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Abstract
RNA dysfunction and abnormal intracellular aggregates comprise 

a key characteristic in most neurodegenerative diseases, including 
amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). 
The discoveries with the identification of new genes as major genetic 
causes of ALS/FTD syndromes reinforce the genetic, clinical and 
pathological overlap between ALS and FTD. Common causes of these 
diseases include mutations in the RNA/DNA-binding proteins, TDP-43 
and FUS and most recently, GGGGCC hexanucleotide expansions in 
the C9orf72 gene. TDP-43 and FUS are both RNA processing proteins 
whose dysfunction impacts on global cellular RNA regulation, and are 
both abnormally aggregated and mislocalized in ALS and FTD, while 
The expression of repeat expansions in the C9orf72 gene may induce 
RNA foci that could sequester RNA binding proteins such as Pur α and 
hnRNP A3 highlights a further possibly important mechanism of RNA 
dysfunction in disease. Furthermore, sequestration of key RNA binding 
proteins may also play an important role in ALS/FTD syndromes due to 
the association of TDP-43 and FUS with stress granules. In this review we 
discuss the importance of RNA dysfunction and RNA binding proteins 
and suggest mechanisms by which they may cause ALS/FTD.

Introduction
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative 

disease that affects upper and lower motor neurons, resulting in 
progressive paralysis and eventual death within a few years from 
onset. Just like Parkinson’s, Alzheimer’s and other neurodegenerative 
diseases, a proportion (~10%) of ALS is dominantly inherited, while 
the remaining 90% (sporadic) do not have familial history [1]. 
Frontotemporal dementia (FTD) is the second most common cause of 
presenile dementia, which includes four clinical subgroups: semantic 
dementia, progressive non-fluent aphasia, behavioural variant FTD 
and FTD with motor neuron disease/ALS [2,3].

Clinical data have suggested that ALS and FTD are highly related 
conditions. Up to 50% of ALS sufferers display a degree of cognitive 
impairment, whereas up to 16% of patients diagnosed with FTD 
display a motor neuron disease phenotype, usually first recognized 
by the presence of difficulty swallowing or fasciculations [4-6]. 
Patients presenting with both ALS and FTD symptoms are frequently 
diagnosed as having a mixed ALS-FTD syndrome [7]. 

Strong molecular links between the two syndromes were first 
found with the discovery that aggregations of ubiquitinated TAR 
DNA binding protein (TDP-43) or fused in sarcoma (FUS), two 
highly related RNA/DNA binding proteins, were found to be the 
main component of the cytoplasmic and ubiquitin-positive inclusions 
present in affected neurons of ALS and FTD patients[8-10]. TDP-43 
pathology is present in 90% of ubiquitin positive FTD cases and non-
SOD1 ALS cases with FUS-positive inclusions accounting for most 
of remaining ubiquitin-positive and TDP-43-negative inclusions [9-
11]. The identification of a common pathological hallmark defined by 

TDP-43 and ubiquitin-positive cytoplasmic inclusions suggested that 
ALS and FTD were part of a broad spectrum of neurodegeneration.

TDP-43 is mainly localized in the nucleus of healthy neurons. 
In affected cells, however, ubiquitinated TDP-43 is mislocalized 
in the cytoplasm and is excluded from the nucleus, suggesting the 
possibility that loss of normal function of TDP-43 [10,12] and/or gain 
of toxic properties may contribute to ALS and FTD. The discovery 
of mutations within TDP-43 gene in ALS patients suggests TDP-
43 as the primary causation in ALS and FTLD [13-15] and in rare 
FTLD patients [16-18]. Affected neurons of patients with TDP-43 
mutations also present with cytoplasmic inclusions and nuclear loss 
[19], indicating that abnormal localization of TDP-43 represents the 
first mechanistic link between sporadic ALS and an inherited form 
caused by a known mutation.

Mutations in FUS are causative of ~1 and 4% of apparent sporadic 
and familial ALS respectively, but are yet to be shown definitively 
to be causal for FTD [20-22]. FUS is mainly localized in the nuclei 
of unaffected neurons, but is partially cleared from those nuclei in 
neurons that contain cytoplasmic aggregations [9,23-24]. While 
most patients with FUS mutations develop a classical ALS phenotype 
without cognitive defect, occasionally, mutant FUS carriers develop 
either FTD concurrently with motor neuron disease [25] or FTD 
in the absence of motor neuron deficits [21,26], providing further 
evidence that ALS and FTD have clinical, pathological and genetic 
commonalities.

In a significant recent discovery genetically link between ALS and 
FTD was reported that expanded GGGGCC hexanucleotide repeats 
in the first intron of the C9orf72 gene have been shown as causative 
for ALS, FTD or concomitant ALS-FTD disease [27-29]. C9orf72 
encodes a protein of unknown function. Most disease-associated 
expansions estimated at between 700 and 1600 repeats, however, 
more than 30 GGGGCC repeats within C9orf72 are classified as 
pathological [27], and the number of repeats required for disease 
is still unclear [29,30]. Estimates for the prevalence of expanded 
C9orf72 repeats in ALS and FTD have consistently shown that the 
locus represents the single greatest genetic cause of ALS, FTD and 
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ALS-FTD [31,32]. Studies in Northern American, European and 
Australian populations have suggested an overall average frequency of 
~33% in familial ALS and 8% in sporadic ALS, with prevalence rising 
as high as 83% and 73% in Belgian and Swedish cohorts, respectively 
[27-29,31-35]. The frequency of expanded C9orf72 repeats in Chinese 
and Japanese ALS populations appears to be much lower (55%), 
consistent with recent suggestions of an initial founding effect due 
to the repeat expansion arising within Northern Europe [32,34-36]. 
Fewer studies of the prevalence of expanded C9orf72 repeats in FTD 
cohorts have been published but prevalence again seems to be high 
with an average of ~20% and 6% suggested for familial and sporadic 
European populations, respectively [27-29,31]. Furthermore, patients 
withC9orf72 expansion display ubiquitin and p62 positive, TDP-43 
negative cytoplasmic and intranuclear inclusions in various CNS 
regions including the cerebellum and hippocampus [27,37-39]. Thus, 
ALS and FTD are linked clinically, genetically and pathologically.

TDP-43 and FUS on RNA Processing
Genetic and pathological analysis has therefore demonstrated 

that TARDBP, FUS and C9orf72 are at the centre of the ALS-FTD 
spectrum. Notably all three genes may share a common link to 
cellular RNA dynamics.

TDP-43 is encoded by TARDBP gene and is widely expressed, 
highly conserved, and predominantly localized to the nucleus [40]. 
It contains two RNA recognition motifs and a Gly-rich C-terminal 
region that allow it to bind single-stranded DNA, RNA, and proteins 
[40,41]. The exon skipping and splicing inhibitory activity requires 
the C-terminal region, which interacts with other members of the 
heterogeneous nuclear ribonucleoprotein family [42]. TDP-43 
can shuttle between the nucleus and cytoplasm continuously - a 
process partly regulated by nuclear export signal motifs and nuclear 
localization signal [43,44]. In addition to transcription and splicing 
regulation, the role of TDP-43 have been suggested in other cellular 
processes, such as microRNA processing, stabilization of messenger 
RNA, cell division, and apoptosis [45-47]. FUS, another ubiquitously 
expressed protein, was originally discovered as a component of 
fusion oncogenes in human cancers [48]. FUS contains an RNA 
recognition motif and a highly conserved extreme C-terminus that 
encodes for a non-classic nuclear localization signal that is recognized 
by transporting [49-51]. Just like TDP-43, FUS shows cytoplasmic 
and nuclear expression [52], and continuously shuttles between the 
cytoplasm and the nucleus [53]. It is implicated in numerous cellular 
processes, including RNA and microRNA processing, transcription 
regulation, DNA repair and cell proliferation [47,48,54] although 
its precise function is poorly characterized. This protein might 
be involved in neuronal plasticity and maintenance of dendritic 
integrity by transporting messenger RNA to dendritic spines for local 
translation [55,56]. 

The involvement of TDP-43 and FUS in RNA-related pathways is 
strong: both are RNA processing proteins with roles in multiple steps 
of RNA regulation, including RNA transcription, splicing, transport, 
translation and microRNA production [47]. Both proteins directly 
interact with the heterogeneous nuclear ribonucleoprotein complex, 
which regulates RNA splicing and transport, suggesting that they 
may have similar roles in the cell [57]. Dual knockdown experiments 
in zebra fish suggest that TDP-43 and FUS operate within the same 
pathway, with FUS acting downstream of TDP-43 [58]. The role of 
TDP-43 and FUS in RNA processing is mediated through direct 

interaction with RNA, both TDP-43 and FUS bind RNA through 
two RNA recognition motif (RRM) protein domains [59,60]. TDP-
43 binding sites are found in the RNA encoding TDP-43, FUS and 
other RNA processing proteins such as poly (A)-binding protein 
cytoplasmic 1 (PABPC1) suggesting TDP-43 and FUS may participate 
in a large co-regulatory network [61]. Notably, TDP-43 RNA targets 
include genes important for synaptic function, neurotransmitter 
release and the neurodegeneration-related genes progranulin (GRN), 
α-synuclein (SNCA), tau (MAPT) and ataxin 1 and 2 (ATXN1/2) 
[61,62]. Dysfunction in this complex network of RNA binding 
proteins is therefore likely to have severe downstream consequences. 
It is important to note that TDP-43 and FUS have many targets 
within the genome; TDP-43, for example, has binding sites in ~30% 
of transcribed mouse genes [62]. Individual studies have highlighted 
different sets of genes targeted by these RNA binding proteins 
making the physiological importance of single reported interactions 
difficult to understand without further molecular insights [60-62]. A 
recent study mapping both TDP-43 and FUS binding to RNA has cast 
some light on transcripts regulated by both TDP-43 and FUS, and 
hence likely to be central to understanding the downstream effects 
of TDP-43/FUS dysfunction that lead to ALS/FTD. Whilst TDP-
43 and FUS have largely distinct binding patterns—only 86 shared 
gene regulation events were highlighted in the study—genes that are 
regulated by both TDP-43 and FUS are enriched for the presence of 
very long introns [63]. Notably the co-regulated genes in this study 
were also enriched for neuronal functionality, suggesting a conserved 
role for TDP-43 and FUS in maintaining levels of neuronal proteins 
whose pre-RNA feature elongated introns [63]. Aside from affecting 
messenger RNA translation, TDP-43 and FUS also have clear roles in 
alternative splicing with, for example, knockdown of TDP-43 in SH-
SY5Y cells leading to 228 splicing changes amongst genes containing 
alternative isoforms [60]. Besides, FUS has been shown to bind RNA 
at splice acceptor sites and associates with transcriptional machinery 
such as RNA polymerase II and the TFIID complex consistent with a 
role in splicing and transcriptional regulation [59,64].

TDP-43 and FUS Mutation Cause RNA Dysfunction 
in ALS/FTD

Up to now, more than 40 dominant mutations in the TARDBP 
gene have been identified in ALS and occasionally in FTD patients 
[65] (Figure 1). It was also found in pathological protein aggregates 
in rare familial ALS cases with a FUS mutation [20,24] (Figure 1). 
In the neurons of all patients with ALS or FTD with either TDP-43 
or FUS pathology, the defining protein relocates from the nucleus to 
the cytoplasm and forms aggregates [8,9,66]. Four possible causes of 
cytotoxicity in mutant and/or cytoplasmically localized TDP-43 and 
FUS can be proposed: (i) loss of normal nuclear function leading to 
dysregulation of nuclear RNA processing; (ii) aberrant cytoplasmic 
RNA binding leading to misprocessing of aggrephagy related 
genes; (iii) aggregates persist in cytoplasm and impaired protein 
degradation; or (iv) stress granule formation which sequester RNA 
binding proteins (Figure 2).

Pathological TDP-43 is associated with nuclear clearance and 
cytoplasmic aggregation [8], however, TDP-43 mutations do not 
cluster around a nuclear localization sequence, meaning a direct 
relocalization appears not to be the primary toxic feature of mutations. 
Indeed, mutations in genes other than TARDBP, such as VCP, 
can lead to cytoplasmic TDP-43 accumulation [67]. Furthermore, 
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Figure 1: Schematic overview of protein domain structure of TDP-43 and FUS and disease-associated mutations. Mutations in TARDBP, the gene encoding 
TDP-43, and FUS were identified in familial cases of ALS (shown in black) and FTD (shown in Red). Besides missense mutations, premature stop codons (X), 
deletions (del), insertions (ins) and frameshift (fs) mutations are designated. The most frequently identified FUS mutations cluster in the protein’s NLS and disrupt 
the interaction with the nuclear import factor transportin. Mutations in the N-terminal prion-like domain termed the SYGQ-rich domain in FUS are considered to 
be risk factors because they were mainly found in sporadic cases. By contrast, all disease-causing TDP-43 mutations cluster in a prion-like domain termed the 
glycine-rich (Gly-rich) domain. Both TDP-43 and FUS contain a NES and RRMs. FUS contains additional RNA-binding motifs, as well as a ZnF and RGG repeats. 
NES=nuclear export signal. NLS=nuclear localisation signal. RGG=Arg-Gly-Gly-rich motif. RRM=RNA recognition motif. ZnF=Cys2/Cys2-type zinc finger motif. 
SYGQ = serine, tyrosine, glycine and glutamine.

Figure 2: Possible disease associated pathogenesis pathways in ALS/FTD 
are shown for TDP-43. FUS is likely to operate in highly similar pathways, but 
key details of its involvement in several steps are still to be elucidated and 
only TDP-43 is shown for clarity. TDP-43 shuttles between the nucleus, where 
it regulates splicing and transcription, and the cytoplasm, where further RNA 
targets are bound. Loss of TDP-43 function due either to direct mutations in 
TARDBP or nuclear RNA foci(I), or through sequestration of RNA binding 
proteins in cytoplamsic stress granules(III), Aberrant cytoplasmic RNA 
binding leading to misprocessing of aggrephagy related genes(II) which may 
in turn lead to defects in aggregate clearance(IV).

TDP-43 pathology has also been seen in other seemingly unrelated 
disorders such as Alzheimer’s disease, suggesting that it may be an 
indirect downstream effect of mutations that leads to cytoplasmic 
clearance of TDP-43 [68,69]. Within model systems relocalization 
of mutant TDP-43 is often only seen with the addition of further 
stress, and concomitant formation of cytoplasmic stress granules—
aggregations of RNA and RNA binding proteins thought to function 
in a protective manner during periods of cellular stress by protecting 
untranslated messenger RNA from destruction or modification in the 
cytoplasm, although a small degree of relocalization in the absence of 
exogenous stress has been reported [70,71]. It is therefore possible that 
TARDBP mutations confer toxicity through increased aggregation or 
stress granule association, leading to a loss of nuclear TDP-43 due 
to cytoplasmic sequestration. In support of this hypothesis, ALS 
associated TARDBP mutations have been shown to increase TDP-43 
aggregation propensity [72]. While loss of nuclear RNA processing 
activity is again likely to explain aspects of TDP-43 toxicity due to 
the important role of TDP-43 in the nucleus, other factors seem to 
be involved. Although 93% of TDP-43–RNA interactions (with the 
exception of 3’ untranslated region binding) occur in the nucleus, 
TDP-43 does regulate the translation of RNAs in the cytoplasm and 
interacts with cytoplasmic proteins [60,73]. Furthermore, within 
multiple model systems, over expression of wild-type and mutant 
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TDP-43 has been shown to be toxic in a dose dependent manner, 
arguing for a gain of toxicity [70,74]. Together with the requirement 
for RNA binding for TDP-43 to mediate toxicity in several disease 
models, it appears that pathogenic TDP-43 has a cytoplasmic gain-
of-function due to aberrant processing of cytoplasmic RNAs as well 
as possible loss of normal nuclear function [75].

As shown above, a possible explanation for the propensity of 
TDP-43 to deposit in the cytoplasm in cases without clear disruption 
of nuclear import lies in their known association with stress granules. 
Mutant TDP-43 has been shown to localize to stress granules under 
conditions of cytoplasmic stress, such as heat shock or induction of 
reactive oxidative species (ROS) through arsenite exposure [76]. It is 
therefore possible that periods of extended cellular stress, even in the 
absence of disease associated mutations, may lead to a cytoplasmic 
relocalisation and sequestration of key RNA binding proteins within 
stress granules. In support of this idea, in mouse models of neural 
injury, cytoplasmic TDP-43 levels have been shown to increase 
in response to enhanced interaction of TDP-43 with components 
of RNA granules [77]. As such, cellular stress could provide a 
mechanism for sporadic diseases in which stress granule mediated 
sequestration, rather than specific mutations, lead to dysfunction of 
key RNA binding proteins such as TDP-43. Recent evidence has also 
suggested that stress granules may transition, over time, into the larger 
ubiquitinated aggregates seen in post-mortem disease tissue; TDP-43 
positive aggregates in post-mortem tissue colocalize with key stress 
granule proteins such as TIA1 and eIF3 [71]. Furthermore, TDP-43 
containing stress granules have been shown to survive as cytoplasmic 
aggregates once cellular stress is removed—a finding not replicated 
for non-TDP-43 stress granules, and to be less likely to disassemble 
in the presence of chemical inhibitors [78]. Stress granules are cleared 
by autophagy in mammalian cells, and its clearance is reduced by 
inhibition of autophagy or by depletion or pathogenic mutations in 
valosin-containing protein (VCP) [79]. These data suggest that TDP-
43 containing stress granules may transition to disease-associated 
aggregates, perhaps through the formation of overly stable stress 
granules. As such, stress granules may provide a mechanism through 
which cellular stress leads to the sequestration of RNA processing 
proteins causing a loss of function in these proteins, or alternatively 
may promote the formation of toxic aggregations of TDP-43.

Unlike TDP-43, the finding that the majority of FUS mutations 
cluster within a nuclear localization sequence and directly lead to 
a loss of normal nuclear localization makes a loss of function an 
attractive idea for FUS toxicity [51]. FUS toxicity in yeast has been 
shown to be suppressed by over-expression of RNA processing 
proteins such as RNA helicases UPF1 and ECM32, which function 
in RNA quality control and appear to compensate for loss of FUS 
activity [80]. A loss-of-function mechanism is also supported by 
an apparent correlation between the degree of mutation-induced 
relocalization and phenotypic severity of associated disease [51,81]. 

With regard to a toxic gain-of-function, it is notable that human 
wild-type and mutant FUS is equally toxic when expressed in yeast 
due to the lack of nuclear localization sequence conservation across 
species [80]. Addition of a yeast nuclear localization sequence 
abrogates toxicity, suggesting that toxicity is directly related to 
cytoplasmic accumulation [80]. Analysis of RNA binding by wild-
type or mutant FUS shows an altered, rather than simply reduced, 
set of binding targets in cytoplasmically localized mutant FUS [59]. 
Furthermore, use of serially deleted FUS expression constructs in 

a yeast model demonstrated that both N and C terminal regions, 
including RNA binding domains, are required for toxicity, suggestive 
of aberrant functionality in mislocalized FUS [80,82]. A further 
argument for a gain-of-function effect is seen in the weak clearance 
of FUS from the nuclei of many affected neurons—arguing against 
complete loss of nuclear action [9]. The evidence for direct toxicity of 
FUS aggregates remains unclear; one study using expression of a series 
of deletion constructs of FUS demonstrated that aggregation was only 
weakly correlated with toxicity whereas a further contradictory study 
has demonstrated that FUS aggregation is correlated with toxicity and 
highly dependent on expression level [80,82]. Notably these toxicity 
dependent aggregates appear to be stress granules too [82]. This 
finding infers that FUS must localize to stress granules to mediate 
toxicity and is somewhat surprising—stress granule sequestration of 
FUS is likely to ameliorate any aberrant RNA binding functionality in 
the cytoplasm—unless stress granules, or their possible ubiquitinated 
derivatives are actively toxic. Furthermore, screens in yeast for 
suppressors of FUS toxicity highlighted various stress granule 
components including the yeast homolog of PABP1, a protein 
involved in stress granule assembly inferring that stress granules 
may be key to FUS mediated toxicity [80]. It is also notable that the 
requirement of RNA binding activity for toxicity may reflect binding 
to stress granules rather than aberrant cytoplasmic processing targets. 
As such the mechanism by which FUS mutations lead to disease 
seem to be intrinsically linked to loss of nuclear localization but may 
proceed through both loss and gain-of-function. Further experiments 
to define the importance of aggregation and stress granule association 
on FUS toxicity in further model systems would be instructive.

The major difference between the two proteins appears to be that 
loss of nuclear relocalization is a primary feature of FUS mutations 
whilst, by contrast, increased aggregation propensity may be the 
major feature of TARDBP mutations. The most powerful evidence for 
the impact of TARDBP and FUS mutations is the importance of RNA 
binding to toxicity; both proteins require RNA binding domains to 
mediate toxicity whilst FUS toxicity has been shown to be suppressed 
by over expression of similar RNA binding proteins [75,80,82,83].

C90RF72 Mutation Cause RNA Toxicity in ALS/FTD
Recent discovery of the hexanucleotide GGGGCC expansion 

in an intron of the C90RF72 gene in ALS and FTD has provided 
additional evidence that impairment of RNA processing could be a 
general mechanism of disease in ALS and FTD. Adding to the mystery 
is the almost complete absence of information on the C9ORF72 gene 
or the function of the protein it encodes. However, there are three 
possible pathogenic mechanisms emerging from early observations 
in these patients (Figure 3). The first one is a mechanism linked 
to haploinsufficiency of C9orf72 supported by the 50% reduction 
of C9orf72 transcript levels observed in patients with expansions 
[27,28]. Thus, a loss of C9ORF72 function might contribute to 
disease. As there is currently no functional or structural information 
on the C9orf72 protein, there is no evidence on the consequences of 
a C9orf72 haploinsufficiency. Manipulation of C9orf72 expression 
in model systems or functional analysis of the C9orf72 protein 
will be required in order to investigate whether it is a reduction of 
C9orf72 expression that leads to disease. The second possibility is that 
RNA transcripts containing the expanded GGGGCC repeat forms 
pathogenic foci that trap one or more RNA binding protein(s) (Table 
1) within nuclear foci in frontal cortex and spinal cord material in 
C9ORF72-FTD/ALS patients, suggests a toxic RNA gain of function 
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[27]. This pathogenic mechanism of RNA toxicity resulting in the 
depletion and loss of function of specific RNA binding protein(s) 
with affinity for the expanded RNA has been established in other 
noncoding expansion disorders, especially CGG repeat associated 
Fragile X-associated tremor ataxia syndrome (FXTAS) [84], or CUG 
repeat associated myotonic dystrophy types 1 and 2 [85,86]. Abnormal 
intranuclear RNA foci containing the expanded RNA transcript 
have been described in cases of FTD with C9orf72 mutations [27]. 
The formation of RNA foci has been suggested to sequester RNA 
binding proteins impairing their function [87,88]. Indeed the 
hexanucleotide motif of C9orf72 has been predicted to interact with 
the A2/B1 regions of the heterogeneous ribonucleoprotein particle 
complex which contains FUS and directly interacts with TDP-43 
[27,42,89]. However, although rare nuclear RNA foci were found in 
a subset of cases, it is not yet clear how the sequestering of RNA-
binding proteins in the nucleus could lead to the more widespread 
cytoplasmic aggregates of TDP-43 found in cases with the C9orf72 
mutation [27,90]. Furthermore, other studies have failed to find 
C9orf72-derived RNA foci using different in situ hybridization 
probes and TDP-43/FUS have not been shown to localize to C9orf72-
derived foci [88]. Consistent with a RNA-mediated pathogenic 
mechanism, we showed that expression of the expanded repeat is 
sufficient to cause neurodegeneration and synthesized GGGGCC 
repeat-containing RNAs are able to bind proteins in extracts prepared 
from mouse spinal cord. The most prevalent C9ORF72 GGGGCC-
binding proteins found were several members of the Pur family of 
RNA-binding proteins, with Pur α being the most abundant [91].
Intriguingly, Pur α was previously found to interact with expanded 
CGG repeat-containing FXTAS RNA and modulated disease in a 
Drosophila model of FXTAS [84]. The brain extract assay found no 
evidence that TDP-43 was able to bind C9ORF72 GGGGCC-repeat 
RNA. Another study found that C9ORF72 GGGGCC-repeat RNA 
bound to the heterogeneous nuclear ribonucleoprotein RNA binding 
protein hnRNP A2/B1 and hnRNP A3, which being detectable in 
the p62-positive, TDP-43–negative inclusions seen in the brains of 
patients with C9ORF72 disease [92].

A third possible pathogenic mechanism is repeat-associated non-
ATG translation (RAN translation). RAN translation, a mode of 
translation that occurs in the absence of an initiating ATG codon, 
was first reported to occur across expanded CAG repeats to produce 
potentially toxic homopolymeric peptides [93]. It is worth noting that 
two groups recently reported immunostaining for GGGGCC repeat 

encoded insoluble peptides in the brains of patients who succumbed 
to C9ORF72 disease [94,95]. Whether these peptides actually 
contribute to C9ORF72 remain to be shown. 

Future Perspectives
Given the current rate of discovery of mutations in RNA 

processing protein genes in neurodegenerative disease, dysfunction 
of RNA processing is clearly evolving into a central theme within 
neurodegeneration. This association appears to be especially 
common in conditions affecting motor neurons, with TARDBP, FUS 
and C9orf72 adding to information previously gained from SMN 
within the motor neuron condition spinal muscular atrophy. Within 
the ALS/FTD continuum overall, deregulation of RNA processing 
through formation of stress granules and mutations in the TARDBP 
and FUS genes and the expansion at the C9orf72 locus appear to be 
of great interest. In particular, defining the interactions between wild-
type and mutant forms of TDP-43, FUS and C9orf72, together with 
elucidating the effect of TDP-43 and FUS stress granule localization 
on toxicity should be extremely instructive. It will be interesting to 
investigate whether stress granule localization of TDP-43 and FUS is 
also seen in C9orf72-associated disease cases.

Functional analysis of the genes along this ALS/FTD continuum 
suggests that RNA dysfunction is central pathogenic mechanisms. 
Processing of Dysfunctional RNA is strongly linked to each side of 
the ALS/FTD continuum, either pathologically or genetically, by 
TDP-43, FUS and C9orf72. The association of both TDP-43 and 
FUS with stress granules and the possible formation of RNA foci 
due to C9orf72 GGGGCC repeat expansions specifically highlight 
cytoplasmic sequestration of key RNA binding proteins in the 
diseases. Both dysfunction of RNA processing leading to impairments 
of key downstream targets, and the formation of toxic, possibly stress 
granule-derived, aggregates are implicated in disease progression. 
Furthermore, it is clear that dysfunction in RNA processing may 
impact upon the other pathway, which may play interrelated roles 
in the pathogenesis of ALS and FTD. Given the possible relationship 
between key autophagy/ubiquitin proteasome system proteins and 
those involved in RNA processing, it will be interesting to look at 
the relationship between aggregation and toxicity in wild-type and 
mutant TDP-43, and whether this relationship is modified by defects 
in ubiquitin-specific autophagy or the ubiquitin proteasome system. 
Interactions between mutant and wild-type TDP-43, FUS and 
C9orf72 should also be worthy of investigation to define mutation-
specific effects on the interplay of these interlinked proteins.

Within cases with sporadic ALS and FTD it would be interesting 
to investigate whether general impairments in RNA processing 
or protein degradation are seen. In fact, while we have argued that 
mutations in several genes can lead to a primary alteration in either 
RNA processing or protein degradation pathways with a secondary 
impairment in the other pathway, the question remains elusive 
whether defects in these same mechanisms are also causing sporadic 
disease. Regarding a primary alteration in RNA pathways in sporadic 
ALS and FTD, it is also possible that sequestration of RNA processing 
proteins is mediated by aberrant, stochastically forming, RNA foci or 
that prolonged cellular stress due to a variety of sporadic factors could 
lead to sequestration of TDP-43 or FUS in stress granules causing 
general RNA dysfunction.

Figure 3: Scheme depicting the three major putative mechanisms underlying 
expanded C9ORF72 repeat ALS/FTD. Pathway I involves a loss of function 
of C9ORF72 and/or other nearby genes. Both mechanisms II and III involve 
a toxic gain of function, with pathway II consisting of a toxic RNA and in III, 
toxicity being attributable to a protein or peptide. RAN translation =repeat-
associated non-ATG translation.
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r(GGGGCC)n binding proteins Gene r(CGG)100 (CUG)100 Function

Transcriptional activator protein Pur-alpha PURA √ √ Initiation of DNA replication and recombination.

Transcriptional activator protein Pur-beta PURB - - Dendritic transport of mRNAs

purine-rich element-binding protein gamma PURG - - Unknown

hnRNP C1/C2 HNRNPC Pre- mRNA splicing

hnRNP A2/B1 HNRNPA2/B1 √ √ Pre-mRNA processing

hnRNP A3 HNRNPA3 √ √ RNA cytoplasmic trafficking

hnRNP A1 HNRNPA1 √ √ Packaging pre- mRNA into hnRNP particles

hnRNP R HNRNPR - - Pre-mRNA processing

hnRNP L HNRNPL - - Pre-mRNA processing

hnRNP K HNRNPK - - Transcriptional coactivator of p53 inresponse to DNA damage

Guanine nucleotide-binding protein G(o) GNAO1 - - Modulators or transducers in various transmembrane signaling 
systems.

Nucleolysin TIAR TIAL1 √ √ involved in apoptosis

Nucleolysin TIA-1 TIA1 √ √ pre-RNA splicing and mRNA translation

Dual specificity mitogen-activated protein kinase kinase 
1 MAP2K1 - - As an essential component of the MAP kinase signal 

transduction pathway

Poly(rC)-binding protein 1 PCBP1 - -

RNA-binding protein 4B RBM4B - - Required for the translational activation of PER1 mRNA in 
response to circadian clock

RNA-binding protein 4 RBM4 √ √ pre-RNA splicing and mRNA translation

Interleukin enhancer-binding factor 2 ILF2 - - regulate transcription of the IL2 gene during T-cell activation

Interleukin enhancer-binding factor 3 ILF3 - - facilitate double-stranded RNA-regulated gene expression

Splicing factor, proline- and glutamine-rich SFPQ × √ Pre- mRNA splicing

Splicing factor 3B SF3B3 - - Pre- mRNA splicing

ELAV-like protein 1 ELAVL1 - - Involved in 3'-UTR ARE-mediated MYC stabilization

Non-POU domain-containing octamer-binding protein NONO - - Pre- mRNA splicing

Scaffold attachment factor B SAFB - - as an estrogen receptor corepressor and inhibit cell proliferation

Insulin-like growth factor 2 mRNA-binding protein 1 IGF2BP1 - - mRNA nuclear export, localization, stability and translation

Double-stranded RNA-specific adenosine deaminase DSRAD - - Catalyzes the hydrolytic deamination of adenosine to inosine in 
dsRNA referred to as A-to-I RNA editing

Putative pre-mRNA-splicing factor ATP-dependent 
RNA helicase DHX15 × √ Pre-mRNA processing

Putative ATP-dependent RNA helicase DHX30 × √ Associates with mitochondrial DNA

Nucleolar RNA helicase 2 DDX21 - - As cofactor for JUN-activated transcription and involved in 
rRNA processing

RNA-binding protein FUS FUS √ √ maintenance of genomic integrity

Serine/arginine-rich splicing factor 1 SRSF1 - - preventing exon skipping, ensuring the accuracy of splicing and 
regulating alternative splicing

Table 1: r (GGGGCC)n repeats RNA binding proteins.. Identification of RNA binding proteins associated with expanded GGGGCC, CGG and CUG repeats by 
using mass spectrometry [91,92,97,98]. hnRNP=heterogeneous nuclear ribonucleoproteins. √, binding; ×, no binding; -, not sure.

In order to further study the pathology of ALS and FTD, more 
relevant models of the disease are likely to be required; current ALS 
and FTD transgenic models are often not fully relevant to the ALS/
FTD continuum pathways, with, for example, much of ALS research 
based on SOD1 models, which may show an entirely separate model 
of pathology to that of ALS-FTD. Attention should therefore be 
focused on creating both invitro and in vivo models to study TDP-
43, FUS and C9orf72, and the interactions between wild-type and 
mutant forms of each protein. Finally, study on disease-associated 
pathways could give clues for uncovering the putative therapeutic 
targets. Although not yet fully characterized at molecular level, the 
pathways constructed here highlight aberrant RNA processing and 

defects in aggrephagy as possible targets for therapeutic action in 
ALS and FTD. How one might therapeutically combat the loss of 
nuclear TDP-43 or FUS is less clear, given the ubiquity of nuclear 
import and export processes and the global roles of TDP-43 and 
FUS within the transcriptome and beyond. The recent discovery that 
arginine methylation is a potent modifier of FUS nuclear import does 
however highlight that novel mechanisms to achieve this aim may be 
possible as our understanding of these central proteins and pathways 
increases [96].
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