s life are the most important [142]. It is believed that a chick 
should have an access to the feed and water as soon as possible after 
hatching to stimulate the development of the digestive and immune 
systems. It is important to mention that exposure to some stressors 
early in life can enhance the chicks’ ability to cope with the same 
or with different stressors later. Indeed, compensatory responses 
occurred as the result of short-term exposure to stressors [143]. 

The increased lipid peroxidation and reduced activities of 
antioxidant enzymes in healthy chickens reared under unfavourable 
conditions including increased air temperature and humidity, high 
ammonia concentrations, and reduced light intensity were related 
to an induced oxidative stress [144]. It seems likely that vaccinations 
also cause substantial stress. Furthermore, it is generally assumed 
by immunologists that providing immunological defences is costly 
in terms of necessitating trade-offs with other nutrient-demanding 
processes such as growth, reproduction, and thermoregulation [145]. 
In particular, lipopolysaccharide injection decreased feed intake 
and body weight gain [146] and reduced ileal protein digestibility 
[147]. It is important to take into account that efficacy of vaccination 
is very much dependent on the immunocompetence of the birds, 
which could be compromised in stress conditions [99] and there is 
a range of immunosuppressive diseases in poultry, including bursal 
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disease, infectious chicken anemia and Marek’s disease [148,149]. 
High stocking densities have been shown to be another stressful 
condition [150] causing decreased performance, increased mortality 
and prevalence of leg weakness and affecting the carcass quality of 
broiler chickens [151]. Transferring chickens from rearing to breeder 
houses is always associated with increased stress and sometimes 
causing feather picking and cannibalism [152]. The biggest stress for 
commercial layers and breeders comes at the peak of egg production. 
Indeed, major compounds of the egg yolk are synthesised in the liver, 
which is working to its maximum ability and any stress can cause 
a drop in egg production which very often is not coming up after 
the stress is removed. It is well appreciated in poultry industry that 
egg shell quality during the second part of egg laying is a problem, 
especially when layer age is past 80 weeks [153]. Indeed, most losses 
are related to the poor shell quality of eggs produced at the end 
of the production cycle. For example, Grobas et al. found that the 
percentage of broken eggs from Brown egg-laying hens on the farm 
increased from 0.43% at 22 weeks to 1.81% at 74 weeks of age [154]. 

Microbial and virus challenges are considered to be the main 
internal stresses causing detrimental consequences for productive 
and reproductive parameters of birds [99]. Furthermore, mycotoxins 
are considered to be among major feed-related stressors in poultry 
production [155-158] and they can cause oxidative stress and 
immunosuppression [159-166]. In general, all the aforementioned 
stresses suppress reproductive performance of breeders including 
reduced fertility and hatchability. Furthermore, stresses are associated 
with impaired feed conversion, reduced average daily weight gain and 
increased mortality in growing birds. The immune system is most 
likely to be the most sensitive to various stresses [127,149,159,167]. In 
fact, stress-related dysfunction of the immune system weakens natural 
resistance to diseases [168] and reduces efficacy of vaccinations [169] 
leading to significant losses in profits.

It is generally accepted that increased free radical production 
is the major molecular mechanism of the negative consequences of 
various stresses in human life and animal/poultry production and 
by decreasing ROS production or improving antioxidant protection, 
it is possible to decrease negative consequences of various stresses 
[1,2,90,99,127,170,171]. 

Protective effects of carnitine in stress conditions

Immunity: There is a substantial body of evidence indicating 
that LC dietary supplementation has immunomodulating effects 
on humoral and cell mediated immunity in chickens. For example, 
dietary LC supplementation (100 mg/kg diet) appeared to be beneficial 
for chickens in enhancing specific humoral responses on vaccination 
indicative by prevention of apoptotic death of B lymphocytes and 
enhanced IgG production in chickens, after both the primary and 
the secondary immunization [172]. In fact, a long-lasting increased 
IgG response due to dietary LC supplementation may be of major 
practical importance in the enhancement of protective immunity on 
vaccination. Similarly, enhanced specific antibody response to bovine 
serum albumin in pigeons due to LC supplementation (1g/L drinking 
water) was observed [173]. In fact, both BSA-specific IgG and IgM 
responses were enhanced by about 10% by LC supplementation. The 
effects of supplementing Leghorn-type chickens with dietary LC (1g/
kg diet) after hatching for 4 weeks were assessed in a 12-week study 

[174]. It was concluded, that a short-term supply of dietary LC to a 
conventional commercial feed after hatching enhanced subsequent 
humoral immunity in Leghorn-type chickens. Indeed, an increased 
relative thymus weight and an enhanced serum primary antibody 
response to a mitogen in LC-fed birds were detected. Furthermore, 
LC in the diet of broiler chickens (100 mg/kg diet) can enhance 
or advance the acute phase protein response [175]. Indeed, after a 
LPS challenge of male broiler chickens the elevations in circulating 
hemopexin and alpha-1 acid glycoprotein levels were more 
pronounced in the LC supplemented chickens than in control birds. 
In ascites-susceptible broilers serum IgG content was improved by LC 
supplementation (75-100 mg/kg diet) [176]. Adding LC (300 mg/kg 
diet) into the chicken diet had a significant effect on Newcastle disease 
antibody titre at day 32 [177]. It seems likely that a combination of 
LC and methionine can also improve humoral immunity. Indeed, 
highest levels of IgG and WBC were found in birds fed 130% NRC 
methionine + 150 mg/kg LC [178]. Supplementation of LC (200 mg/
kg) to broiler chickens reared at high altitude increased plasma nitric 
oxide and immune responsiveness, which manifested in an increased 
toe-web thickness index measured at 24 h following the injection of 
phytohemagglutinin, an in vivo indicator of cell-mediated immune 
responses [179]. Furthermore, supplemental LC (100-400 mg/kg 
diet) enhanced the humoral and cell mediated immune responses 
in Japanese quail as evidenced with better antibody titres against 
Newcastle disease virus and greater wing web swelling in response 
to PHA-L injection, respectively [180]. Indeed, carnitine can have 
beneficial impact on chicken immunity participating in preventing 
infection in commercial poultry production. 

Immunomodulating properties of carnitine were also shown 
in farm and laboratory animals. For example, in pigs, white blood 
cell and lymphocyte concentrations were increased by LC dietary 
supplementation (250 mg/kg diet) for 10-weeks [181]. There is also 
evidence that LC can improve innate immunity by modulating 
macrophage and neutrophil activities. For example, treatment with 
LC (300 mg/kg b.w) significantly improved neutrophil functions, 
delayed-type hypersensitivity responses and the concentrations of 
immunoglobulins A and G in aged rats [182]. LC is also capable of 
restoring the age-related changes of neutrophil functions. Indeed, 
the neutrophils of aged rats exhibited an increase in superoxide 
anion production and decline in phagocytosis and chemotaxis when 
compared with that in young rat neutrophils. Superoxide anion 
production in aged rats was significantly decreased by LC treatment 
(50 mg/kg b.w for 30 days) which was accompanied with a significant 
enhancement of chemotactic and phagocytic activities which were 
restored to control levels [183,184]. It has been shown that LC 
restored lymphocyte proliferative response and the lytic activity of 
macrophages in aged rats [185-187]. In cultured mouse hybridoma 
cells LC is reported to stimulate growth and antibody production 
[188], while in leukemic cells isovaleryl carnitine improved 
phagocytosis and cell killing activity [189].

Carnitine was shown to regulate immune response in various 
inflammation-related diseases in animal models and in humans. 
For example, in rodents, treatment with LC (50-100 mg/kg body 
weight) markedly suppressed the LPS-induced cytokine production, 
improving their survival during cachexia and septic shock [190,191]. 
Moreover LC (200 mg/kg b.w, i.p.) was reported to improve immune 
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responses in mice exposed to low frequency high intensity magnetic 
field [192]. In vivo, protection from trinitrobenzene sulphonic 
acid colitis was observed in LC-treated mice and was attributed 
to the abrogation of both innate and adaptive immune responses 
[193]. Indeed, LC has been shown to reduce CD4+ and CD8+ T 
cell numbers and IL-2 production in splenocytes isolated from LC-
treated mice [194] and reduce TNF-α production in Staphylococcus 
aureus-stimulated human polymorphonuclear cells [195]. Decreased 
serum TNFα levels have been reported after LC supplementation in 
surgical patients and AIDS patients [196,197]. LC administration was 
shown to ameliorate effects of LPS on cellular and humoral immunity 
in testis through reduction of IL-2 and by buffering the oxidative 
stress-induced damage [198].

It seems likely that an anti-apoptotic action of carnitine is of 
great importance in its immunomodulating properties. For example, 
it was shown that LC inhibited apoptosis of white blood cells [199] 
and CD4+ and CD8+ cells [197,200]. Similarly, supplementation 
with a carnitine-containing formula (alpha-tocopherol, alpha-lipoic 
acid, coenzyme Q (10), carnitine, and selenomethionine) to healthy 
individuals was shown to modulate the process of apoptosis under 
in vivo conditions [201]. Interestingly, LC and its derivatives have 
been shown to reduce apoptosis through the mitochondrial pathway 
[202,203] and this appears to be linked with downregulating the 
transduction of the pro-apoptotic Fas signal and suppressing the 
generation of ceramide, an important endogenous mediator of 
apoptosis [204]. This anti-apoptotic effect of carnitine has been 
observed in different cells and organelles, including neurons [205], 
cardiomyocytes [206], hepatocytes [207], bone marrow cells [208], 
neuroblastoma cell line [209], retinal ganglion cells [210], renal 
tubular cells [46], embryonic neural stem cells [211], spinal cord and 
mitochondria [212]. Therefore, LC-mediated cytoprotection and 
immunomodulating properties are due, in part, to inhibition of the 
mitochondrial apoptotic pathway [213].

Gut immunity plays an important role in protection against 
various pathogens [171]. It seems likely that LC may re-establish 
equilibrium between pro-inflammatory and anti-inflammatory 
cytokines, reducing the former and/or increasing the latter. This 
action is extremely important in the gut, since the interplay between 
both innate and adaptive immune responses is crucial to perpetuate 
inflammation in the gut in various stress conditions. Indeed, 
LC can suppress DC and macrophage co-stimulatory molecule 
expression dose-dependently [193]. Therefore, there is a therapeutic 
potential of LC in treating the acute and chronic aspects of intestinal 
inflammation. It was shown that carnitine deficiency resulted in the 
hyperactivation of CD4+ T cells and enhanced production of the 
classical Th1 cytokine, IFN-γ [193] and leads to increased apoptosis 
of enterocytes, villous atrophy, inflammation and gut injury [214]. 
Similarly, mice deficient in the carnitine transporter, OCTN2, 
develop spontaneous atrophy of intestinal epithelial cells and colonic 
inflammation [215]. In contrast, LC treatment significantly inhibited 
both APC and CD4+ T cell function, as assessed by the expression 
of classical activation markers, proliferation and cytokine production 
[193]. Indeed, LC has a protective effect on the intestinal mucosa by 
preventing ROS production [171].

However, the role of LC on immunological functions in various 

stress conditions still remains to be explored and the precise 
mechanisms of immunomodulating action of LC remain elusive. 
However, there are a number of potential mechanisms, which may be 
related to this effect. It is well recognised that sophisticated antioxidant 
defences directly and indirectly protect the host against the damaging 
effects of cytokines and oxidants. In particular, indirect protection is 
afforded by antioxidants, which reduce activation of NF-κB, thereby 
preventing up-regulation of cytokine production by oxidants. 
On the other hand, cytokines increase both oxidant production 
and antioxidant defences, thus minimising damage to the host. 
Antioxidants prevent oxidative stress-induced damage to immune 
cells. It is necessary to take into account that cellular integrity is very 
important for receiving, and responding to the messages needed 
to coordinate an immune response. The immune system generates 
ROS as part of its defence function and these ROS are an important 
weapon to kill pathogens. However, chronic overproduction of 
ROS can cause damage to immune cells and compromise their 
function [216]. In fact immune cells are rich in PUFAs which are 
very susceptible to free radical attack. It is well recognised that many 
immunological functions are membrane-dependent. These are 
antigen recognition, receptor expression, secretion of antibodies and 
cytokines, lymphocyte transformation, and contact cell lysis [216]. 
In particular, the receptors are important for antigen recognition 
and the secretion of various chemical mediators such as interferon, 
tumor necrosis factor, prostaglandins and interleukins. Therefore, 
lipid peroxidation can change membrane structure and properties 
(e.g. fluidity, permeability, flexibility etc.) which would affect immune 
cell functions. In contrast, antioxidants are able to prevent those 
damaging effects of ROS and maintain immune function.

If immune system is considered as “an army” fighting against 
invaders (microorganisms, viruses, etc.) then one would expect them 
to have something like mobile phones to receive and send signals to 
each other. Remarkably enough, major immune cells (macrophages, 
neutrophils, T- and B-lymphocytes) have on their surface something 
like “mobile phones” called receptors. Those receptors are extremely 
sensitive to communicating molecules, but they are also sensitive to 
free radicals and can be easily damaged [99,127]. In such a situation 
without proper communication all those huge armies of immune 
cells would become useless. They also can start fighting each other 
as well and eventually destroying immunocompetence and causing 
autoimmune reactions. If immune cells are considered as “soldiers” 
using chemical weapon to kill enemy, than special ammunition 
protecting them from their own weapon would be a crucial for effective 
battle. In the case of immune cells such ammunition is represented by 
natural antioxidants. Indeed if not properly protected, macrophage 
functions could be compromised including initial overproduction of 
free radicals with consecutive damages to specific enzymatic systems 
resulting in decreasing efficiency of oxidative burst and apoptosis. 
Based on the presented model it is clear that antioxidant defence is a 
crucial factor of immune defence in the body. Indeed, the crucial role 
of various receptors in immunocompetence processes and receptor 
sensitivity to ROS need further investigation, since exact biological/
biochemical mechanisms by which oxidants/antioxidants regulate 
immunity are still ill-defined. In particular, recent data have shown 
that TCR-induced ROS generation may be an important regulator 
of T cell signal transduction and gene expression [217]. Data on 
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the redox dependence of signal transduction in T cells are quickly 
growing. Recent data suggest an underlying regulatory role for ROS in 
controlling the susceptibility of T cells to apoptosis [218] and innate 
immunity efficacy [219]. In particular, recently it has been shown 
that mitochondria-dependent signaling controls innate and adaptive 
immune responses [220]. Clearly, oxidative stress leads to accrual of 
damaged/misfolded proteins, lipids and causes inflammation [127].

It is important to mention that individual cells and multicellular 
organisms have developed intricate effective mechanisms to utilize 
ROS and RNS to modulate homeostasis and respond to threats. 
Therefore, ROS and RNS are active participants in innate and acquired 
immune responses. Antioxidant nutrients such as carnitine may 
protect against oxidant-mediated inflammation and tissue damage 
by virtue of their ability to upregulate the antioxidant defences and 
optimise redox signaling, including activation of Nrf2 and prevention 
of the activation of NF-kB. In fact, NF-kB is required for maximal 
transcription of many inflammatory cytokines and adhesion 
molecules [221]. Therefore, LC may have great anti-inflammatory 
properties via downregulation of TNF-α and inhibition of NF-κB. 
Thus, maintaining adequate antioxidant status may provide a useful 
approach in attenuating the cellular injury and dysfunction observed 
in some inflammatory disorders [222]. It is necessary to underline 
that, non-toxic concentrations of ROS and RNS play an important 
role in regulating the expression of genes involved in the inflammatory 
response and in modulating apoptosis [223]. At the same time, an 
immune response requires extensive communication between a 
wide range of cell types [224] and special cell receptors are of great 
importance in this communication. Therefore, protective effect of 
antioxidants, including carnitine, in prevention of membrane and 
receptor damages due to peroxidation could provide an important 
way of enhancing the immune system.

In addition to the aforementioned mechanisms of 
immunomodulating properties of carnitine evidence from both 
animal and human studies suggests that, at pharmacological doses, 
LC may mimic some of the actions of glucocorticoids, including 
their well-known immunomodulatory effect. Indeed, LC can activate 
glucocorticoid receptor-α (GRα) and, through this mechanism, 
regulate glucocorticoid-responsive genes, potentially sharing some 
of the biological and therapeutic properties of glucocorticoids [225]. 
In fact, LC reduced the binding capacity of GRα, induced its nuclear 
translocation, and stimulated its transcriptional activity. Moreover, 
LC suppressed TNFα and IL-12 release from human monocytes 
in glucocorticoid-like fashion [226]. It was suggested that LC is 
a “nutritional modulator” of the GR, by acting as an agonist-like 
compound [227]. While the above data suggest immunomodulating 
and anti-inflammatory roles for LC, some early studies have been 
reported contradictory results, in part reflecting the complexity 
of the immune response and great variation between experimental 
conditions [228-230].

Therefore, LC is shown to enhance immunocompetence of birds 
by improving humoral and cell-mediated immunity. Furthermore, 
LC can decrease negative consequences of post-vaccination stress and 
increase vaccination success and clearly effects of carnitine on innate 
and acquired immunity in avian species awaits further investigation.

Ascites: Ascites syndrome (pulmonary hypertension syndrome, 

PHS) is a serious metabolic disease causing important economic 
losses to the poultry meat industry. It seems likely that interactions of 
genetic, physiological, environmental, and management factors are 
responsible for this syndrome [231]. Furthermore, it is proven that 
the elevated ROS production and compromised antioxidant defences 
are involved in the development of ascites [232-234]. Therefore, 
protective effects of nutritional antioxidants are of great importance 
[235,236].

In this respect, based on results showing positive effects of 
LC dietary supplementation on growing chickens at various 
temperature regimes, Buyse et al. suggested that LC is a potential 
agent for reducing the incidence of metabolic diseases in broiler 
chickens [237]. Indeed, LC (75 or 150 mg/kg) or LC+CoQ10 dietary 
supplementation increased SOD activity and reduce ascites mortality 
of broilers [238]. Similarly, supplemental LC (100 mg/kg diet) 
reduced plasma MDA, increased SOD, inhibited remodelling and 
postponed the occurrence of PHS for 1 week in cold-exposed broilers 
[239]. Indeed, in broilers reared under low temperature environment 
dietary LC supplementation (100 mg/kg) reduced organ index, 
enhanced antioxidative capacity of the heart (SOD and GSH-Px), 
and enhanced liver enzymes activity involved in tricarboxylic acid 
cycle, and reduced serum glucose and triglyceride [240]. Dietary LC 
(50-150 mg/kg diet) improves pulmonary hypertensive response in 
broiler chickens subjected to hypobaric hypoxia and reduces ascites 
mortality in broiler chickens by increased NO production, reduced 
MDA concentration, and reduced right ventricular hypertrophy 
[241]. Supplementation of LC (200 mg/kg diet) had also beneficial 
effects on preventing lipid peroxidation and pulmonary hypertension 
in broiler chickens raised at high altitude (2100 m above sea level) 
[179]. Furthermore, dietary LC supplementation (100 mg/kg diet) of 
reduced-protein diets had beneficial effects in preventing pulmonary 
arterial hypertension mortality mainly through enhancing blood NO 
concentration [242]. Clearly, LC supplementation can be used to 
decrease detrimental consequences of ascites.

Other commercially relevant stresses: The reduction of heat 
production in exercising pigeons after LC supplementation [243] 
could be very relevant for protective effect of carnitine in heat-
stressed animals/birds. For example, LC supplementation with 
drinking water significantly prevented deterioration of some egg 
quality characteristics (relative albumen weight and height) of layers 
under high environmental temperature [244]. It was also shown that 
dietary supplemental LC (50 mg/kg diet) or LC + ascorbic acid had 
positive effects on body weight gain and carcass weight under high 
temperature conditions [245].

LC (1 g/kg diet) or its combination with vitamin E (200 mg/kg 
diet) ameliorated ochratoxin A-induced alterations in haematological 
and serum biochemical parameters [108]. LC dietary supplementation 
(400 mg/kg diet) also has a protective effect on lipid peroxidation 
and drop in performance of laying hens fed high cupper diet 
[246]. Carnitine can also help with stresses associated with chicken 
placement and their first days of life. For example, Nouboukpo et al. 
supplemented LC in drinking water (30-60 mg/L) to broiler chickens 
and observed improved growth rate for the first 7 days of rearing [247]. 
Indeed, recent data indicate that ALC supplementation at low levels 
(50 or 100 mg/kg) improved antioxidative ability (increased total 
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antioxidant capacity and SOD and GSH-Px activities and decreased 
levels of MDA in serum and liver of birds), energy metabolism, and 
lipid metabolism in broilers [248]. There were also synergistic effects 
of the combined supplementation of ALC and another antioxidant, 
namely lipoic acid, indicative by serum and liver SOD activities and 
serum glucose and TG levels [248]. Carnitine can also help with age-
related stresses in poultry. For example, LC supplementation (50-500 
mg/kg diet) of a practical layer diet of old (65-week-old) laying hens 
kept in cages for 8 weeks improved egg white quality indicative by 
increased Haugh units [249].

From Understanding Molecular Mechanisms of 
Carnitine Action to the Development of Anti-Stress 
Compositions

Taking into account the aforementioned data on 
antioxidant action of carnitine and results of our recent research 
[1,2,90,99,100,127,170,171] it is clear that in order to deal with 
commercially-relevant stresses in poultry and pig production it 
is necessary to improve their adaptive ability to stresses. For this 
purpose, it would be desirable to develop a carnitine-containing 
products meeting at least five important requirements [1]:

1. Vitagene activation and redox-signaling (carnitine, betaine, 
vitamins A, E, D, C, Se, Zn, Mn, silymarin and possibly other 
phytochemicals);

2. Maintenance of the vitamin E recycling system (vitamin C, 
Se, Vitamin B1 and B2);

3. Provision of nutrients required for carnitine synthesis (lysine 
and methionine, ascorbic acid, vitamin B6 and niacin);

4. Supporting the liver, a main site of T-2 toxin, ochratoxins, 
fumonisins, and aflatoxins detoxification and gut, responsible 
for DON detoxification (vitamins E and C, selenium, 
carnitine, betaine, organic acids, methionine and lysine);

5. Design of the immunomodulating mixture (vitamins A,E, D, 
C, carnitine, Se, Zn and Mn).

It seems likely that there should be a range of products developed 
to accommodate all the aforementioned requirements. In commercial 
conditions inclusion of various anti-stress protective compounds into 
the diet of pigs and poultry is complicated and difficult to implement. 
Firstly, a decreased feed consumption at time of stress can be 
observed. Secondly, such an approach has a low flexibility, since 
existing feeding systems do not allow to include anything into the 
feed loaded into the feed storage bins (usually several tons of feed for 
several days feeding). Therefore, before the previous feed is consumed, 
it is almost impossible to add anything to the feed. However, in 
commercial conditions there are situations when it is necessary to 
supplement animals/poultry with specific additives very quickly 
to deal with consequences of unexpected stresses (e.g. mycotoxins 
in the feed, immunosuppression, high temperature, etc.). In such a 
case water-soluble additive supplementation via drinking system is a 
valuable option. In fact, modern commercial poultry and pig houses 
are equipped with water medication systems, which can be effectively 
used for the aforementioned supplementations. For example, an 
attempt to address the aforementioned option was implemented in a 
commercial product PerforMax, containing a synergistic mixture of 

28 compounds, including carnitine, vitamins, minerals, betaine and 
amino acids and supplied via drinking water. Recently commercial 
options and efficacy of fighting stresses by supplying the anti-stress 
composition via drinking water have been reviewed [170] and 
prospects of its use to maintain gut health in weaned piglets and 
newly hatched chicks were considered [171]. Indeed, supplying the 
PerforMax with drinking water was shown to have protective effects 
in growing birds in terms of improving FCR and chicken daily weight 
gain [250,251] as well as in adult birds: increasing egg production, 
eggshell quality, fertility and hatchability [170]. Therefore, decreasing 
detrimental consequences of stresses help maintaining chicken 
health, productive and reproductive performance. Therefore, the 
aforementioned results are the first step to go from the development 
of the vitagene concept to the development of commercial products 
addressing stress-related issues in commercial poultry and pig 
production. It could well be that this idea might also be realized in 
human nutrition. Clearly more research is needed to understand a 
fundamental role of vitagenes in adaptation to various stresses and use 
carnitine-containing antioxidant compositions to affect the vitagene 
network and adaptive ability of livestock animals to stresses. Indeed, 
it is just a matter of time before commercial products based on the 
vitagene concept found their way to the shelves of heathy nutrition 
shops and veterinary clinics.

Conclusions
There is a growing interest in the potential uses of carnitine 

in medical practice and animal/poultry industry. The molecular 
mechanisms accounting for the positive effect of LC on farm animals 
and poultry are not yet fully elucidated but many protective effects 
of LC in various stress conditions reported in literature, have 
been related to its antioxidant action. Based on the analysis of the 
recent publications it could be concluded that antioxidant actions 
of carnitine are associated to much extent with its role in redox 
signaling in the cell. Indeed, LC is shown to upregulate Nrf2 and 
PPARs and downregulates NF-κB leading to anti-apoptotic and 
anti-inflammation actions of carnitine. Furthermore, Nrf2 mediated 
synthesis of antioxidant enzymes, including SOD, GSH-Px, GR, GST 
and GSH, in response to carnitine supplementation could be a main 
driving force of antioxidant action of carnitine and its derivatives. 
In addition, LC and its derivatives are shown to also affect vitagene 
networks resulting in increased adaptive ability to stresses via 
additional synthesis of antioxidant-related molecules, including heat 
shock proteins (HO-1), upregulating sirtuins, thioredoxins and SOD. 
It seems likely that in biological systems in vivo the interactions of 
the aforementioned mechanisms provide an important place for 
carnitine to be a crucial part of the integrated antioxidant systems 
of the animal and human body. Taking into account low carnitine 
content in grains and poultry and pig diet formulations with limited 
amounts of animal proteins, carnitine requirement and possible 
inadequacy in commercial poultry and pig nutrition should receive 
more attention. Furthermore, protective roles of carnitine in stress 
conditions of commercial poultry and pig production, including 
its immunomodulating properties, are difficult to overestimate. 
Therefore, a development of carnitine-containing antioxidant 
compositions supplying via drinking water seems to be an important 
way forward in decreasing the detrimental consequence of various 
stresses in poultry and pig production. Indeed, the first steps in these 
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directions have been shown to be promising.
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