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Abstract
Reactive oxygen species (ROS), which include superoxide (O2−), 

hydrogen peroxide (H2O2), and the hydroxyl radical (OH∙), have 
traditionally been cast as cellular byproducts, having benefit only 
for their microbicidal properties, while causing cellular damage that 
can lead to pathophysiological conditions. The detrimental effects 
of ROS have been well-described in morbidities such as ischemia, 
neurodegeneration, aging and cardiovascular disorders. However, 
there is also mounting evidence over the past decade implicating 
ROS as important molecules in intracellular signal transduction, and 
in particular, signaling of G protein-coupled receptors (GPCRs). 
Stimulation of several GPCRs such as muscarinic acetylcholine, 
angiotensin II-1, dopamine D5, as well as the 5-HT1A and 5-HT2A 
serotonin receptors has been shown to either increase or decrease 
ROS generation with significant downstream signaling consequences, 
suggesting that GPCR-mediated ROS signaling may have an 
important role in homeostatic balance which may be altered in 
pathophysiological states. Since the β2- adrenergic receptor (β2AR) 
has served as a prototypical GPCR, much work has also been done 
in regard to the involvement of ROS on β2AR signaling. This review 
focuses on the general role of ROS as a β2AR signal promoter, 
discussing β2AR-induced ROS generation, the involvement of ROS in G 
protein-dependent and β-arrestin-dependent signaling, as well as the 
critical role of oxidants in stabilization of β2AR.

Abbreviations
GPCR: G Protein-Coupled Receptor; ROS: Reactive Oxygen 

Species; β2AR: β2-adrenergic receptor; PKA: Protein Kinase A; NOX: 
NADPH oxidase

Introduction
G protein-coupled receptors (GPCRs) represent a diverse family 

of signaling proteins that mediate cellular responses upon binding of 
a wide breadth of ligands that include neurotransmitters, hormones, 
dietary fats, and light. Despite a large degree of homogeneity in their 
physiological functions, most GPCRs share similar signaling cascades 
that depend on heterotrimeric guanine-nucleotide binding proteins 
(G proteins). One of the most-studied GPCRs is the β2-adrenergic 
receptor (β2AR), which mediates a variety of the physiological ‘fight 
or flight’ effects in response to binding of its endogenous 
catecholamine agonists epinephrine and norepinephrine. Synthetic 
β2AR agonists like albuterol, salmeterol, and formoterol are 
clinically important in the pharmacotherapy of pulmonary disorders 
such as asthma and chronic obstructive pulmonary disease (COPD).

As with other GPCRs, signal transduction is initiated upon 
binding of agonist ligands to the β2AR, at which point, GTP is 
exchanged for GDP on Gs proteins, leading to dissociation of the 
heterotrimer into Gαs and Gβγ subunits. The stimulatory Gαs protein 
facilitates formation of the second messenger adenosine 3’,5’-cyclic 
monophosphate (cAMP) through activation of adenylyl cyclases 

[1]. Protein kinase A (PKA) is activated by cAMP and mediates a 
myriad of cellular responses by catalyzing phosphorylation of various 
proteins. G-protein signaling is terminated upon phosphorylation of 
β2AR by the family of G protein-coupled receptor kinases (GRK), 
notably GRKs 2 and 3, leading to high affinity recruitment of the 
cytosolic β-arrestin proteins to the phosphorylated receptor [2]. 
Binding of β-arrestins desensitizes G-protein dependent signaling 
and facilitates receptor internalization [3] and importantly, 
formation of G-protein independent signaling scaffolds [4]. One 
such described outcome of β2AR/β-arrestin signaling is the sustained 
phosphorylation and activation of the extracellular-signal regulated 
kinases (ERK1/2), which modulate a variety of functional endpoints 
[5,6]. This G-protein-independent β-arrestin-mediated ‘second wave’ 
signaling component of β2AR has been the subject of extensive 
research over the past decade and demonstrates that GPCR signaling 
is not a static ‘one-receptor, one-function’ process as once thought, 
but that tremendous signaling diversity is afforded to GPCRs via 
β-arrestin-linked signals [5,6]. In addition to G protein and β-arrestin 
signaling, it has recently been demonstrated that β2AR signaling is 
closely linked to the generation and maintenance of intracellular 
reactive oxygen species, which also seem to be involved in β2AR 
signal transduction. This review will summarize the emerging role of 
ROS in β2AR signaling.

Reactive Oxygen Species
Reactive oxygen species (ROS) are highly transient, diffusible, 

short-lived oxidant molecules that are formed due to incomplete 
oxygen reduction. While there are multiple enzyme systems, 
including xanthine oxidase, cyclooxygenase, nitric oxide synthase, 
and mitochondrial oxidases capable of generating various 
intracellular oxidants in numerous organelles throughout the cell, for 
the purposes of this review, we focus primarily on the membrane-
bound NADPH oxidase complex. It is well described that in 
phagocytic cells, ROS are primarily generated by phagocytic NADPH 
oxidase (PHOX), which is comprised of the core membrane bound 
‘phox’ subunits p22 and gp91phox (aka NOX2) that function as cell 
surface O2 sensors and, along with the cytosolic subunits p47phox and 
p67phox, are responsible for electron transfer from NADPH to O2 [7-
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11]. Activation of PHOX forms the superoxide molecule (O2−), which 
is rapidly and enzymatically dismutated by superoxide dismutase to 
form H2O2, a product that can subsequently form the highly reactive 
hydroxy radical (OH∙). For example, H2O2 can react with nitrites to 
yield peroxynitrite (ONOO−), which under physiological conditions 
can react as a nucleophile. Importantly, in addition to dependence on 
flavin, heme, and NADPH, some PHOX catalytic subunits also require 
the small GTPase Rac1, which is recruited to the membrane-bound 
subunits to form the functional catalytic enzyme [7-11]. It is now 
accepted that similar NADPH oxidases exist in nonphagocytic cells 
and that the better characterized phagocytic PHOX enzymes belong 
to a family of general NADPH oxidases (NOX) that are ubiquitous in 
their expression [10,11]. In fact, five distinct NOX family members, 
termed NOX1-NOX5, each being homologous to the phox catalytic 
gp91phox (aka NOX2) subunit, have been recognized and shown to 
have widespread distribution and variable regulation. Although the 
physiological role of the enzyme in non-phagocytic cells is an issue of 
debate, it is clear that most, if not all, cells that generate intracellular 
ROS express various NOX members [7-11].

ROS as Protein Modifiers
Once formed, intracellular ROS can have profound effects on 

nucleic acids and proteins. In addition to inducing both double 
and single stranded breaks into nuclear or mitochondrial nucleic 
acids, ROS can produce abasic sites and nucleotide damage to 
growing nucleic acid chains [12,13]. Such oxidative damage has been 
associated with neurodegenerative and cardiovascular disorders as 
well as aging and cancers [14-17]. ROS can also covalently modify 
proteins and such oxidative modifications, which can greatly alter 
protein function, have been implicated in certain pathophysiological 
conditions [17-20]. Oxidative modification of specific amino acids 
within critical domains of proteins can occur through ROS-mediated 
modification of cysteine sulfhydryl (-SH) groups (Figure 1). In 
addition to being S-nitrosylated by reactive nitrogen species (RNS) 
(e.g., NO), which are not discussed in detail within this review, these 
critical functional groups can be subjected to oxidation by ROS, 
forming sulfenic acid (-SOH) derivatives, which alter the activity of 

the protein if the modified cysteine residue is located within a critical 
domain. This reversible post-translational modification can lead to 
formation of higher order redox states such as S-sulfinic [-SO2H] or 
S-sulfonic [-SO3H] acids, or upon reaction with RNS, S-nitrosothiols 
[-SNO], any of which can lead to altered protein function [21-23]. 
S-sulfenated cysteine residues can also subsequently form intra- 
or inter-molecular disulfides, which could have variable activity 
compared to proteins with reduced sulfhydryl groups. For example, 
the activity of protein kinase C can be regulated by formation of 
disulfide bridges between ROS-sensitive catalytic-domain cysteine 
residues [24]. Likewise, protein monomers, or even dissimilar partner 
proteins can form inter-molecular disulfides upon oxidation of 
cysteine residues, leading to protein dimers or covalent interactions 
between partner-peptides, such as the case with monomeric 
glutathione S-transferase isozymes that can form inactive oligomers 
via ROS mediated disulfide bond formation upon treatment with 
H2O2 [25]. Data such as these suggest that ROS have purposeful roles 
in mediating cell function by acting as signaling intermediaries which 
alter protein function.

ROS as Signal Transducers
In addition to being viewed as cytotoxic cellular byproducts 

with antimicrobial and macromolecule oxidizing activity, a recent 
growing body of evidence has demonstrated that ROS play central 
roles in transducing intracellular signaling events. For example, 
epidermal growth factor receptor (EGFR) stimulation has been 
shown to rapidly produce intracellular ROS, and this ROS generation 
attenuates EGFR mediated activation of ERK1/2, suggesting that ROS 
production is an intrinsic EGFR signal desensitizer [26]. Meanwhile, 
activation of B-cell receptors with IgG in lymphoma cells produces 
ROS-dependent amplification of the cell signal, demonstrating that 
ROS is a signal transducer in this system [27].

In addition, superoxide and hydrogen peroxide have been 
shown to be involved in the activation of mitogen-activated 
protein (MAP) kinases, regulation of ion channels, transcription 
factors and protein tyrosine phosphatases [28-32]. These ROS are 

CH

C C

C

C C

CH

CCH

CH CH

CH

CH

CH

CH CH

CH

CH

O O

O

O O

O

O O O

OH OH

OH

OH OH

OH

H2N H2N

H2N

H2N H2N

H2N

2 2

2

2 2

2

s s

s

s s

s

H

Cysteine

Oxidant

Sulfenic Acid

Sulfinic Acid Sulfonic Acid

OH

OH OH

Disulfide

Figure 1: The outcomes of cysteine oxidation by ROS include formation of S-Sulfenic acids (S-OH) that can be further oxidized to S-Sulfinic acids (S-O2H), or 
S-Sulfonic acids (S-O3H), as well as form cysteine disulfides (S-S).



Citation: Singh M, Moniri NH. Reactive Oxygen Species as β2-Adrenergic Receptor Signal Transducers. J Pharmaceu Pharmacol. 2014;2(1): 8.

J Pharmaceu Pharmacol 2(1): 8 (2014) Page - 03

ISSN: 2327-204X

also responsible for increasing intracellular Ca2+, a critical signal 
transducer, and upregulating protooncogenes as well as profibrotic 
and proinflammatory genes [33-35]. The underlying mechanism 
responsible for this includes oxidative modification of key amino 
acid residues, induction of protein dimerization, and interaction with 
metal complexes such as Fe–S moieties [36,37].

Evidence of GPCR-mediated ROS generation has also been 
recently presented. For example, the serotonin 5-HT1A receptor, 
which decreases intracellular cAMP concentrations by coupling to 
inhibitory Gi proteins, has recently been shown to increase formation 
of ROS upon stimulation by serotonin [38]. Likewise, 5-HT2A 
receptors were shown to stimulate generation of ROS upon agonist 
treatment [39], and importantly, in both cases ROS generation 
facilitated downstream signal transduction by specifically activating 
mitogen-activated protein kinase (MAPK) cascades. Importantly, 
agonism of angiotensin II-1 receptors activates the NOX system and 
generates ROS in cardiomyocytes and endothelial cells, where ROS 
are shown to be involved in contractile effects as well as apoptosis 
[40]. On the contrary, agonist stimulation of dopamine D5 receptors 
has been shown to produce an anti-oxidant generating response, 
decreasing NADPH oxidase activity independent of cAMP signals 
[41], suggesting that GPCRs may have a broader and more diverse 
role in regulating intracellular ROS generation.

The Role of β2AR in ROS Generation
The effects of oxidants on the β2AR have been known for over 

three decades, whereby β2AR agonists were shown to stimulate 
alterations in the redox states of the receptor [42]. Other studies from 
the 1980’s demonstrated that β2AR agonists act as electron donors 
and high affinity binding of agonists to the β2AR is dependent on 
redox [43,44]. More recent studies by our laboratory and others 
demonstrate that stimulation of endogenously expressed or 
transiently overexpressed β2AR on the surface of human embryonic 
kidney cells with the catecholamine agonist isoproterenol (ISO) leads 
to a roughly 1.5-fold increase in ROS generation [45-47]. Using this 
cell model, it was shown that agonism of β2AR leads to activation of 
the NADPH oxidase complex in a β-arrestin-1 and Rac1 mediated 
manner. Qian and colleagues have also recently demonstrated 
that the non-catecholamine β2AR agonist salmeterol, which has 
comparatively lower efficacy compared to ISO, increases ROS 
generation in rat primary microglial cultures [48]. ROS generation 
in these cells was shown to be independent on PKA, but reliant on 
ERK1/2, an effect that modulated dopaminergic neurotoxicity in 
these cells. In addition, agonism of β2AR by ISO also facilitates ROS 
generation in bone marrow macrophages and murine RAW264.7 
cells, an effect that was critical in differentiation of these cells to 
osteoclasts, as well as on osteoclast function [49]. Meanwhile, Xu 
and colleagues recently described a similar effect in mice which 
transgenically overexpress β2AR [50]. These animals demonstrated 
heightened levels of ROS in cardiac left ventricules, as well as 
cultured cardiomyocytes. The elevated ROS levels were concurrent 
with elevated phospho-P38 MAPK and HSP27 protein levels, as well 
as upregulation in proinflammatory and profibrotic genes, which 
facilitated ventricular failure, suggesting that overexertion of the 
β2AR-ROS link may have pathological consequences [50]. Treatment 
with the ROS scavenger N-acetyl-L-cysteine (NAC) reversed 

the upregulation of proinflammatory and profibrotic genes and 
prevented ventricular dysfunction, demonstrating a specific role for 
ROS in cardiac function [50]. Moreover, Li and colleagues have also 
demonstrated in rat cardiomyocytes and COS7 cells that agonism of 
β2AR, but not β1AR, increases ROS generation and regulates oxygen 
availability, in a manner that is dependent on Gi-coupling and 
endothelial nitric oxide synthase [51]. Furthermore, ISO stimulation 
produced an increase in ROS in isolated rat aortic rings [52], rabbit 
cerebral arteries [53], and rabbit ventricular cardiomyocytes [54], 
where ROS was shown to contribute to pathophysiology. These  
studies  and  others  clearly  demonstrate  a  definitive  role  for  
β-adrenoreceptor generated ROS within the cardiovascular system, 
particularly in the case of overexertion of β-adrenoreceptor signaling 
and resulting cardiac dysfunction [55-57].

Importantly, contrary to these results, agonism of β2AR in 
human neutrophils has been shown to modulate inhibitory effects 
on both formyl-Met-Leu-Phe (fMLP) and platelet activating factor 
(PAF) mediated ROS generation [58,59]. Meanwhile, others have 
demonstrated that agonism of β2AR in neutrophils by epinephrine 
specifically decreases only extracellular ROS, while it enhances 
intracellular ROS generation [60]. There are also accounts of non-
specific effects of β2AR agonists in neutrophils showing that 
fenoterol and formoterol, but not albuterol decrease ROS generation 
via indirect oxidant scavenging, while salmeterol inhibits fMLP-
mediated ROS generation in a manner independent on β2AR [61]. 
Moreover, several lines of evidence point to β2AR as a modulator of 
cellular oxidation through effects on expression of redox proteins. 
For example, endogenous β2AR activity can promote an antioxidant 
effect in isolated murine thoracic aorta by sequestering expression of 
the p47phox NADPH oxidase subunit [62]. Meanwhile, in mesenchymal 
stem cells, activation of β2AR promoted an antioxidant effect by 
increasing expression of the antioxidative gene nuclear factor E2 
p45-related factor-2 (Nrf2) and facilitating increases in endogenous 
glutathione levels [63]. Taken together, these data may suggest that 
β2AR agonists may have differential effects on ROS that are cell-type 
as well as structure dependent.

The Role of ROS in β2AR -Signaling
Since β2AR has been linked to ROS generation in a variety of 

cells and systems, a significant question that is posed is what are the 
consequences of such ROS? Our laboratory has examined if ROS are 
involved in β2AR signal transduction using the HEK293 cell model, 
which is known to endogenously express β2AR. We have utilized 
well-characterized pharmacological inhibitors of NADPH oxidase 
(Diphenyleneiodonium chloride, DPI) and Rac1 (NSC23766, NSC), 
as well as the ROS scavenger NAC to assess the role of ROS in β2AR 
signaling. In regard to G protein-dependent β2AR signaling, β2AR-
mediated cAMP and PKA activity was significantly abrogated upon 
inhibition of Rac1 with NSC, inhibition of NADPH oxidase with 
DPI, and upon scavenging of ROS with NAC (Figure 2A,2B) [45]. 
An additional recent study demonstrates that G protein-mediated 
ERK1/2 phosphorylation, which occurs 1-5 minutes following β2AR 
agonism [6], was also blunted by ROS depletion, suggesting that ROS 
are indispensable for β2AR-mediated G protein signaling (Figure 
2C) [46]. A similar effect was seen with β2AR-mediated β-arrestin 
signaling, where ROS generation itself is prevented in the absence of 
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Figure 2: The effects of ROS inhibition on G protein-dependent and β-arrestin-dependent β2AR signaling. (A) Isoproterenol-induced cyclic AMP formation is 
decreased by the ROS inhibitors NAC, DPI, and NSC. (B) Isoproterenol-induced PKA activity, as a measure of phosphorylation of the PKA substrate vasodilator-
stimulated phosphoprotein, is decreased by the ROS inhibitors NAC, DPI, and NSC. (C) Isoproterenol-induced phosphorylation of ERK1/2 (open), which is G 
protein-dependent at early time points (1-10 min) and β-arrestin-dependent at later time points (10-30 min) is decreased in the presence of DPI (filled) in cells that 
express β2AR endogenously (squares) or via transient transfection (circles). (D) Isoproterenol-induced phosphorylation of ERK1/2 is inhibited by DPI, but 
reversed in the presence of exogenously administered H2O2 at early and late time points. Data are adapted from that in references [45,46].

functional β-arrestin, while the sustained phosphorylation of ERK1/2, 
which is mediated by β2AR-β-arrestin signals following 10-minutes 
of agonism, was also shown to be dependent on the presence of ROS 
in both endogenously expressing and transiently overexpressing 
cells (Figure 2C,2D) [46]. Interestingly, the exogenous application of 
oxidants (i.e., H2O2) reversed the effects of DPI on inhibiting β2AR-
mediated ERK1/2 phosphorylation, demonstrating a clear role for 
ROS in this signaling process (Figure 2D) [46]. Furthermore, DPI 
prevents the physical interaction between β2AR and β-arrestin-2, 
as well as receptor phosphorylation and internalization [45,46]. 
Interestingly, ISO stimulation of β2AR also activates p38 MAP 
kinases in a biphasic manner that is dependent on β-arrestin-1/Rac1/
NOX signaling and ROS generation at early time points that peaked 
at 10 minutes following agonism, and on PKA for the delayed and 
prolonged effect that lasted up to 6 hours [46]. Importantly, only the 
ROS dependent early effect is involved in rearrangement of F-actin, 
demonstrating a clear role for β2AR-formed ROS in cell homeostasis 
[47]. While it could be feasible that these combined effects could be 
attributable to the requirement of ROS for agonist binding to the 
β2AR, further results have demonstrated that inhibition of ROS with 
DPI, NSC, or NAC has no effect on agonist or antagonist binding 
affinities or displacement of [3H]-propranolol from the β2AR [45]. 
These aggregate studies imply that some degree of static ROS are 
essential for the totality of β2AR signaling, while higher levels may 
lead to detrimental effects, similar to the current paradigm that 
suggests micromolar H2O2 levels may regulate signaling while higher 
levels lead to an oxidative stress response.

The Role of ROS in Oxidation of β2AR
One of the primary ROS species reported to be generated 

following β2AR agonism is superoxide, which occurs via the action of 
NOX enzymes and is subsequently rapidly dismutated by superoxide 
dismutase to yield hydrogen peroxide. One of this two-electron 
oxidant’s primary biological roles is its ability to readily oxidize 
thiol groups of protein cysteine residues, and the initial product of 
this reaction is an S-sulfenic acid (S-OH) (Figure 1). Marques and 
Bicho [42] demonstrated that cysteine residue(s) at the β2-receptor/G 
protein interface are critical in catecholamine-induced signaling and 
suggest that downstream β2AR signaling is dependent on the redox 
state of such residues. The high propensity of ROS to affect protein 
cysteine residues, as described above, is especially significant given 
the critical role of both GPCR and G-protein cysteine residues in 
the formation of intra- and inter-molecular disulfide bridges and 
receptor oligomers, formation of ligand binding domains, as well as 
stabilization of protein conformations through modifications such 
as palmitoylation and prenylation, which facilitate downstream 
signal transduction efficacy. As shown in Figure 3, the human β2AR 
contains thirteen cysteine residues distributed amongst the 
transmembrane and loop regions, as well as the C-terminal tail. 
Several investigations have examined the importance of various 
cysteine residues in β2AR structure and function. Likely, the best 
characterized of these is Cys341 located in the cytoplasmic tail, 
mutation of which abolishes ISO stimulated activation of adenylyl 
cyclase [64]. Cys341 is conserved in the prototypical seven-
transmembrane receptor rhodopsin where it has been shown to be 
palmitoylated as well as involved in formation 
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of intramolecular disulfide bonds [65,66]. Likewise, the β2AR Cys341 
undergoes palmitoylation, an affect that anchors this portion of the 
C-terminal tail to the membrane, creating a fourth intracellular 
pseudo-loop. Palmitoylation of Cys341 is required for proper G 
protein coupling and downstream signaling [67] and is also a critical 
determinant of receptor phosphorylation and desensitization [68]. 
Mutation of this residue results in marked promotion of receptor 
phosphorylation, suggesting that the palmitoylated cysteine protects 
phospho-sensitive residues from unfettered kinase-dependent 
phosphorylation, and thereby controls desensitization.

The role of cysteine 184 has also been investigated and mutation of 
this residue dramatically decreases both agonist binding and adenylyl 
cyclase stimulation, and results in a decreased ability to form the high 
affinity ternary complex [69]. In addition to affecting extracellular 
events (e.g., binding), this mutation also increases the speed and 
extent of receptor phosphorylation, suggestive of a mechanism 
whereby GRK accessibility is increased as a result of decreased G 
protein coupling. Importantly, it was subsequently shown that Cys184 
can form intramolecular disulfide bridges with Cys190, and that 
the extracellular Cys106 and Cys191 undergo a similar interaction 
[70]. These results show that all four extracellular cysteine residues 
are required for normal ligand binding, and demonstrate a critical 
role for disulfide bridge formation within the extracellular loops in 
formation of the ligand binding pocket.

Previous evidence has shown that agonists and partial agonists 
induce distinct conformational states of the β2AR and that activation 
occurs through numerous kinetically distinguishable states [71,72]. 
Recent studies have demonstrated that these ligand specific effects 
cause alterations in the distance between the relatively flexible 
C-terminus, which is putatively held in an extended arrangement, 
and the cytoplasmic end of transmembrane VI [73]. Importantly, this 

interaction was shown to be dependent on Cys265, providing direct 
evidence that this residue is required for ligand-induced rotational 
conformations that are necessary for biological function. Indeed, 
the C-terminal region of the third intracellular loop (263-273) and 
the N-terminal region of the cytoplasmic tail (327-334) have been 
shown to lie in close proximity on the cytoplasmic surface of the cell 
membrane, and other investigations have suggested that these two 
adjacent portions represent a critical domain for Gαs binding [67], 
similar to those described for rhodopsin binding to its transducin G 
protein [74]. Additionally, Cys285 located in the sixth transmembrane 
domain (TM6) has been shown to be critical in receptor activation by 
allowing movement of the cytoplasmic end of TM6 away from TM3, 
thereby optimizing the proximity of the C-terminal tail with the third 
intracellular loop, and driving intracellular coupling. Taken together, 
the collective evidence demonstrates that many of the β2AR cysteine 
residues are reactive towards stabilizing ligand binding or receptor 
activation.

Given the propensity of cysteine oxidation in the presence of 
ROS and RNS, our laboratory hypothesized that the above described 
signaling-dependence of β2AR on ROS could be attributed to 
oxidation of the receptor by ROS, an effect that maintains functionally 
competent receptor conformations. Using a modified biotin-switch 
assay and a clonal HEK293 cell model, it has recently been shown 
that stimulation of β2AR with exogenous H2O2 or ISO causes dose-
dependent S-sulfenation of the receptor, an effect that was blocked 
by the β-receptor antagonist propranolol as well as by NAC (Figure 
4) [75]. Importantly, the oxidative effect of receptor agonism and
H2O2 treatment was also inhibited by the selective and irreversible 
S-Sulfenic acid alkylator dimedone, demonstrating the specific 
formation of receptor-S-sulfenic acids. While the specific cysteine 
residues that are oxidized remain elusive, it is clear that exogenous 
ROS as well as receptor agonism, which generates intracellular ROS, 
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can cause direct cysteine oxidation of β2AR. Further efforts are 
required to localize the site(s) of this modification and to determine 
the functional significance of β2AR S-sulfenation.

In conclusion, it is evident that β2AR is a receptor that modulates 
intracellular ROS concentrations, and such ROS contribute to both 
G protein-dependent and β-arrestin-dependent β2AR signals, likely 
via feeding back to oxidize receptor cysteine residues that stabilize its 
function and downstream signaling. Since a great deal of the work on 
the ROS-β2AR relationship has been performed in clonal cell systems 
and because the β2AR is used often as a prototypical model towards 
the study of other GPCRs, some of which have also been linked to the 
generation of ROS, further examination of the ROS-β2AR linkage in 
more physiologically relevant cell types is needed to determine the 
precise role that ROS may play in receptor regulation.  
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