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Abstract
Dengue virus (DENV) is the most common arthropod-borne infection in 
the world. The co-circulation of four serotypes, complex pathogenesis, 
and potential for antibody-enhanced disease has made vaccine 
development efforts difficult. To ensure protection and minimize 
vaccine-related disease augmentation, a DENV vaccine must provide 
equivalent immunity to all four serotypes. Four different vaccine 
formulations were evaluated for efficacy and utility. DNA plasmid 
based and purified subviral particles (SVP) vaccines were designed 
using prototype sequences as well as consensus algorithms known as 
computationally-optimized broadly reactive antigen (COBRA). These 
vaccines were formulated against each individual serotype, as well 
as tetravalent mixtures and used to inoculate mice. All monovalent 
vaccines elicited neutralizing antibodies against each of their specific 
homologous virus. In contrast, only purified versions of tetravalent 
subviral particle (SVP) elicited high levels of neutralizing antibodies 
against all four serotypes. All Dengue COBRA VLP vaccines elicit a 
broadly reactive immune response against all four subtypes of dengue 
virus. A non-infectious SVP vaccine that induces immune protection 
against the four DENV serotypes could provide a safer alternative 
candidate to live attenuated viruses.

Introduction
Dengue viruses (DENV) are the most prevalent mosquito-

borne infection in the world, causing a range of physical outcomes 
from asymptomatic to benign febrile illness to life-threatening 
hemorrhagic disease [1-3]. Currently, there are no commercially 
available therapeutic interventions to prevent or treat viral infection. 
DENV are a group of 4 closely related, yet genetically distinct 
serotypes belonging to the Flaviviridae family [4]. Dengue is a 
complex disease for which the exact mechanisms of pathogenesis are 
not fully understood. However, the predominant theory suggests that 
the majority of primary infections result in neutralizing antibodies 
and life-long protection against that particular serotype.

Secondary infection with a heterotypic DENV serotype 
increases the likelihood for severe dengue disease, including life-
threatening hemorrhagic disorders and systematic stress [5,6]. Non-
neutralizing antibodies may bind the heterotypic DENV serotypes 
in a second infection and enhance their entry into Fc-receptor 
bearing cells, thus increasing infection and disease. This antibody-
dependent enhancement (ADE) is the major challenge facing vaccine 
development. For this reason, a vaccine against DENV must produce 
equivalent immunity to all 4 serotypes or risk the potential for severe 
dengue disease manifestation.

Results from genetically engineered mice indicate that both the 
innate (e.g., interferon) and the adaptive (B and T cells) immune 
responses control DENV infection [7]. The production of antibodies 
provides protection against DENV infection [8] and passive antibody 
transfer of anti-DENV neutralizing antibodies can prevent or treat 
lethal infection [9]. The primary target of the neutralizing antibody 
response is the E protein, which is the most accessible structural 
glycoprotein on the surface of the virion [10]. Structural analysis of 
the soluble ectodomain of flavivirus E proteins reveals three domains 
[11,12]. Even though neutralizing antibodies are generated against 
epitopes in all three domains, many highly neutralizing antibodies 
cluster to epitopes in Domain III (DIII) [13].

Several experimental vaccines for humans based upon live-
attenuated virus, chimeric virus, purified protein, viral vectors, 
or DNA plasmids are under development (see reviews [6,14,15]). 
However, a highly attractive potential vaccine candidate would be a 
non-infectious virus-like particle, which has been successfully used as 
a vaccine delivery platform for many viruses, as reviewed in [16].The 
sub viral particles (SVP) entities present structures physically similar 
to virions, but lack infectious RNA genome.

Previously, the use of consensus-based immunogen design has 
been used to address the diversity of isolates in many viral families, 
including dengue [13,17-25]. Our research group has recently 
expanded upon the consensus strategy and developed computationally-
optimized broadly reactive antigen (COBRA) strategies to overcome 
pathogen sequence diversity. Traditional consensus sequences are 
generated by aligning a population of sequences, then constructing 
genes consisting of the most common residue at each position. These 
sequences are expected to effectively capture conserved epitopes and 
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elicit cross-reactive immune responses. The COBRA methodology 
of antigen design uses multiple rounds of consensus generation to 
address antigenic diversity in envelope glycoprotein sequences.  The 
COBRA algorithm compiles three consecutive consensus generations 
to identify the most appropriate vaccine antigen [20]. Candidate 
influenza vaccines have been previously tested in mice and ferret 
models [18-20]. In this report, COBRA dengue E proteins were 
displayed on the surface of a subvirion particle (SVP) and used to 
vaccinate mice to elicit broadly reactive neutralizing antibodies.

Materials and Methods

Antigen construction and synthesis 

Dengue E nucleotide sequences isolated from human infections 
were downloaded from the GenBank Database (accession numbers 
available up on request) [22,26] . Nucleotide sequences were translated 
into protein sequences using the standard genetic code. Full-length 
dengue E sequences (100 from each serotype) from 1941 to 2006 
were acquired and used for subsequent consensus generations. For 
each round of consensus generation, multiple alignment analysis was 
applied and the consensus sequence was generated using Align X 
(Vector NTI). The final amino acid sequence, termed computationally 
optimized broadly reactive antigen (COBRA), as well as the 
prototype E sequences were reverse translated and optimized for 
expression in mammalian cells, including codon usage and RNA 
optimization (Gene Art; Regensburg, Germany).This construct was 
then synthesized and inserted into the pTR600 expression vector. 
Prototype virus E sequences were used for prototype sequences and 
included Hawaii (DENV-1), NCG (DENV-2), H87 (DENV-3), and 
H241 (DENV-4); (accession numbers X76219, M29095, M93130, 
S66064). Prototype and COBRA DENV E sequences representing all 
four subtypes of dengue were constructed.

Construction and expression of DNA vaccine plasmids

Constructs labeled SVP-DNA expressed the full-length prM/E 
reading frame and encoded the prM and E gene segments were cloned 
in frame with the tPA leader sequence in pTR 600, as previously 
described [27] (Figure 1). Human embryonic kidney (HEK) 293 
Tcells were transfected with 3µg of DNA using Lipofectamine 2000 
according to the manufacturer’s instructions (Invitrogen, Carlsbad, 
CA) and as previously described [27]. Cell culture supernatants were 
collected 48 hours post-transfection. Approximately 1.5% of sample 
volume was loaded onto a 10% polyacrylamide/SDS gel and detected 
as previously described [27].

Concentration of Subviral Particles (SVP)

Following transfection with SVP-DNA, 293T cells were incubated 
for 72h at 37°C. Supernatants were collected and cell debris was 
removed by low speed centrifugation followed by vacuum filtration 
through a 0.22mM sterile filter. SVP preparations were collected via 
ultracentrifugation (100,000Xg through 20% glycerol, weight per 
volume) for 4h at 4°C.The pellets were subsequently resuspended in 
phosphate buffered saline (PBS) and stored at -80°C.

Protein concentration was determined by Micro BCATM Protein 
Assay Reagent Kit (Pierce Biotechnology, Rockford, IL).

Virus titrations

Prototype virus isolates were used for neutralization assay and 
included Hawaii (DENV-1), NCG (DENV-2), H87 (DENV-3), and 
H241 (DENV-4).Viruses were propagated in C6/36 mosquito cells, 
aliquotted, and stored at -80°C and they were tittered before use as 
previously described [28,29]. Briefly, Vero cells were infected with 
10-fold serial dilutions of virus in 24- well plates. At day 5, the cells 
were fixed with Methanol/Acetone (Fisher). Focus forming units 
were detected with MsX Dengue Complex antibody (Millipore, 
Billerica, MA) and Goat anti-Mouse-HRP secondary antibody 
(Millipore, Billerica, MA), using TrueBlue TM peroxidase substrate 
(KPL, Gaithersburg, MD). Infectious foci were counted and recorded 
as focus-forming units per milliliter of cell media supernatant (FFU/
mL).

Vaccination

Female BALB/c mice (n=8 mice per group; aged 6–8 weeks) were 
purchased from Harlan Sprague Dawley, (Indianapolis, IN). For 
DNA immunizations, mice were vaccinated with each DNA vaccine 
plasmid by gene gun (particle bombardment with 2µg DNA coated 
on gold bullets) and then boosted with the same DNA on weeks 3 
and 6. For purified SVP vaccinations, mice were vaccinated via intra 
peritoneal route with 200µg of SVP protein per vaccination at week 
0, 3 and 6. Blood was collected on weeks 5 and 8 post-vaccination, 
then centrifuged at 6000 rpm for 10 min to separate the serum. Sera 
were frozen at -80°C. Animals were treated according to the guide 
lines of the IACUC of the University of Pittsburgh. All the protocols 
used were approved by the IACUC of the University of Pittsburgh 
(#1002617).

Figure 1: Schematic diagram of constructs and expression of vaccine 
plasmids. 

A. A diagram of the DENV construct expressing prM/E segment of the 
genome is shown (top).

B. Supernatants and cell lysates from 293T cells transiently transfected 
with plasmid DNA were assessed by SDS-PAGE and Western blot. 
The membranes were probed with the DENV E-specific monoclonal 
antibody, 9.F.10 or Actin monoclonal antibody as the loading control 
for cell lysates.
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Enzyme-Linked Immuno Absorbant Assay (ELISA)

Quantitative ELISA detected anti-E specific IgG in serum of SVPs 
or SVP-DNA vaccinated mice using purified Dengue E proteins 
(1mg) (Virostat, Portland, ME, USA) as previously described [27].
The O.D. value of the age-matched naïve sera was subtracted from 
the O.D. values of the anti sera from the vaccinated mice. Results were 
recorded as the geometric mean titer (GMT) ± the standard error of 
the mean (S.E.M.).

Plaque Reduction Neutralization Assay (PRNT)

PRNT assays were performed as previously described [30]. 
Briefly, pooled sera from groups of mice were heat-inactivated at 
56°C for 30 minutes. Serum sample dilutions (1:20-1:640) were tested 
against prototype viruses (DENV-1-4) at a fixed concentration (200 
FFU). Virus control wells consisted of similar dilutions of mock-
vaccinated mouse serum. Serum samples mixed with virus were 
incubated for one hour at 37°C. The serum-virus mixture was added 
to Vero cells in duplicate. Virus controls were also serially diluted 2 
to16 fold for PRNT calculation prior to addition to the cells. After 
1.5 hours of infection, the serum-virus mixture was removed and 
cells overlayed with 0.8% methyl cellulose in Opti-Mem media with 
2% heat- inactivated FBS. Infections were incubated for 5 days at 
37°C and 5% CO2. Cells were fixed with ice-cold methanol:acetone 
(1:1). The methanol:acetone solution was removed and cells air 
dried. Cells were rehydrated with PBS. Dengue-specific antibodies 
(Millipore, USA) were diluted in PBS supplemented with 3% heat-
inactivated FBS, added to cells, and incubated with rocking. Plates 
were washed with PBS, followed by incubation with HRP-conjugated 
goat anti-mouse secondary antibody diluted in PBS supplemented 
with 3% heat-inactivated FBS. Infectious foci were detected by the 
addition of TruBlue HRP substrate (KPL, Gaithersburg) according 
to manufacturer’s instructions. Infectious foci were counted and 
recorded. The PRNT titers were scored by calculating the highest 
dilution of sample that inhibited 50% of the foci (PRNT50) in 
comparison to virus dilution wells without antibody.

Results

Construction of DENV Vaccine Plasmids

DNA plasmids were constructed to express subviral particles 
(SVP) from prM/E cassettes representing all 4 subtypes of DENV 
with COBRA or wild-type E genes. All of these gene cassettes were 
cloned directly downstream of a cytomegalovirus promoter. Each 
plasmid efficiently expressed the appropriate version of the E protein 
in transiently transfected 293T cells as determined by Western blot 
of clarified cell supernatant with specific anti-E MAbs (Figure 1). A 
65kD protein representing DENV E was detected in supernatants 
from cells transiently transfected with DNA expressing the COBRA 
prM/E gene cassette, which produces subviral particles (SVPs) (see 
below). As expected, mock-transfected or vector-only transfected cell 
supernatants showed no reactivity with DENV anti-E MAbs 9.F.10 
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA).

In addition to DNA vaccines, the SVP-DNA was used to transfect 
mammalian cells for SVP production and purification (Figure 1B). 
These genomeless SVPs are generated by transiently transfecting 

pSVP into 293T cells that results in expression of both prM and E 
proteins. Previous data suggest prM and E proteins self-assemble and 
secrete from mammalian cells [31,32]. Secreted SVPs were collected 
by centrifugation and total protein content was determined. Both cell 
lysates and supernatants were analyzed for the presence of E protein.  
The data show that each DENV subtype E protein was expressed to 
the similar levels in cell lysates (Figure 1B, middle panel), but have 
different levels of secreted SVPs (Figure 1B, top panel). Each purified 
SVP represented one subtype of DENV and incorporated E proteins.

Anti-DENV Total IgG antibody responses 

BALB/c mice were vaccinated with the SVP-DNA vaccine via 
gene gun (GG) or with purified SVPs at weeks 0, 3 and 6. On week 
8, the anti-DENV antibody titers were determined by ELISA from 
individual clarified serum samples (Figure 2). End-point dilution 
titers greater than 1x102 were considered significant.  There was 
no difference between replicates in the assay, resulting in minimal 
or absent error bars. In general, mice vaccinated with SVP-DNA  
expressing COBRA E proteins (Figure 2B) had a similar antibody 
binding profile to mice vaccinated with purified COBRA SVP (Figure 
2A). In contrast, COBRA SVP vaccinated mice had higher antibody 
binding titers compared to pSVP-DNA vaccinated mice (Figure 2B). 
Mice vaccinated with purified DENV-1 or DENV-2 COBRA SVPs 
elicited high titers to E proteins from all 4 serotypes (>1:10,000). In 
contrast, mice vaccinated with purified wild-type SVPs (Figure 2C 
and D) generally had antibodies to their homologous DENV, but 
not as high as COBRA antigens. DENV-3 and DENV-4 COBRA 
SVP samples only recognized the homologous DENV E protein. 
However, mice vaccinated with tetravalent mixture of purified SVP 
or a mixture of SVP-DNA elicited antibodies that recognized all 4 
DENV E proteins. In general, mice vaccinated with the same vaccine 
with wild-type E proteins had lower IgG titers and a more restricted 
pattern of cross-reactivity compared to mice vaccinated with 
COBRA-based vaccines (Figure 2C and D). These vaccines expressing 
wild-type E proteins recognized primarily the homologous serotype. 
Overall, these vaccinations resulted in measurable antibodies against 
E proteins homologous to E protein in the vaccine with variable 
cross-reactivity against heterologous E proteins.

Antibody IgG Isotypes

To characterize further the immune response elicited by these 
vaccines, the IgG subtypes of the elicited anti-DENV E antibodies 
were determined (Figure 3). Gene gun pSVP-DNA vaccination 
elicited primarily a T-helper (Th)-2 (characterized by IgG1 isotype). 
IgG2a and IgG2b titers were detectable, but low in DNA vaccine 
groups. In contrast, mice vaccinated with purified SVPs had high 
IgG1, IgG2a, and IgG2b antibody titers. Interestingly, IgG3 titers 
were detected in mice vaccinated with purified SVP, but not in any 
of the DNA vaccine groups (Figure 3). Similar results were obtained 
using SVP vaccines with wild-type E proteins (data not shown).

DENV Neutralizing Antibody Titers

To determine efficacy of the vaccine approaches, neutralizing 
antibodies against each DENV serotype were measured. Both DNA 
and protein monovalent SVP vaccines were very effective against 
homologous virus (Table 1). Further, there was detectable cross-
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Figure 2: Vaccine elicited anti-DENV E antibodies. Total IgG titers were measured by ELISA on DENV E proteins coated plates from mice vaccinated with DNA 
plasmids or purified SVPs on week 8. Sera from each mouse group were tested against E proteins representing each subtype of DENV or WNV.

(A) Purified COBRA SVP; 
(B) COBRA SVP-DNA;
(C) purified wild-type SVP; 
(D) wild-type SVP-DNA.

Figure 3: The IgG isotype of the anti-DENV E antisera. The specific IgG isotype was assayed from the individual serum collected at week 8 from each individual 
mouse per vaccine group at a dilution of 1:100 and reported as specific O.D.*p > 0.05 compared to corresponding isotype of SVP group; **p.0.01 >  compared to 
corresponding isotype of pSVP group.

reactivity. For example, DENV-2 pSVP-DNA vaccination resulted 
in neutralizing antibodies to DENV-1, -2, and -4. This pattern 
was reproduced in the purified DENV-2 SVPs. Vaccination with 
tetravalent formulations of either plasmid or purified SVP structures 
yielded similar results. pSVP-DNA and purified SVP vaccinations 
elicited antibody titers to all 4 serotypes.  The standard error for 
each triplicate of PRNT assay was less than ±10 with many replicates 
exhibiting identical neutralizing antibody titers (data not shown).  

However, mice vaccinated with the purified tetravalent-SVP vaccine 
elicited strongly neutralizing antibodies to each DENV serotype, 
where as the plasmid-based tetravalent vaccine titers were lower, 
especially against DENV-3 (Table 1). The neutralizing titers were 
independent of total antibody levels (Figure 2). Sera collected from 
animals vaccinated with SVPs containing E protein representing 
wild-type sequences elicited a lower titer antibody that was more 
restricted at recognizing E protein across serotypes (Table 2).

ISSN: 2377-6668



Citation: Ross TM, Tang XC, Lu HR, Olagnier D, Kirchenbaum GA, Evans JD. COBRA-Based Dengue Tetravalent Vaccine Elicits Neutralizing Antibodies 
Against All Four Dengue Serotypes. J Vaccine Immunotechnology. 2014;1(1): 7.

J Vaccine Immunotechnology 1(1): 7 (2014) Page - 05

Discussion
Dengue virus infections can be asymptomatic or result in life 

threatening hemorrhagic syndromes [33,34]. Importantly, second 
heterotypic infections increase the likelihood of more severe disease 
(For review, see [35]). Therefore, DENV vaccines must elicit equivalent 
and effective immunity to all four virus serotypes simultaneously. 
Incomplete protection could result in more severe disease during 
subsequent infections. In the current study, two different vaccine 
approaches were evaluated to determine efficacy. While vaccines 
against individual serotypes produced neutralizing antibody titers 
against the homologous virus, there was little cross-reactivity toward 
other serotypes. To this end, a tetravalent SVP vaccine using COBRA 
designed E proteins was produced. The COBRA vaccine strategy 
represents a novel method of sequence construction that features 
a layered building approach that is intended to capture the most 
common antigenic characteristics, while avoiding the complication of 
differential sequence availability that can bias a consensus sequence 
to the most prevalent antigenic cluster [20]. Avoiding this sampling 
bias is essential to generating a centralized vaccine that accurately 
represents the population of input sequences. These tetravalent 
purified COBRA SVPs elicited strong neutralizing antibody titers 
against all four DENV serotypes (Table 1). Interestingly, the vaccines 
expressing wild-type SVP sequences elicited very low neutralizing 
antibody levels (Table 2). The reason for this effect is unclear.

Recent studies have produced DENV VLPs and SVPs for 
potential use as vaccines [36-38]. For other virus systems, such as 
HIV or influenza, VLPs expressing the envelope glycoproteins are 
more effective at eliciting high titer neutralizing antibodies than 
soluble versions [31,38-45]. Genomeless viral particle vaccines, 
unlike single proteins, can bind appropriate surface receptors and 
enter cells in a manner similar to true virus infection [45]. Thereby, 
presenting viral epitopes to T-cells by professional antigen presenting 
cells [46]. In addition, antibodies can bind to circulating SVPs and be 
taken up by phagocytic cells via Fc receptors, thus increasing MHC 

class II presentation [46]. Neutralizing antibodies are often directed 
against conformational epitopes that are only present in the native 
envelope form. In contrast, other epitopes are only exposed during 
viral entry or release. SVPs have the ability to present viral proteins in 
their natural conformations to elicit antibodies that recognize viral E 
proteins on the surface of a virion.

In this study, the purified SVP vaccine elicited a different anti-
DENV E IgG isotype pattern than the DNA vaccines (Figure 3). The 
isotype of the polyclonal antibody in part determines the effector 
functions of the anti-E antibodies and identifies the T helper cell bias 
(required for antibody classs witching). The predominant isotype 
elicited by all DNA vaccination immunizations was IgG1, indicating 
a Th2 bias. For purified SVP vaccination, IgG1, IgG2a, IgG2b, and 
IgG3 isotypes were detected, indicating that the SVP vaccine elicit 
a mixed (Th1 and Th2) T-helper response. This response suggests 
activation of dendritic cells and macrophages. Moreover, murine 
IgG3 is homologous to human IgG2, the primary protective antibody 
isotype. Our results demonstrate that SVP protein complex vaccines 
produce significant levels of IgG3 antibody (Figure 3).

Antibodies of the IgG2a/c and IgG2b subclass fix complement 
proteins C1q and C3 and can opsonize and inhibit dengue virus 
infection [47-49]. However, IgG2a/c binds FcgRI with high 
avidity, facilitating enhanced uptake of virus-antibody complexes 
by macrophages via antibody dependent enhancement (ADE). 
It is crucial to note that total antibody titers did not correlate to 
neutralization of virus infection, suggesting a preponderance of 
sub-neutralizing antibodies that may interact with infecting virus. 
Therefore, ADE may be of concern and should be addressed in future 
studies (Figure 2 and Figure 3; Table 1).

These SVP vaccines have great potential for a number of reasons. 
First, the virion structures are easily lyophilized, making transport 
to remote locales easier [50]. Second, the tetravalent make-up of the 
vaccine allows optimization of the serotype SVP ratio. This approach 
will induce equivalent antibody levels and effectiveness to all four 
DENV serotypes. By altering the amount of certain SVP, it will be 
possible to increase the antibody response to a particular serotype 
to obtain equivalent immune responses to each serotype.  Further, 
the secretion of SVP was different between serotypes.  It is unclear 
why DENV-1 SVP were secreted more efficiently than DENV-4.  
This finding is an area where the system can be improved.  Third, 
recombinant SVPs can be synthesized and produced in short order 
and purified with simple techniques, thus quickly addressing short 
ages as well as enabling in-need and poorer countries to produce 
vaccines for their own populations. Finally, since SVPs do not possess 
genomes, there is no potential for reversion of live-attenuated viruses 
to infectious phenotypes.

Several approaches have been applied as dengue vaccines in the 
past [51-53], but there is currently no licensed tetravalent dengue 
vaccine. The results presented in this study demonstrate that 
vaccination with SVPs with COBRA E proteins is potent strategy for 
dengue vaccination that elicits neutralizing antibodies against all four 
dengue serotypes. COBRA E antigens may possess a combination 
of antibody epitopes that are not all present in any given wild-type 
sequence and therefore elicit a unique antibody profile. Further, the 
tetravalent mixture of SVP with COBRA E proteins complex vaccines 

Table 1: Neutralizing Titers against Serotype (PRNT50)

SVP-DNA DENV-1 DENV-2 DENV-3 DENV-4
DENV-1 1:80 >1:160 <1:10 1:80
DENV-2 1:160 >1:320 <1:10 1:160
DENV-3 1:40 1:40 1:320 1:40
DENV-4 1:40 <1:10 <1:10 1:160

Tetravalent 1:160 >1:160 1:20 1:40
pSVP

DENV-1 1:320 1:80 <1:10 1:40
DENV-2 1:160 >1:320 <1:10 1:40
DENV-3 <1:10 1:20 >1:160 <1:10
DENV-4 >1:320 <1:10 <1:10 1:40

Tetravalent 1:160 >1:160 >1:160 1:40

Table 2:  Neutralizing Titers against Serotype (PRNT50) 

Mouse Group DENV-1 DENV-2 DENV-3 DENV-4
D1 1:20 1:80 1:20 1:40
D2 1:10 1:160 1:20 1:40
D3 1:10 1:80 1:40 1:20
D4 1:20 1:40 1:10 1:40

Tetra 1:40 1:40 1:40 1:40
Mock <1:10 <1:10 <1:10 <1:10
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was able to elicit significant neutralizing antibody titers after only 3 
vaccinations without an adjuvant. Future studies will elucidate the 
most effective vaccination regimen and potential adjuvant scheme. 
Currently, there are several vaccines for dengue virus moving 
through clinical trials [54-56]. A prime-boost vaccination regimen 
that includes SVPs plus one of these approaches, i.e. live-attenuated, 
may provide better protection against dengue virus infection than a 
single vaccine modality only.

COBRA-based vaccines elicited high antibody titers that 
recognize wild-type prototype DENV E protein from all four 
serotypes. A tetravalent DENV virus-like particle vaccine elicited 
higher neutralizing antibody levels than a DNA-based vaccine. 
These VLP formulations are attractive candidates for human dengue 
vaccine.
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