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Abstract 

Three outbred weanling Syrian hamsters (Mesocricetus auratus) were submitted for necropsy after developing variably 

severe diarrhea and depression or dying unexpectedly shortly after shipping to a commercial pet store. Grossly, the three 

weanlings had thin-walled intestines that were distended with excessive amounts of turbid, yellowish-green fluid contents 

and friable mucosa, particularly in the ileum and cecum. Silver stain highlighted intralesional “stacks” of rod-shaped 

filamentous bacteria characteristic of Tyzzer’s disease in both of the small and large intestines of all three animals. 

Additionally, the liver of one weanling No.1 contained multifocal pinpoint foci of necrosis throughout the hepatic 

parenchyma and milder necrotizing lesions in the myocardium. In the intestines of the three weanlings, colonies of gram 

negative plump bacilli scalloped the apical surface of ileal, cecal and colonic enterocytes containing Clostridium piliforme (C. 

piliforme) filamentous bacilli in their cytoplasm. Samples of fresh intestines and feces from the three weanlings plus the liver 

from the weanling #1 demonstrated a 270-bp band specific to C. piliforme. Another 425-bp band specific to attaching and 

effacing Escherichia coli (AEEC) was identified in the intestines of the three hamsters. The PCR products were sequenced 

using 16S ribosomal ribonucleic acid (rRNA) gene based primers revealing 98% sequence alignment and homology with 

sequences specific to C. piliforme. This article represents the first published cases of enterotyphlocolitis associated with dual 

natural infection by AEEC and C. piliforme. 

Copyright: © 2013 Aboellail TA, et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:tawfik.aboellail@colostate.edu
http://www.avensonline.org/
http://www.avensonline.org/medical/veterinary-science-medicine/home-20/


J Vet Sci Med Volume 1 Issue 1 

Introduction 

Transmissible enteritis in Syrian hamsters was first described in 

the seventies where the identity of the causative bacteria was 

uncertain but the intracellular bacteria were identified with 

Warthin-Starry stain and electron microscopy. The putative 

bacteria resembled Campylobacter species [1].
 

Non-hemolytic 

Escherichia coli and Campylobacter-like organisms were 

associated with a natural outbreak of enetrocolitis in a colony of 

breeding Syrian hamsters over a period of 2 years [2]. The 

enteropathogeneicity of E. coli isolated from moribund hamsters 

was proven in pathogenesis studies in intestinal loops from 

weanling but not adult hamsters [3]. 

Enteropathogenic Escherichia coli (EPEC) usually results 

in variably severe diarrhea in a wide range of hosts, including 

calves, dogs, hamsters, lambs, pigs, rabbits, deer, and humans 

[4,5]. The severity of the clinical disease in infected animals is 

attributed to a distinctive mechanism of bacterial colonization 

that is characterized by intimate bacterial adherence to the 

intestinal mucosa. Following the initial adherence of the bacteria 

to the apical surface of enterocytes, the attaching bacteria efface 

the microvilli and form pedestal-like structures beneath the 

adherent bacteria inciting attaching and effacing (A/E) lesions 

[6,7]. The ultrastructural changes typify these lesions are 

characterized by cytoskeletal rearrangements in the host 

enterocytes, in particular the recruitment of actin filaments 

beneath adherent bacteria [8]. The ability of AEEC to manipulate 

the host cytoskeleton is encoded by the chromosomal “locus of 

enterocyte effacement” (LEE) pathogenicity island, an essential 

virulence factor [6,7,9,10]. Another chromosomal gene, eaeA, 

encodes the protein intimin, which is an adhesin that is directly 

involved in the A/E activity [11-13]. A second adherence factor, 

the plasmid-encoded type 4 bundle-forming pilus (BFP) is also 

required for intestinal colonization [14,15]. Throughout A/E 

infection E. coli remain as extracellular pathogens only restricted 

to the mucosal surface [16,17].  

Pathogenesis of the diarrhea due to EPEC is complex and 

involves multiple mechanisms including: 1) malabsorption; 2) 

active secretory mechanism; 3) active alteration of ions across 

intestinal epithelial membranes; and 4) local inflammation 

associated by transmigration of neutrophils [16-19]. 

In contrast, C. piliforme, the causative agent of Tyzzer’s 

disease, is an anaerobic, pleomorphic, obligate intracellular, 

Gram-variable though predominantly Gram negative, spore-

forming, filamentous rod-shaped bacterium that is difficult to 

isolate in cell-free media [20].
 
On the basis of 16S RNA analysis, 

the organism has been assigned to the genus Clostridium that can 

cause natural infection in a wide variety of domestic, wild, and 

laboratory animals including hamsters [21-23]. Tyzzer’s disease 

occurs among laboratory animals stressed by poor environmental 

conditions, overcrowding, and high temperature or may result 

from activation of latent infections, as is the case in muskrats 

[24]. The distal intestine, specifically the ileo-cecal-colic junction 

is the primary site of infection by C. piliforme where interleukin-

12 (IL-12) seems to play a key role in the pathogenesis of the 

disease. Neutralization of IL-12 increased the severity of Tyzzer’s 

disease in mice after 3 days post inoculation [25]. In disseminated 

forms of the disease and after accessing portal circulation, the 

bacteria usually disseminate to other organs, particularly the liver 

and heart, in both mammals and birds [26,27]. C. piliforme rarely 

disseminates into the brain of gerbils and captive birds [27,28]. 

The aim of this communication is to record a previously 

unreported dual infection of AEEC and Tyzzer’s disease in 

hamsters and establish a pathogen causal relationship based on 

the gross findings, histopathologic lesions and molecular testing 

by PCR. 

Clinical disease: Three weanlings (numbered 1 to 3) were 

submitted for necropsy including 2 weanlings that were 

euthanized and another weanling died unexpectedly after arrival 

at the pet store. The gastrointestinal tract of all three weanlings 
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was thin-walled, variably congested and distended with excessive 

amounts of turbid, yellowish-green fluid contents particularly the 

ileum and cecum. The liver and heart from one weanling (#1) was 

studded with pinpoint white foci throughout the hepatic and 

cardiac parenchyma. 

Figure 1 (A): Ileum, animal #1: Mucosa is markedly eroded with multifocal crypt necrosis and efflux of numerous intact and degenerate neutrophils into the lumen. H & E. 

Bar = 200 µm. (B): Ileum, animal #1; Ragged villous surface is colonized by numerous plump bacilli scalloping the apical surface of enterocytes. H & E Bar =100 µm. (C): 

Atrophic ileal villus is lined by colonies of plump bacilli (arrows) scalloping luminal surface of enterocytes, which also contain gram negative filamentous bacilli of C. 

piliforme in their cytoplasm. Gram stain. Bar = 100 µm. (D): Liver, weanling No. 1: A locally extensive necrotizing hepatitis comprising karyorrhectic debris, hepatocyte loss 

and infiltration of necrotic parenchyma by moderate numbers of macrophages and scattered crisscrossing filamentous bacilli highlighted by silver stain. Warthin-Starry 

stain. Bar = 100 µm. 

Gross and microscopic findings: All tissues were fixed in 10% 

buffered formalin and routinely processed to obtain 4-µm thick 

sections for hematoxylin and eosin staining. Intestines from all 

three weanlings showed multifocally extensive, erosive-to-

ulcerative enterotyphlocolitis. The ileal villi, as well as colonic and 

cecal mucosae were ragged and markedly scalloped or partially 

obliterated by abundant cellular debris and massive infiltration of 

intact and degenerate neutrophils. Epithelial cells lining atrophic 

villi and on the ileo-cecal-colonic mucosal surface were short, 

rounded up or exfoliating in small clumps amongst luminal 
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aggregates of numerous neutrophils. Many crypts in the most 

affected areas were moderately ectatic and filled by detached 

epithelial cells and degenerate leukocytes (Figure 1A). Many other 

crypts were hyperplastic and were lined by epithelial cells with 

intensely basophilic cytoplasm and many mitotic figures. In most 

affected areas, plump, short bacilli were attaching to, scalloping 

and effacing the apical surface of enterocytes (Figure 1B). 

Multifocally, these short bacilli were intermixed with “stacks” of 

faintly staining, Gram negative, intracellular filamentous bacilli 

consistent with C. piliforme (Figure 1C). Foci of bacterial adhesion 

of plump bacilli were patchy in distribution in the distal ileum 

where bacteria were found on the upper third of ileal villi with no 

evidence of co-infection by filamentous rods. The liver of one 

weanling (#1) had severe, multifocally extensive, necrotizing 

hepatitis and milder myocarditis with intralesional bacilli 

consistent with C. piliforme. Approximately 30% of the normal 

architecture of the hepatic parenchyma was obliterated by 

coalescing areas of lytic to coagulative necrosis characterized by 

hepatocyte loss and replacement by eosinophilic cellular and 

karyorrhectic debris. Necrotic lesions were intermixed with small 

to moderate numbers of macrophages or neutrophils especially at 

the periphery of the necrotic parenchyma. Hepatocytes at the 

periphery of these necrotic foci were swollen and have pale, 

vacuolated cytoplasm or else were shrunken with 

hypereosinophilic cytoplasm and exhibited variable karyopyknosis 

to karyorrhexis. Silver stain highlighted “haystacks” of 

crisscrossing bundles or parallel filamentous bacterial rods in 

cytoplasm of hepatocytes at margins of the necrotic foci (Figure 

1D). The heart showed mild multifocal necrotizing myocarditis 

containing very few organisms. 

Diagnosis: No viruses were detected in the feces in any of the 3 

animals by direct electron microscopy.  

Heavy growth of E. coli was obtained from the intestines 

of the 3 weanlings on MacConkey and blood agar plates under 

aerobic conditions. No significant bacteria were isolated from the 

liver (Proteus spp.) and heart of weanling #1.  

Clostridium difficile toxin neutralization test was 

negative. Fecal cultures were negative for other significant 

bacteria, particularly Salmonella and Campylobacter spp. 

Genomic DNA was extracted using a commercial minikit
a 

from fresh intestines and feces from the three weanlings and 

fresh liver from weanling #1 were subjected to PCR amplification 

by a known primer set specific to C. piliforme [29] and a known 

primer set specific to AEEC [4]. The PCR amplification of C. 

piliforme was performed using commercial kit
b 

with the following 

thermocycling conditions: 94°C for 5 minutes, 40 cycles of 98°C-10 

seconds, 55°C- 30 seconds, and 72°C- 1 min, and final extension at 

72°C for 5 minutes. Forward primer 5’-

ACCATTGACAGCCTACGTAA-3’ and reverse primer 5’-

GTCTCGCTTCACTTTGTTGTA-3’ was used to amplify the 270 base 

pair (bp) product of the 16rRNA gene of C. piliforme, and was 

confirmed by sequencing. The NCBI BLAST
20 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) revealed 98% 

sequence homology with C. piliforme. PCR products of the 

expected sizes were consistently amplified in all 3 clostridium-

infected hamsters (Figure 2). 

The PCR amplification of AEEC was performed using 

commercial kit
c 

with the following thermocycling conditions : 

95°C-10 minutes, 40 cycles of 94°C- 30 seconds, 50°C-45 seconds, 

70°C-1.5 minutes, final extension at 70°C-10 minutes. 

Oligonucleotide set: Forward 5’ATTCCGTTTTAATGGCTATCT-3’ and 

Reverse 5’AATCTTCTGCGTACTGTGTTCA-3’ was used to amplify a 

425 bp region on the eaeA chromosomal gene of AEEC. The eaeA 

gene was detected in all the samples collected from the weanlings 

including fresh feces and pure culture of E. coli isolated from the 

intestines (Figure 3). 

All PCR products were electrophoresed on a 1.5% 

agarose gel and were visualized by staining with GelRed
d 

stain. 

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
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Figure 2. Electrophoretic separation of PCR products from C. piliforme PCR. 

Lanes: #1,9: 100 bp ladder; #2,8: blank; #3: positive control; #4: negative control; 

#5: intestine hamster-1; #6: intestine hamster-2; #7: intestine hamster-3. 

Figure 3. Electrophoretic separation of PCR products from AEEC PCR. 

Lanes: #1,9: 100 bp ladder; #4,8: blank; #2: positive control; #3: negative control; 

#5: intestine hamster-1; #6: intestine hamster-2; #7: intestine hamster-3.

Discussion 

The current report clearly demonstrated that heavy colonization 

of the small and large intestines of three hamster weanlings by 

enteropathogenic bacteria and co-infection with C. piliforme 

resulted in a severe enteric disease similar to that described in 

the early reports of dual infections [1,2].  

Pathologic lesions and molecular confirmation of the 

identity of the causative bacteria establish AEEC as an important 

cause of diarrhea, which should be included in the differential lists 

of enteric pathogens in the hamsters. Other possible causes of 

natural infections characterized by diarrhea in the hamster 

include Salmonella typhimurium, Campylobacter jejuni, Lawsonia 

intracellularis, and Clostridium difficile [30,31]. Necrotizing 

enterohepatitis in hamsters, on the other hand, can be 

precipitated by Francisella tularensis, Yersinia pestis, Y. 

pseudotuberculosis, Y. enterocolitica and C. piliforme, which 

produce similar pathologic lesions in rodents and lagomorphs 

[20,32,33]. Contact with sick animals or contaminated bedding is 

the most likely source of infection of hamsters in the current 

report, as has been established in mice [22]. 

In naturally infected animals, as in the weaned hamsters 

in the current report, areas showed evidence of mucosal damage 

where AEEC were the only bacteria colonizing atrophic or 

hyperplastic ileal villi precludes the possibility that AEEC 

colonization was just an incidental finding. The more efflux of 

neutrophils into the lumen of the intestines plus the deeper and 

more widespread necrotizing lesions attests to the pathogenicity 

of AEEC in hamsters [1,11,30]. 

Similar lesions were reported to occur naturally in 

weaned pigs. The authors, however, were unable to induce 

similar lesions in older conventional pigs. Moreover, diseases 

resulting from infection with AEEC, such as hemolytic syndrome 

and hemorrhagic colitis or by related murine A/E Citrobacter 

rodentium in vivo were most often observed in younger animals 

or older individuals with an immature or compromised immune 

status [5,13,34].
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The findings in this report indicates that the primary 

target of Tyzzer’s disease in hamsters is the intestines, particularly 

the ileum, as only one animal developed disseminated hepatic 

and cardiac Tyzzer’s lesions similar to other mammals and birds 

[26,27]. Diagnosis of Tyzzer’s disease in hamsters, similar to other 

wild and laboratory animal species, can be established upon 

finding the characteristic necrotizing enterohepatic lesions, 

intralesional silver-stained filamentous rods and PCR amplification 

[20,29,35]. Caution, however, should be practiced when 

interpreting the PCR results using feces, as with other bacteria, C. 

piliforme is phylogentically similar to other Clostridia species 

[20,36]. In juvenile hamsters, Tyzzer’s disease is most commonly 

associated with a primary stressor, as it is shown to occur 

secondary to immunocompromised status resulting from 

nutritional imbalances, overcrowding and other environmental 

stressors, infectious causes or treatment with corticosteroids 

[26,37].  

In conclusion, the current report establishes AEEC as a 

causative agent of diarrhea in the hamsters, which are susceptible 

to dual infection with enteropathogenic E.coli and C. piliforme at 

weanling or very young age. 
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