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Abstract
Osteoarthritis (OA) is a degenerative joint disease and a leading 

cause of adult disability. While joint replacement surgery is a common 
treatment option for end-stage disease, non-surgical management is 
critical for preventing disability and maintaining quality of life. Although 
therapeutic ultrasound, which applies mechanical and may also apply 
thermal energy in the form of sound waves, is widely used to treat 
various musculoskeletal disorders such as bone fractures, tendinopathy, 
and muscle contusions, its symptom- and disease-modifying effects 
on osteoarthritis have not been clearly demonstrated. Recent clinical 
evidence indicates therapeutic ultrasound is capable of relieving OA-
associated pain and improving function of diseased joints. Furthermore, 
in vitro and in vivo studies are beginning to emerge which suggest 
ultrasound may exert chondroprotection, such as enhancing anabolic 
activity, suppressing proteolytic enzyme-mediated degradation of the 
cartilage matrix, preventing chondrocyte apoptosis and modifying 
the endocrinology of adipose tissue that may potentially contribute to 
OA disease initiation and progression. Therefore, ultrasound may have 
great potential to serve as an effective and non-invasive therapeutic 
treatment for osteoarthritis.  

Introduction
Osteoarthritis (OA) affects over 27 million Americans, is a 

leading cause of pain and disability [1,2], and is a significant economic 
burden in the United States with over $185.5 billion in annual 
medical care expenditures [3]. While OA is a disease of the entire 
synovial joint, and affects the underlying bone, synovium, meniscus, 
ligaments/tendons, and articular cartilage [4,5], erosion of articular 
cartilage is the pathological hallmark of osteoarthritis, and cartilage 
is a major target for exploring disease-modifying treatment [4,6-8]. 
Cartilage lines the ends of the bones, allowing for the articulation of 
opposing joint surfaces. Destruction of articular cartilage leads to 
bone-on-bone contact, causing stiffness, pain, and ultimately, loss of 
movement in the joints [9].

There is currently no cure for OA. Therapies, which mainly 
address OA-related symptoms such as pain and dysfunction, have 
no demonstrated effect on slowing or arresting its progression [6,10]. 
End-stage disease often requires surgical intervention such as a total 
joint replacement. At earlier stages of OA, however, non-surgical 
management is critical for preventing disability and maintaining 
quality of life. Non-pharmacologic interventions, including 
mechanical-based therapies, are commonly recommended to OA 
patients [11].

Recent clinical trials show therapeutic ultrasound such as low-

intensity ultrasound can improve OA-associated pain and dysfunction 
[12], although its effects in modifying disease progression require to 
be further studied. In this review, we will first provide a brief overview 
regarding the concept of therapeutic ultrasound and its current use 
in musculoskeletal tissue repair and disorders. We will then discuss 
recent clinical evidence of ultrasound in modifying OA-associated 
symptoms and mechanisms-based evidence that supports the concept 
of using ultrasound in chondroprotection and OA treatment.  

Therapeutic Ultrasound and its Use in Musculoskeletal 
Tissue Repair and Disorders

Therapeutic ultrasound treatment, such as those using low-
intensity ultrasound wave energy, are widely used to treat pain and 
various musculoskeletal disorders including bone fractures, shoulder 
pain, pressure ulcers, and muscle soreness [13]. Upon penetrating 
the biological tissue, these low-intensity ultrasound waves generate 
acoustic vibrations that cause local movement of cell membrane, fluid 
and macromolecules [14]. This produces mechanical stimulation 
that subsequently changes the physical and biological properties of 
the cells, such as cell membrane permeability, fluid movement and 
exchange of intracellular and extracellular ions, all of which eventually 
alter cell growth and metabolism [15].  

The actual biological effect of ultrasound therapy varies with 
the energy that is delivered to the tissue. The energy of ultrasound 
is expressed as sonic intensity (SI: W/cm2) that is proportional to 
sonic pressure square. Low-intensity ultrasound uses ultrasound with 
intensities less than 3W/cm2 and is usually used as physiotherapy to 
stimulate cell proliferation and tissue repair [15]. On the contrary, 
high-intensity ultrasound approaches use focused ultrasound probes 
that concentrate the wave energy in a smaller tissue region, reaching 
intensities higher than 5 W/cm2, which can cause coagulative 
necrosis of tissues due to thermal absorption, and is normally used 
as an ablative agent to destroy target tissues [16]. Depending on the 
energy and way the ultrasound is delivered, the biophysical effects 
of ultrasound are traditionally separated into thermal and non-
thermal effects. Thermal effects are caused by vibration or rotation 
of macromolecules in the tissue, which result in frictional heat and 
a rise in temperature. Non-thermal effects are characterized by the 
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formation of tiny gas bubbles (stable cavitation) and the movement 
of liquid around the vibrating bubbles (acoustic streaming) in the 
tissue. Heat increases are predominately observed in tissues exposed 
to continuous high intensity ultrasound. In tissues treated with low-
intensity pulsed ultrasound (LIPUS), the non-thermal effects are 
dominant [15]. 

The most common use of therapeutic ultrasound is for the 
facilitation of bone fracture healing. In 1983, LIPUS was found to heal 
70% of non-unions in patients with lower extremity fractures [17]. 
Eleven years later, a randomized double-blinded controlled study was 
conducted by Heckman et al. [18]. Among 67 patients with closed or 
grade-I open fractures of the tibial shaft, 33 received LIPUS treatment 
and the average healing time in these patients was significantly 
decreased when compared with controls (86 vs. 114 days). Consistent 
with these results, another multicenter, prospective, randomized, 
double-blind and placebo-controlled clinical trial revealed significant 
acceleration of dorsal radius fracture healing in patients treated with 
LIPUS (61 vs. 98 days) [19]. In a large-scale efficacy assessment, 
successful healing rates of LIPUS in the treatment of delayed unions 
and non-unions were 91% and 86%, respectively [20].  

Ultrasound is also used to treat tendon conditions such as 
tendinopathy and tendonitis [21,22]. In vitro studies demonstrate 
ultrasound enhances the proliferation and migration of tendon-
reparative cells, and collagen synthesis in tendon cells, suggesting 
it may improve tendon healing [23]. In animal models of Achilles 
tendon rupture, daily ultrasound accelerated the healing process [24], 
and improved collagen alignment and mechanical strength in healing 
tendons compared to untreated controls [25]. However, clinical trials 
so far have not clearly demonstrated that therapeutic ultrasound 
improves treatment outcomes in tendon conditions such as patellar 
tendinopathy [22], but may accelerate the initial phase of the tendon-
bone healing process after rotator cuff repair [26].

Experimental evidence supporting the use of therapeutic 
ultrasound for skeletal muscle contusions is mixed. Ultrasound pulses 
(1.5 W/cm2, 20% duty cycle, 3MHz frequency) applied to 12 adult 
female Sprague-Dawley rats with experimental right calf contusion 
injury resulted in significant satellite cell proliferation in the early 
phase of muscle regeneration [27]. However, the overall effect of 
ultrasound therapy on muscle regeneration was not significant due 
to unaffected recapillarization and myotube production. Studies by 
Karnes et al. revealed that continuous ultrasound therapy improved 
force production of injured muscle 7 days after injury [28]. Two 
subsequent randomized controlled trials of 100 male Wistar rats 
with contusion muscle injury found no evidence to support the effect 
of ultrasound therapy on muscle regeneration [29,30]. However, 
one recent study suggests LIPUS can enhance the regeneration 
of myofibers in both in vitro and in vivo muscle laceration models 
[31]. While these findings suggest ultrasound could improve muscle 
injury outcomes, more studies are needed to evaluate its therapeutic 
efficacies.  

OA-Symptom Modification 
Joint pain and dysfunction are two major symptoms that OA 

patients experience. A systemic review with meta-analysis compared 
outcomes including joint pain and function in six controlled trials 
where OA patients received ultrasound or a sham treatment [12]. 
In all six studies, ultrasound was applied at a 1 MHz frequency, but 
with varying intensities and dosing schedules. Overall, low-intensity 

pulsed ultrasound at doses < 150 Joules/cm2 significantly reduced 
patient-reported pain using a Visual Analog Scale (VAS) [Standard 
mean difference (Confidence Interval) = -0.49 (-0.79, -0.18), P = 
0.002]. Self-reported function with the Lequesne index or WOMAC 
(Western Ontario and McMaster Universities Arthritis Index) score 
showed ultrasound intervention generally led to improvements 
in function, although differences were not statistically significant. 
Two of these studies monitored adverse events, and both reported 
no major complications. This review [12] concluded that ultrasound 
appears to be effective in decreasing OA-associated pain, and 
may improve function in patients with knee OA. However, more 
adequately powered and higher-quality clinical trials are needed to 
further confirm these conclusions.

Subsequent clinical trials assessing the efficacy of low-intensity 
ultrasound intervention on OA have come to similar conclusions. 
A small trial was conducted with 12 OA patients who had been 
diagnosed with OA for an average of 5 years [32]. Continuous 
ultrasonic waves (1MHz frequency, 0.8W/cm2 power with a 5-cm 
diameter applicator) were applied to the medial and lateral parts of 
the knee for 3-4 minutes, 2 days/week, for 12 weeks. Patients reported 
reduced disability, according to the WOMAC scores (decrease from 
53.5 ± 12.2 to 28.8 ± 14.8, P=0.0002), and improved function, as 
assessed by a six-minute walking test, after the ultrasound intervention 
(mean improvement of 14.1 ± 22.5%, P=0.04), when compared to 
assessments taken before ultrasound treatment [32].

Yang et al. conducted a clinical trial involving 100 OA patients, 
who had been diagnosed with OA for an average of 2.8 years, and 
subjected them to ultrasound or mock treatment [33]. The ultrasound 
treatment (parameters were not reported) consisted of 15 minutes of 
ultrasound application with three applicators which simultaneously 
stimulated the lateral and medial compartments, and medial joint 
space. Following 5 days of treatment, patients in the ultrasound group 
reported lower VAS and Lequesne scores (VAS efficacy index, mean 
= 0.3640, SD =0.28062, P = 0.000; Lequesne efficacy index, mean = 
0.3080, SD = 0.42076, P = 0.000) [33].

A randomized, placebo-controlled double-blind study 
investigated the short-term efficacy of ultrasound therapy in 90 
OA patients [34]. Patients were randomly assigned to three groups: 
continuous ultrasound (1 Mhz frequency and 2W/cm2 power with 
a 5-cm diameter applicator) for 5 minutes, pulsed ultrasound (1 
Mhz frequency and 2W/cm2 power with a pulsed mode duty cycle 
of 1:4) for 5 minutes, or sham treatment for 5 minutes. Treatments 
were applied once a day, 5 days/week for 2 weeks. At the end of the 
study, patients in the pulsed ultrasound group showed the greatest 
reduction in pain (from 6.89 ± 1.39 to 5.25 ± 1.90, VAS score, p<0.05) 
and WOMAC score (from 43.43 ± 8.26 to 35.61 ± 8.73, p<0.05). 
Furthermore, walking time in a 20-meter test was shortened most 
significantly in the pulsed ultrasound group (from 22.57 ± 2.08 to 
20.00 ± 1.94 seconds, p<0.05) [34].

The mechanisms mediating the symptom-modifying effects of 
ultrasound on OA are not well established, largely because processes 
linking pain with OA are not well understood [35]. Of notice, recent 
evidence shows pro-inflammatory cytokines promote pain in OA 
by interacting with other biological mediators [36]. For example, 
pro-inflammatory cytokine interleukin (IL)-1β has been reported to 
stimulate nociceptors directly through intracellular kinase activation, 
and indirectly through the production of pro-inflammatory mediators 
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including prostanoids [37]. Tumor necrosis factor (TNF)-α also has 
been demonstrated to activate sensory neurons directly [37,38], and 
anti-TNF-α treatment reduced OA-associated pain symptoms [39]. 
These mechanisms are of interest because LIPUS has been reported 
to reduce the inflammatory activity of synovitis in vivo, which was 
associated with a decrease in the number of cells expressing pro-
inflammatory mediator cyclooxygenase 2 (COX-2) [40]. In vitro, 
LIPUS reduced levels of IL-1 and TNF-α in rat Schwann cells [41]. 
Together, these studies suggest therapeutic ultrasound may alleviate 
OA-associated pain by reducing inflammatory activity.

Potential for OA-Disease Modification
While recent clinical studies provide evidence that supports 

ultrasound exerting OA-symptom modifying effects, it is not 
clear whether ultrasound exerts effects on disease-modification, 
such as arresting or slowing OA disease progression. Interestingly, 
recent preliminary evidence suggests ultrasound may be used for 
chondroprotection by enhancing anabolic activity, suppressing 
catabolic activity, preventing chondrocyte apoptosis, and altering 
obesity-related inflammatory metabolism.

The anabolic effect of ultrasound has been previously 
demonstrated in small animal studies. In New Zealand rabbits 
with full-thickness osteochondral defects, daily LIPUS treatment 
significantly improved the morphologic features and histologic 
characteristics of the repaired cartilage [42,43]. Subsequent studies 
in a canine model further demonstrated a positive effect of LIPUS 
treatment on cartilage repair [44]. In an in vitro 3D agarose gel culture 
model, LIPUS stimulated aggrecan and type II collagen synthesis but 
did not affect the proliferation of human chondrocytes [45]. Results 
from an in vitro 3D alginate bead model showed LIPUS increased the 
number and size of glycosaminoglycan-positive lacunae and cellular 
organelles in human chondrocytes [46]. 

Ultrasound has also been reported to reduce catabolic activity 
in chondrocytes. In OA joints, proteolytic enzymes, such as matrix 
metalloproteinases (MMPs)-1, -3, -13, and ADAMTS (a disintegrin-
like and metalloproteinase with thrombospondin type 1 motifs), are 
overactivated. These enzymes directly cleave the cartilage matrix, 
leading to a homeostatic imbalance and cartilage breakdown [47-49]. 
Ito et al. found in vitro, LIPUS (0 to 120 mW/cm2) reduced MMP-
13 expression in an intensity dependent manner, with the greatest 
decrease seen at 120 mW/cm2 [50]. The authors also reported LIPUS 
downregulated expression of MMP-3 and MMP-13 in porcine 
cartilage explants [50]. Li et al. assessed the efficacy of LIPUS on 
preventing OA in a surgically-induced model (transaction of the 
anterior cruciate ligament) in rabbits [51]. Immediately after surgery, 
animals were treated with LIPUS at 3 MHz, 20% duty cycle, 40 mW/
cm2 for 20 minutes/day, 6 days/week, for 6 weeks. Sham-treated 
animals were handled in the same manner as the LIPUS group, but 
not subject to ultrasound. At six-weeks following treatment, it appears 
that LIPUS exerted an OA disease modification effect, because LIPUS-
treated animals had a significantly lower histopathological cartilage 
score compared to sham-treated animals (sham treatment: 10.33 
± 2.66, ultrasound treatment: 6.67 ± 1.21, P<0.05, Mankin grading 
system). Consistent with this observation, a reduced level of MMP-
13 was also observed in the cartilage of LIPUS-treated animals [51].  

In osteoarthritis, the fate and function of chondrocytes is altered, 
as evidenced by their abnormal proliferation, senescence, and cell 
death [4,52]. In a study to determine whether ultrasound can be used 

to prevent chondrocyte apoptosis in OA, OA was first surgically-
induced in rabbits using the anterior cruciate ligament transaction 
model [53]. For the experiment, LIPUS was applied at six weeks 
following surgery, at an intensity of 300 mW/cm2 at 1 MHz, 20% duty 
cycle for 10 minutes/day for 2 weeks. At the end of the ultrasound 
treatment, microscopic morphologic grading showed the ultrasound-
treated group had a significantly lower OA score compared to 
untreated controls (control: 2.75 ± 0.50, ultrasound-treated: 1.67 
± 0.52, P=0.002). There was also a trend for a lower percentage of 
apoptotic chondrocytes in animals treated with LIPUS, although the 
difference was not significant [53].

Adipose Modification and Chondroprotection
Obesity is one of the risk factors for OA initiation and disease 

progression [54]. Studies suggest that obesity contributes to OA 
through mechanical overloading and metabolic alteration [55]. 
Excessive adipose tissue increases mechanical stresses on weight-
bearing joints and generates an imbalance in the secretory profile of 
adipokines, including leptin, adiponectin, visfatin, and resistin [56]. 
Together, such conditions create a low-grade systemic inflammation, 
as evidenced by a significant increase, as much as 10-fold, in the levels 
of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α [57,58]. These 
pro-inflammatory cytokines can then in turn upregulate expression 
of MMPs and ADAMTS, leading to cartilage breakdown [59].  

Randomized controlled clinical trials show weight loss is 
associated with reductions in knee OA pain, increased mobility and 
physical function [60,61]. Evidence shows each pound of weight lost 
results in a 4-fold reduction in the compressive forces through the 
load-bearing joints [62]; losing less than 5% body weight results in 
some joint pain relief, while moderate to large clinical improvements 
in joint pain are observed with at least 10% reductions in body weight 
[63].

Although the efficacy of ultrasound in osteoarthritis has not 
been studied in the context of obesity, recent studies suggest high-
intensity focused ultrasound (HIFU) is an effective method for 
breaking down fat cells [64-66]. HIFU is delivered through the skin 
and ultrasound energy absorption within the focal zone induces 
high temperatures at the focal point, causing coagulative necrosis 
and almost instantaneous cell death [67]. After the treated adipose 
tissue is destroyed, chemotatic signals activate the body’s normal 
inflammatory response mechanisms. Macrophage cells engulf the 
lipids and cellular debris, and they are cleared via the lymphatic 
system, leading to a reduction in adipose tissue [64]. Taken together, 
by targeting adipose tissue, ultrasound may exert chondroprotection 
by both directly reducing mechanical overloading stress, and 
rebalancing the altered inflammatory metabolism.

Perspectives and Conclusion
Therapeutic ultrasound is widely used for various musculoskeletal 

disorders, but its use for osteoarthritis treatment is still limited. Recent 
clinical trials suggest ultrasound improves OA-associated symptoms, 
including pain and joint dysfunction. However, well-designed and 
higher powered clinical studies are needed to confirm these effects. 
Furthermore, while disease-modifying effects of ultrasound have not 
been reported in OA patients, supportive data from in vitro and in vivo 
studies suggest a chondroprotective role of ultrasound, which includes 
enhancing anabolic activity, lowering levels of catabolic activity, and 
preventing apoptosis in chondrocytes. In addition, adipose tissue, 
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which creates an inflammatory endocrine environment and may be a 
driver of OA initiation and progression, can be targeted by ultrasound 
(e.g. high-intensity focused ultrasound). Collectively, we propose 
ultrasound as a potential intervention for OA symptom- and disease-
modification (Figure 1). In summary, therapeutic ultrasound may 
exert effects not only on symptom-modification but also has a strong 
potential for chondroprotection and disease-modification in OA. A 
better understanding of the mechanistic actions of ultrasound may 
transform ultrasound into a highly effective, non-invasive modality 
for osteoarthritis prevention and treatment.  
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Figure 1: Ultrasound as a potential intervention for OA symptom- and 
disease-modification. Recent clinical evidence suggests therapeutic 
ultrasound (TU) relieves OA-associated pain and improves function, which 
may be mediated by the anti-inflammatory effects of ultrasound. In vitro and 
in vivo studies show therapeutic ultrasound reduces catabolic activity and 
apoptosis in chondrocytes, and high-intensity ultrasound (HIFU) ablates 
fat tissue and modulates adipokines, which together, may exert disease-
modifying effects in OA.
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