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Abstract
Immune privilege as an active defensive mechanism guards cells 

and tissues against foreign antigens. Developing tumors and adult stem 
cells are believed to be immune privileged, since they have the ability 
to avoid rejection after implantation. Allograft rejection of transplanted 
tissues and organs occurs because of allelic differences between graft 
and host at polymorphic loci, which give rise to histocompatibility 
antigens; unless immunosuppressive therapy is given. This obstacle also 
exists when using human embryonic stem cell for cell transplantation, 
rising challenges in cell therapy and in regenerative medicine. 
Therefore, to better understand the mechanisms underlying in immune 
privilege and to obtain strategies which can mimic the naturally 
immune privileged cells, is of utmost significance in transplantation 
and regenerative medicine.

Regulatory Molecules in Immune Privilege
Immune privilege, providing protection to the cells and tissues 

of the body against foreign antigens, can be acquired locally in many 
different tissues in response to inflammation [1,2]. It is regulated 
at multiple levels including small molecules, (e.g., amino acids) 
intracellular enzymes, e.g. indoleamine 2,3-dioxygenase, and major 
histocompatibility complex (MHC) molecules [3,4]. MHC antigen 
expression is an important mediator of the adaptive immune response, 
and is essential for the recognition of both self- and foreign antigens 
[5]. The down regulation of MHC I and II antigen production is a 
common feature shared by many immune privileged tissues and cells. 
However, this is not enough to achieve complete immune privilege, 
as cells that lack MHC I expression are still vulnerable to the natural 
killer (NK) cell response. Therefore, many of the immune privileged 
tissues actively suppress NK cell responses [6]. Other players in 
immune privilege are surface expressed regulatory factors, like Fas-
ligand (FasL) and programmed death-1 receptor (B7-H1) [7], as well 
as membrane complement regulatory proteins [8].

Role of TGF-Β in Immune Privilege
Immune privilege is a complex process (Figure 1). The 

immune privileged cells often express immunoregulatory and anti-
inflammatory factors, such as, interleukin-10 and transforming 
growth factor-β (TGF-β), which act locally to create an immune 
privileged site for the cells [9,10]. TGF-β, a highly conserved regulatory 
cytokine, is expressed by most of the cells [11]. It has pleiotropic effects 
on cell proliferation, differentiation, migration and survival and plays 
a key role in development, differentiation, tumorigenesis, fibrosis, 
wound healing and also as a switch factor in locoregional immune 
suppression [12,13]. TGF-β is also able to inhibit MHC antigen 
expression in HeLa cells [14]. In the immune system, TGF-β functions 
as a referee of chemotaxis, activation, and survival of lymphocytes, 

NK cells, dendritic cells, macrophages, mast cells, and granulocytes, 
and by that it maintains immune tolerance. From the members of the 
TGF-β receptor family, TGF-β1 represents the dominant mediator 
of immune and inflammatory events. It contributes to the function 
and generation of regulatory T cells [15] which can further facilitate 
inflammatory and immune reactions. TGF-β is also expressed in 
multiple immune privileged sites contributing to immune privilege 
in each of these sites, e.g. in anterior chamber of the eye, central 
nervous system, adrenal cortex, testes, and in the vitreous humor 
[16]. Moreover, it has been previously reported that TGF-β directly 
promotes immune privilege to mesenchymal SCs by contributing to 
the inhibition of T cell proliferation [17,18] via suppression of c-Myc 
and enhancement of cell cycle inhibitors, such as p15INK4b and p21CIP1 
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Figure 1: Schematic diagram how immune privilege can be theoretically 
achieved by transplanted SCs.
Immune privileged adult SCs express TGF-β and IL-10 that can activate 
regulatory T cells (Treg-cells). Treg-cells can actively prevent T cells from 
activation, and also may polarize them to a regulatory phenotype. Fas-ligand 
(FasL) expression on SCs can also prevent immune responses by inducing 
apoptosis in Fas-bearing leukocytes. Natural killer cells (NK cell) are cytotoxic 
lymphocytes that affect adaptive immune responses. NK cell facilitated cell 
lysis is regulated by the balance of stimulatory and inhibitory signals that they 
recognize on target cells. NK cell inhibitory ligands include members of the 
major histocompatibility complex (MHC) family, such as MHC I. If MHC I is 
present on target cells, it inhibits NK cells’ activation. Although, most adult 
SCs express only low level of MHC I, it still can sufficiently inhibit the function 
of NK cells. Furthermore, adult SCs are also protected from immune rejection 
when they lack the expression of stimulatory signals for NK cells.
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[19]. The further role or contribution of TGF-β regarding to immune 
protection to other SCs has not been revealed yet. Interleukin-10, 
the other cytokine which can be secreted by regulatory T cells, is 
produced by many cell types, such as keratinocytes, B cells, mast 
cells and monocytes [20-23]. Since its discovery, it has been proven 
that interleukin-10 has a profound effect on cell-mediated immune 
responses, and it also limits the induction of inflammation [16]. 
However, the mechanism of immune privilege acquired by regulatory 
T cells-derived interleukin-10 remains unclear. Furthermore, TGF-β 
itself also induces interleukin-10 secretion, and interleukin-10 is able 
to motivate TGF-β; therefore it directly or indirectly interacts with the 
immune privilege processes.

Stem Cells and Immune Privilege
Adult stem cells (SCs), as undifferentiated cells residing in several 

tissues and organs, are required for the growth, routine turnover, 
and rejuvenation of tissues as well as for their response to injury. 
They can self-renew and have multiple differentiation capacities into 
the major specialized cell types of the tissue in which they reside. 
Adult SCs are typically long-lived and quiescent cells which can be 
activated for proliferation and differentiation by stress or tissue injury. 
Various adult stem cell populations, such as mesenchymal SCs [24-
27], hematopoietic SCs [28], neural SCs [29], amnion SCs [30], and 
muscle SCs [31], are immune privileged to a certain extent. They have 
to be protected from adverse autoimmune responses or local damage 
from chronic inflammation and it is thought that besides their 
own immune privilege, their native niche can serve as a protective 
microenvironment [5]. 

Mesenchymal SCs are derived and isolated from various tissues 
including adipose tissue and bone marrow, and they can differentiate 
into adipogenic, osteogenic and chondrogenic lineages, among others 
[32]. They are well known for their capacity to suppress inflammation 
and inhibit the immune response [24], which came from the first 
observation that bone marrow-derived mesenchymal SCs suppressed 
T cell proliferation [33,34]. Mesenchymal SCs express no MHC II, 
low levels of MHC Ia, and high levels of MHCIb. Mesenchymal SCs 
niche, formed by mesenchymal SCs and the surrounding stromal 
cells, inhibits the cyclin-D2 expression which disrupts the cell cycle 
of T cells [25,35]. Moreover, in response to increased interferon-γ 
production by T cells, mesenchymal SCs express B7-H1, which can 
down-modulate the effector functions of activated T cells [36]. The 
immune privilege of mesenchymal SCs has already been utilized in 
tissue repair and in prevention of graft-versus-host diseases [37]. For 
example, transplanted mesenchymal SCs could block degeneration of 
intervertebral discs in a surgically induced canine nucleotomy model 
by contributing to the maintenance of immune privilege via FasL 
production [38]. However, recent clinical trials and studies show that 
transplanted mesenchymal SCs can be allo-rejected, therefore they are 
not ultimately immune privileged as it has been shown before [39]. 
Rather, They can be called as “immune evasive” [39].

Hematopoietic SCs give rise to myeloid and lymphoid lineages 
and have been widely used in transplantation to treat patients with 
leukemia, lymphoma, some solid cancers, and autoimmune diseases 
[40]. It has already been shown that the niche where hematopoietic 
SCs reside provides an immune privileged site for them against foreign 
antigens [28]. This natural in vivo microenvironment for hematopoietic 

SCs is formed by stromal cells, osteoblasts, and sinusoidal endothelial 
cells, among others, and controls hematopoietic SCs quiescence, 
apoptosis, migration, as well as cell division. It has recently been 
shown that regulatory T cells colocalize with hematopoietic SCs 
in the endosteal area of the bone marrow, providing an immune 
privileged site for them [41]. Moreover, hematopoietic SCs are also 
capable of interacting with the immune system as signal “receivers” 
via toll-like receptors, tumor necrosis factor α receptor, interferon 
receptors [42]; and as signal “providers” mediated by surface immune 
inhibitory molecules, such as CD47 and CD247 [43], when they are 
out of their niche. This inhibits attack from the innate and adaptive 
immune responses, similarly to the process of immune privilege of 
mesenchymal and amnion SCs.

Muscle SCs - also considered also as satellite cells or a 
subpopulation of satellite cells - are a group of mononucleated cells 
located between the basal lamina and sarcolemma of muscle fibers [44-
46]. Muscle SCs are the main players in skeletal muscle regeneration, 
and they also contribute to the postnatal growth of muscle fibers. 
Most muscle SCs express the paired domain transcription factor Pax7, 
myogenic regulatory factor Myf5, cell adhesion protein M-Cadherin, 
tyrosine receptor kinase c-Met, and chemokine receptor Cxcr4, 
among others [47,48]. Muscle SCs have been investigated for their 
notable multi-lineage differentiation capacity, self-renewal ability and 
immune privileged behavior [31]. Muscle SCs lack the expression of 
MHC I, and it was demonstrated that they displayed an improved 
transplantation capacity in skeletal muscle, and the injected cells were 
not rejected by the host allogeneic tissues [31].

Neural SCs are immune privileged not only in their native niche, 
but also in terms of allogeneic transplantation into a non-privileged 
site [5]. It was demonstrated that neural SCs and neural progenitor 
cells retained inherent immune privilege [29,49] when they were 
transplanted beneath the kidney capsule in the form of neurospheres. 
The transplanted allogeneic neural SCs survived at least 4 weeks, and 
they neither sensitized their hosts nor expressed detectable levels of 
major MHC class I or II.

In contrast to adult SCs, it appears that pluripotent embryonic 
SCs and induced pluripotent SCs are not immune privileged [50]. The 
immune properties of pluripotent SCs have been attracting research 
interest since it has been observed that embryonic SCs express low 
levels of MHC class I and hardly any MHC class II proteins [51]. 
Indeed, several reports have shown that both mouse and human 
embryonic SCs can avoid immune rejection, and mouse embryonic 
SCs can survive in immunocompetent mice, rats, and sheep for weeks 
[52-56]. However, it has has also been clearly demonstrated by recent 
studies that undifferentiated human embryonic SCs, embryonic 
SC-derived progenitors and induced pluripotent SCs can trigger an 
immune response even in syngeneic recipients and can be rejected 
upon transplantation [57-60]. These contradictory findings may be 
as consequences of the used evaluation methods for the survival of 
transplanted SCs, e.g. histological techniques vs. in vivo molecular 
imaging [61]. The latest studies provide evidences that the rejection of 
pluripotent SCs is mediated by CD4+ T cells [57], and that pluripotency 
genes, such as Oct4, may evoke an immune response in humans [62].

Summary
The basis of immune privilege is no longer unknown with the 
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identification of TGF-β as one of the main choreographers; however, 
immune privilege is achieved by multiple factors and with combination 
of various mechanisms that act together in a delicately balanced 
way. Any disturbance to this balanced system can result in various 
immune disorders. Therefore, to restore immune surveillance and 
promote tumor eradication, application of local antagonists of TGF-β, 
such as antibodies, antisense oligodeoxynucleotides, short interfering 
RNA, etc., may be beneficial for clinical trials. Questions remain as to 
whether SCs are really immunogenic, since one of the main hurdles 
to stem cell therapies continues to be  the potential for immunological 
recognition and rejection of the transplant by the recipient immune 
system. Mesenchymal SCs, hematopoietic SCs, muscle SCs and neural 
SCs are reported to be hypoimmunogenic, and in addition, have 
immune modulatory activity with potential potent mechanisms to 
avoid allogeneic rejection. However, the exact mechanisms remain 
not fully unrevealed and are still under investigation. In contrast, 
pluripotent SC-differentiated derivatives are reported as having 
reduced capacity to stimulate alloimmune responses, but these cells 
cannot be considered as universally immune privileged. In order to 
evaluate the possible immune privilege of SCs, several in vitro and in 
vivo methods can be applied to assess their immunotoxicity. These 
assays include cell surface molecule expression (e.g. MHC I and FasL 
expression analyzed by flow cytometry), cytokine and chemokine 
analysis (e.g. expression of TGF-β, IL-10 by qPCR, ELISA or flow 
cytometry), mixed lymphocyte reactions, NK cell and serum toxicity, 
and “humanized” trimera mouse models. From these assays, mixed 
lymphocyte reaction is the classically used test for alloimmunity, 
in which leukocytes from two individuals are mixed together after 
inactivation of the donor’s cells and the host’s lymphocyte toxicity 
serves as a measure for allo-rejection. NK cell toxicity assay measures 
the cytolytic activity of NK cells against target tumor cells by (51) 
Cr-release and also by determining the number of NK cells in serum 
using flow cytometry. NK cells function can also be evaluated by the 
intracellular levels of perforin, granzymes, and granulysin analyzed 
by flow cytometry [63]. “Humanized” trimera mouse models [55] 
- immunodeficient mice reconstituted with human peripheral 
blood mononuclear cells-represent a very promising platform to 
study human immune responses in vivo. However, results obtained 
from these models need to be carefully interpreted since immune 
responses may be dysfunctional in these models due to T and NK 
cells’ defectiveness [64,65]. Still, the field lacks a convenient model 
in which the immunogenicity of human SCs or human SCs-derived 
tissues may be tested against a competent human immune system. 
Future approaches to manipulate immune privilege should consider 
various factors at multiple levels, especially when applying SCs 
transplantation to regenerative medicine. Moreover, revealing the 
mechanisms of action of SCs natural immune privilege would also be 
crucial for developing strategic approaches to mitigate or inhibit the 
immune rejection of SC transplants.
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