Essential Oil Composition of Asteriscus maritimus (L.) Less. from Spain**

Keywords: Asteriscus maritimus, Compositae, Essential Oil, Seasonal Variation, α-Pinene, P-Cymene, α-Phellandrene, β-Phellandrene, Foenolon

Abstract

The essential oil composition of different aerial parts (stems+leaves and flowers) of Asteriscus maritimus has been analysed by gas chromatography which was coupled with mass spectrometry. A total of 43 compounds have been identified from the different fractions studied, representing more than 90% of the total oil for each one. Both aerial parts shared most of the main compounds although quantitative differences have been detected. The oils extracted from the stems and leaves showed α-pinene (27.5%) and p-cymene (10.0%) as major components. In the flower oils these compounds were also representative, α-pinene (9.0%) and p-cymene (7.3%), although the main ones were β-phellandrene (11.8%), foenolon (10.9%) and α-phellandrene (10.0%). These compounds were representative found in the other fraction: β-phellandrene (8.38%), α-phellandrene (7.28%) and foenolon (5.6%). The monoterpene fraction was predominant in the stems and leaves oil (54.6%) while the sesquiterpene fraction was the largest one in the flowers oil (55.3%).

Introduction

The genus Asteriscus Miller belongs to the Compositae family. This genus and the other two of the same tribe (Ighermia L. and Pallenis Cass.) contain a total of 15 species that grow wildly in a variety of coastal and desert habitats throughout the Mediterranean and Middle East [1,2]. Although most of the species are endemic of the Macaronesian region, in Europe there are two species described: A. aquaticus (L.) Less and A. maritimus (L.) Less, [3]. A. maritimus (=Odontospermum maritimum (L.) Sch.Bip.=Bubonium maritimum (L.) Hill) is a scabrid, hispoid perennial species with stems rarely having more than 20cm, woody and much-branched, with petiolate leaves from oblong to oblong-spatulate. The outer involucral bracts are around 1cm, coriaceous below, with an obtuse apex, equaling or shorter than ligules. The ligules are deeply 3-toothed and the tubular florets 5-lobed [3,4].

Although Asteriscus is not a very large genus, few studies have been published related to it [5-18]. The study of the molecular systematic of some Macaronesian species exposed that Asteriscus is paraphyletic [5]. On the other hand, extracts of organic solvents from A. imbricatus DC. showed antifungal activity and anticorrosion inhibition [6]. However, most of the studies have been focused only on one species, A. graveolens (Forsk.) Less., describing their flavonoids [7], new derivatives [8,9] and essential oil activities [10-12]. The essential oil of this species was characterized by a high content of 6-oxocyclonerolidol (66.7%) and 6-hydroxycyclonerolidol (8.8%) which exhibited fungicidal properties towards Alternaria sp. [10]. Other report suggests that these compounds could be considered as chemical markers of this genus that characterize the stem and leaf oil, while cis-8-acetoxychrysanthenyl acetate, which has been isolated for the first time, was the major compound of the flower oil [11]. The last paper related to this species agreed with the previous ones, being 6-oxocyclonerolidol (74.9%) and 6-hydroxycyclonerolidol (11.8%) as the major components. Besides, the essential oil exhibited inhibition of mild steel corrosion [12]. We could have only found other report about essential oil composition [13]. The oils extracted from Pallenis spinosa (L.) Cass (=A. spinosus (L.) Chultz Bip) showed germacr-1-(10),5-dien-3,4-diol (18.4%), a-cadinol (14.1%), 3-acetoxymgramacra-1(10),5-dien-4-ol (13.0%), t-cadinol (8.2%) and δ-cadinene (5.8%) as main constituents [13].

Asteriscus maritimus has also been studied during the previous years from different point of view. Under water and saline stress conditions, this species showed lower biomass, an early reduction in leaf expansion growth and a substantial degree of stomatal regulation [14]. Recently, biological studies have shown that the diversity of arbuscular mycorrhizal fungi in this species improves salt tolerance by increasing efficiency of photosystem II, stomatal conductance and glutathione content and by reducing oxidative damage [15,16]. Finally, two previous studies have shown that the insecticidal, antimicrobial and anti-acetylcholinesterase activities were revealed by the essential oils [17,18]. The essential oil of aerial parts of A. maritimus from Italy showed insecticidal activity. Fourteen compounds were identified out of which one myrtenyl acetate (44.2%), terphenyl (17.5%) and (Z)-β-farnesene (12.9%) were the principal ones [17]. The root oil of Asteriscus maritimus growing in Tunisia yielded Sixty six compounds which represented 96.7% of the total oil, characterized by a high proportion of oxygenated compounds (65.0%). The root oil exhibited antifungal activity against Aspergillus flavus, A. niger, Botrytis cinerea and Penicillium sp [18].

The aim of this paper is to contribute the knowledge of the chemical composition of Asteriscus maritimus species along with the chemical compositions of its different aerial parts and comparing our results with those previously reported.

Materials and Methods

Plant material

Aerial parts of Asteriscus maritimus were collected from the...
Regional Park of Calblanque, Murcia (Spain) in 19-III-2005. All
the materials belonged to the same population and around 15-20
specimens were collected. A voucher specimen (MACB-94543) has
been lodged at the Herbarium of the Faculty of Biology, Complutense
University, Madrid, Spain.

Isolation of volatile oil

The oils from the different aerial parts of A. maritimus
were air dried and were isolated by steam distillation with cocobation
for 8 h. according to the method recommended in the Spanish
Pharmacopoeia. The oils were dried over anhydrous magnesium
sulphate and stored at 4°C in the dark. The different distilled fractions
yielded a very low amount of pale yellow oil, being 0.17% and 0.42%
from stems+leaves and flowers respectively, based on dry weight.

Gas Chromatography (GC)

The analytical gas chromatography (GC) was carried out on a
Varian 3300 gas chromatograph fitted with a fused methyl silicone
DB-1 column (50 m x 0.25 mm, 0.25 µm film thickness). Temperature
was programmed from 95°C-240°C at 4°C min⁻¹. Injection was
performed at 250°C in the split mode (1:100). Nitrogen was used as
the carrier gas (1.5 mL min⁻¹). Detection was performed by FID at
300°C. Injection volume for all the samples was 0.1 µL of pure oil.

Gas Chromatography–Mass Spectrometry (GC-MS)

GC-MS analyses were carried out on an Agilent Technologies
6890 gas chromatograph coupled a Hewlett-Packard 5973 quadrupole
mass detector. Injections were carried out in split mode (20:1) at
250°C. Separations were performed using two columns with different
stationary phase (i) a SE-30 capillary column (50 m x 0.22 mm, 0.25
mm film thickness) temperature programmed from 70°C to 220°C at
4°C min⁻¹, and (ii) a DB-Wax column (60 m x 0.32 mm, 0.25 mm)
programmed from 70°C to 220°C at 3°C min⁻¹. Helium at 1 mL min⁻¹
was used as carrier gas. Mass spectra were recorded in electronic
impact (EI) mode at 70 eV, scanning the 35-350 m/z range. Interface
and source temperature were 280°C and 230°C, respectively. All
analyses were performed in duplicate.

Qualitative and quantitative analyses

Most constituents were tentatively identified by GC by
comparison of their retention indices with those of authentic
standards available in the author’s laboratory or with retention
indices from references [19-23]. Further identification was achieved
by GC-MS: the fragmentation patterns of the mass spectra were
compared with those stored in the spectrometer data base using the
WILEY.L built-in library. Other constituents were either synthesised
or identified in oils of known composition. Semiquantitative analysis
was carried out directly from peak areas in the GC profile.

Results and Discussion

According to our results and previously reported ones, Asteriscus
does not produce high quantity of essential oils. While P. spinosa
showed the lowest yield (0.04%) [13], the other species of the genus
studied till date had similar results: A. graveolens showed an yield
(0.06%) [12] and A. maritimus from Italy showed the yield of 0.06% [17]. It is worth noting that for P. spinosa and A. maritimus, the
yields were calculated on fresh weight. In our study, the oil amount
was little bit higher for both studied fractions: 0.17% for stems+leaves
oil and 0.42% for flowers. The yield was based on dry weight that
could explain the differences between our results and those above
mentioned. Besides, as far as we know it is the first time that the aerial
parts of this plant are distilled separately. The flowers contained more
oil than the stems and leaves. The oil increase during the flowering
period could attract the pollinators of this species to facilitate its cross
fecundation, as we have previously published for a relative species,
Santolonia rosmarinifolia L. ssp. rosmarinifolia [24]. However, more
research should be carried out on this species and other of the same
genus to check whether the different fractions of the plant have
different yields.

The components identified from the different aerial parts of
Asteriscus maritimus, their retention indices and their percentage
composition are summarised in Table 1 where all the compounds are
arranged in order of their elution on the DB-1 column. A total of 43
compounds have been identified from the different fractions studied,
representing more than the 90% of the total oil for each one. We have
found qualitative differences between the studied fractions although
both of them share practically all their principal and representative
constituents. The oil from the stems and leaves showed α-pinene
(27.5%) and p-cymene (10.0%) as major components, while from
oil from the flower fractions showed α-pinene (9.0%) and p-cymene
(7.3%), but out of which the main ones were β-phellandrene (11.8%),
fenenol (10.9%) and a-phellandrene (10.0%). These compounds
were represented in the other fraction although their percentage
compositions were lower than 10%: β-phellandrene (8.3%),
α-phellandrene (7.2%) and fenonol (5.6%).

With respect to the terpenoid compounds we have also
found differences between the analysed parts (Table 1). While the
monoterpene fraction was predominant in the stems and leaves
oil (54.6%), the sesquiterpene fraction was higher in the flowers oil
(54.9%). However, in both of them the monoterpene hydrocarbons
were more abundant 53.7% (A.m.SL) and 38.6% (A.m.Fl) than the
oxygenated monoterpenes. Contrary in the sesquiterpene fraction
which the oxygenated compounds showed higher percentage
composition 29.3%(A.m.SL) and 34.9%.

Previous reports suggest that the compounds 6-oxocycloneraldol
and 6-hydroxycycloneraldol "could be considered as chemical
markers of this genus” [11]. We disagree with this affirmation. These
compounds have been already mentioned in only one of the studied
species, A. graveolens [10-12]. An exhaustive studies are necessary to
check that affirmation, although may be they could be significant for
the cited species.

Finally, remarkable differences have been found between our
results and those previously published [17]. The oil analysed by us
seemed to be more complex with a total of 43 compounds identified
in comparison with the 14 constituents cited. Besides, it is worth
nothing that not only the main compounds were different in both
studies, compounds as myrtalen acetate (44.2%), terpenyl (17.5%)
and (Z)-β-farnesene (12.9%), could not be detected by us although
were reported as main ones. In fact, we only detected, in low amounts,
4 of the 14 constituents were described. These differences could be
caused by the develop state of the samples or because of chemotypes
existence. A phenological study of both populatons should be done to
The root essential oil of this species has also been studied and they exhibited antifungal activity against Aspergillus flavus, A. niger, Botrytis cinerea and Penicillium sp and low anti-acetylcholinesterase activity [18]. This part of the plant seems to be more complex, more compounds were identified and the terpenoid fractions were also different. The root oil was characterized by high amounts of oxygenated compounds (65.0%) while in our study 30.2% and 35.4% were registered for A.m.SL and A.m.Fl. The hydrocarbon compounds were predominant in our oils 62.5% (A.m.SL) and 58.6% (A.m.Fl) and lower in the root oils 31.7%. However, with respect to the monoterpenes and sesquiterpenes the stems and leaves fraction was similar to the root one: 54.6% in comparison with 51.1% for monoterpenes and 38.1% in comparison with 45.9% for sesquiterpenes [18]. One more time the phenological state of this species seems to affect the chemical composition. Further researches are necessary to analyse the variability between populations and between the different parts of this species.

Conclusion

The aerial parts of *A. maritimus* yielded low amount of essential oil. Quantitative differences have been found between the A.m.SL and A.m.Fl oils. The A.m.SL oil was characterized by monoterpane compounds and the A.m.Fl oil by sesquiterpene ones. The chemical composition of the essential oil seems to be affected by the part of the plant used. The major components were found to be α-pinene (27.5%) and p-cymene (10.0%) for of A.m.SL oil and β- phellandrene (11.6%), fonenol (10.9%) and α-phellandrene (10.0%) for A.m.Fl oil.

References

Table 1: Essential Oil composition of the aerial parts of *A. maritimus* from Spain.

<table>
<thead>
<tr>
<th>Compound</th>
<th>I</th>
<th>A.m.SL</th>
<th>A.m.Fl</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-pinene</td>
<td>934</td>
<td>27.5%</td>
<td>9.0%</td>
</tr>
<tr>
<td>sabineine</td>
<td>982</td>
<td>0.3%</td>
<td>0.1%</td>
</tr>
<tr>
<td>myrcene</td>
<td>991</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>α-phellandrene</td>
<td>1005</td>
<td>7.2%</td>
<td>10.0%</td>
</tr>
<tr>
<td>p-cymene</td>
<td>1019</td>
<td>10.0%</td>
<td>7.3%</td>
</tr>
<tr>
<td>β-phellandrene</td>
<td>1027</td>
<td>8.3%</td>
<td>11.8%</td>
</tr>
<tr>
<td>cis-sabinene hydrate</td>
<td>1060</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>terpinen-4-ol</td>
<td>1170</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>α-terpinol</td>
<td>1180</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>thymol methyl ether</td>
<td>1230</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>bornyl acetate</td>
<td>1280</td>
<td>0.6%</td>
<td>t</td>
</tr>
<tr>
<td>trans-verbonyl acetate</td>
<td>1290</td>
<td>t</td>
<td>0.1%</td>
</tr>
<tr>
<td>iso-verbonyl acetate</td>
<td>1305</td>
<td>t</td>
<td>0.2%</td>
</tr>
<tr>
<td>α-ylene</td>
<td>1330</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>α-ylangene</td>
<td>1365</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>β-cubebene</td>
<td>1390</td>
<td>0.1%</td>
<td>t</td>
</tr>
<tr>
<td>α-cedrene</td>
<td>1407</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>E-caryophyllene</td>
<td>1414</td>
<td>t</td>
<td>1.0%</td>
</tr>
<tr>
<td>β-gurjunene</td>
<td>1430</td>
<td>0.8%</td>
<td>0.7%</td>
</tr>
<tr>
<td>y-elemene</td>
<td>1431</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>cis-muurola-4(14),5-diene</td>
<td>1462</td>
<td>0.5%</td>
<td>1.2%</td>
</tr>
<tr>
<td>allo-aromadendrene</td>
<td>1465</td>
<td>1.6%</td>
<td>3.1%</td>
</tr>
<tr>
<td>α-selinene</td>
<td>1480</td>
<td>0.5%</td>
<td>t</td>
</tr>
<tr>
<td>epi-cubenol</td>
<td>1487</td>
<td>t</td>
<td>1.3%</td>
</tr>
<tr>
<td>bicyclogermacrene</td>
<td>1496</td>
<td>1.1%</td>
<td>3.7%</td>
</tr>
<tr>
<td>sesquicinole</td>
<td>1507</td>
<td>3.0%</td>
<td>6.3%</td>
</tr>
<tr>
<td>cubebol</td>
<td>1510</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>δ-cadinene</td>
<td>1518</td>
<td>3.5%</td>
<td>9.1%</td>
</tr>
<tr>
<td>cadina-1,4-diene</td>
<td>1532</td>
<td>0.5%</td>
<td>1.0%</td>
</tr>
<tr>
<td>α-cadinene</td>
<td>1545</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>1-nor-bourbonene</td>
<td>1551</td>
<td>4.9%</td>
<td>0.1%</td>
</tr>
<tr>
<td>globolol</td>
<td>1582</td>
<td>t</td>
<td>0.2%</td>
</tr>
<tr>
<td>viridiflor</td>
<td>1592</td>
<td>0.1%</td>
<td>0.2%</td>
</tr>
<tr>
<td>E-dehydro-apotamesol</td>
<td>1595</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>1-epi-cubenol</td>
<td>1623</td>
<td>0.1%</td>
<td>0.1%</td>
</tr>
<tr>
<td>fonenol*</td>
<td>1630</td>
<td>5.6%</td>
<td>10.9%</td>
</tr>
<tr>
<td>epi-a-muurolol + epi-a-cadinol</td>
<td>1642</td>
<td>1.9%</td>
<td>5.7%</td>
</tr>
<tr>
<td>α-muurolol</td>
<td>1647</td>
<td>0.5%</td>
<td>t</td>
</tr>
<tr>
<td>α-cadinol</td>
<td>1652</td>
<td>t</td>
<td>6.8%</td>
</tr>
<tr>
<td>epi-a-bisabolol</td>
<td>1690</td>
<td>t</td>
<td>0.7%</td>
</tr>
<tr>
<td>cis-14-muurolol-5-en-4-one</td>
<td>1694</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>(E,Z)-famesol + 65,7R-bisabolene(84, 100)*</td>
<td>1738</td>
<td>3.5%</td>
<td>t</td>
</tr>
<tr>
<td>n. i. 1</td>
<td>1839</td>
<td>0.7%</td>
<td>t</td>
</tr>
<tr>
<td>n. i. 2</td>
<td>1857</td>
<td>0.3%</td>
<td>t</td>
</tr>
<tr>
<td>n. i. 3</td>
<td>1891</td>
<td>t</td>
<td>0.4%</td>
</tr>
<tr>
<td>bis [2methylpropenyl] ester 1,2-benzenedicarboxylxy acid*</td>
<td>1894</td>
<td>0.3%</td>
<td>0.2%</td>
</tr>
<tr>
<td>n. i. 4</td>
<td>1975</td>
<td>6.4%</td>
<td>1.9%</td>
</tr>
<tr>
<td>n. i. 5</td>
<td>1982</td>
<td>t</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

| Total | 957.2%| 94.0% |

Monoterpene hydrocarbons 53.7% 38.6%
Oxygenated monoterpenes 0.9% 0.5%
Sesquiterpene hydrocarbons 8.8% 20.0%
Oxygenated sesquiterpenes 29.3 34.9%

* Kováts retention indices on DB-1 column; t=traces (%<0.1; n.i.= not identified; A.m.=Asteriscus maritimus; SL=stems and leaves; Fl=Flowers; *=Tentatively identified; n. i. 1 \#1839 \[M^+\]10, 159(100), 132(80), 91(40), 105(35), 177(30), 202(15); n. i. 2 \#1857 \[M^+\]10, 143(100), 40(90), 93(60), 121(35), 67(25), 205(55); n. i. 3 \#1891 \[M^+\]10, 132(100), 159 (40), 43(20), 202(15); n. i. 4 \#1975 \[M^+\]10, 43(100), 81(90), 71(40), 159(35), 123(20), 177(15); n. i. 5 \#1982 \[M^+\]10, 149(100), 41(10), 76(10), 104(10), 205(10), 223(10), 123(10), 177(5).

Acknowledgements

** Part of this paper has been presented as a poster at the 38th International Symposium on Essential Oils, Graz (Austria), September 9-12 2007