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Introduction
Humans carry Staphylococcus aureus (S. aureus) in numerous 

body sites [1-3] and it is the most common cause of hospital and 
community-acquired infections worldwide [5-9]. Community 
associated methicillin‐resistant S. aureus (MRSA) infections are 
estimated to cost $1.4 to 13.8 billion annually [10]. Infection of the 
eye with S. aureus can also cause bacterial keratitis [11-13]. In the 
past 20 years, the number of ocular MRSA infections has increased 
worldwide [14-18]. One S. aureus strain, MRSA-USA300 (USA300), 
is common in community acquired infections [19,20]. Symptoms 
of bacterial keratitis include pain, redness, inflammation, opacity 
of the affected cornea, and ulceration [21]. Individuals who have 
undergone ocular surgery, who use contact lenses, and those who 
have had ocular viral infection or ocular trauma are more susceptible 
to bacterial keratitis [22-24]. 

Typically, bacterial keratitis is treated with topical antibiotics 
[25]. A key issue in bacterial keratitis treatment is that while bacteria 
rapidly proliferate prior to disease, by the onset of severe symptoms, 
the bacteria have stopped growing and may have formed an antibiotic-
resistant biofilm. In addition to damage from the immune response, 
non-growing (stationary) phase S. aureus produces a number of 
toxins that contribute to corneal damage [26]. Prompt bactericidal 
therapy of asymptomatic infection is imperative, but is dependent on 
when the patient seeks help and the availability of appointments, so 
this is not always achievable. Many isolates of S. aureus are resistant 
to antibiotics with some strains being resistant to multiple antibiotics 
[27-32]. New approaches are needed to treat ocular infections caused 

by antibiotic-resistant S. aureus and other bacteria.

Previously, two models of S. aureus keratitis were described. 
Girgis developed a mouse model using S. aureus (strain 8325-4) and 
Zaidi et al. used the USA300 strain [33,34]. However, S. aureus 8325-
4 is a laboratory strain that carries multiple mutations that may alter 
the virulence properties of this strain [35,36]. There is also conflicting 
data on whether this lab-adapted strain can form biofilms [37-40]. 
Furthermore, these previous studies only scored corneal damage due 
to stromal keratitis (clouding and perforation). Other pathological 
manifestations such as blepharitis and corneal neovascularization 
were not scored. Because other parameters of ocular pathology 
could be important endpoints in studies of disease mechanisms 
and evaluating new therapies, we adapted a mouse ocular disease 
scoring system that we have utilized for antiviral studies [41-48]. 
In this study, we assessed blepharitis, corneal neovascularization 
and stromal keratitis in USA300-infected, Ciprofloxacin-treated 
and untreated mice. This mouse model will be useful for further 
development and testing of ocular topical antimicrobials and studies 
on the mechanisms of pathogenesis.

Methods
Bacteria

The S. aureus USA300 LAC strain was cultured overnight at 37 
°C with shaking at 225 rpm in Tryptic Soy Broth. The culture was 
then centrifuged at 4000 rpm for 10 min, resuspended in 40 ml of 
phosphate buffered saline (PBS), and centrifuged again at 4000 rpm 
for 5 min. The pellet was then resuspended in 1 ml of PBS. Colony 
Forming Units (CFU) of the suspension were determined on SM/2 
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Abstract

Staphylococcus aureus infection of the cornea is a significant 
threat to vision. The percentage of bacterial isolates resistant to 
antibiotics is increasing as is the percentage of infections caused 
by methicillin resistant isolates. There is a critical need for additional 
therapeutic approaches and their development will require the use of 
animal models to test efficacy. Two mouse models of S. aureus keratitis 
have been described but only quantified stromal keratitis (corneal 
clouding and perforation). We have extended these models using the 
methicillin resistant S. aureus USA300 LAC strain and show that eyelid 
inflammation and swelling (blepharitis) and corneal neovascularization 
can be quantified. This expanded model should prove useful in 
assessing additional effects of antibacterial therapies and additional 
pathological mechanisms involved in bacterial ocular infection.
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agar plates (supplemented with 0.5% D-glucose) [49,50]. The 
inoculum contained 3 x 1012 CFU/ml of bacteria.

Animals

Female A/J mice (4-6 weeks of age) were obtained from Jackson 
Labs (Bar Harbor, ME) and acclimated to their surroundings for 
one week prior to infection. For all inoculations, examinations, 
treatments and sample collections, mice were anesthetized with 
isoflurane (#57319-47406, Phoenix Pharmaceutical, St. Joseph, MO). 
The right eyes were examined microscopically prior to infection for 
corneal defects and those with defects were removed from the study. 
The remaining mice were then randomly assigned to groups (10 mice 
each). Under anesthesia, six to ten scratches forming a cross-hatch 
pattern were made on the cornea using a 30-gauge needle taking care 
not to puncture the cornea. A 2.5 µL inocula of S. aureus USA300 (7.5 
x 109 CFU) was applied to the scarified cornea, and the eyelids were 
manually closed twice over the cornea.

To provide analgesia, the mice were injected subcutaneously with 
0.5 mg/kg of extended release Buprenorphine (kindly provided by Dr. 
Lisa Krugner-Higby, UW-Madison) just prior to corneal scarification. 
These studies adhered to the ARVO Statement for the Use of Animals 
in Ophthalmic and Vision Research and NIH guidelines for the 
use of animals in research and were approved by the University of 
Wisconsin-Madison IACUC. 

Treatment

A 5 µL drop of 0.3% Ciprofloxacin (NDC 16571-120-50, Pack 
Pharmaceuticals, Buffalo Grove, IL) or 1% methylcellulose in PBS 
(vehicle) was applied to the cornea of the infected eye, starting at 4 
hours post-infection at 2 hour intervals for a total of 5 treatments per 
day for 4 days. 

Collection of eye washes and determining number of USA300 
viable cells in the washes

On days 1, 2 and 3 post-infection, tear film samples were collected 
and the number of viable cells of S. aureus USA300 was determined. 
The infected corneas were flushed with 10 µL of PBS and the wash was 
then added to 40 µL PBS and kept on ice until samples were serially 
diluted and spread on SM/2 agar plates. The plates were incubated at 
37 °C and colonies counted after a 24 hr incubation period.

Disease scoring

On days 1 and 3 post-infection, ocular disease severity was 
scored as previously described, based on three disease parameters- 
blepharitis, neovascularization, and stromal keratits [42,44,45]. 
Briefly, blepharitis, or swelling of the eyelid, was scored: 1+, puffy 
eyelids; 2+, puffy eyelids with some crusting; 3+, eye swollen shut 
with severe crusting; and 4+, eye completely swollen shut and crusted 
over. Neovascularization, the growth of blood vessels into the cornea, 
was scored: 1+, <25% of the cornea involved; 2+, 25% to 50% corneal 
involvement; and 3+, >50% corneal involvement. Stromal keratitis 
was scored: 1+, cloudiness, some iris detail visible; 2+, iris detail 
obscured; 3+, cornea totally opaque; and 4+, corneal perforation.

Histology

All animals were euthanized at 3 days post-infection. The 

enucleated eyes were fixed in 4% paraformaldehyde, embedded in 
paraffin, sectioned, stained with hematoxylin and eosin (H&E), and 
examined by light microscopy.

Statistical analysis

Statistical analyses were conducted using Sigma Plot 11.0 (Systat 
Software, Chicago, IL). At the designated time points, raw scores for 
each disease parameter were recorded for each mouse in a group. 
The mean disease scores were calculated for each group from the raw 
scores and analyzed for statistical significance. Mean peak disease 
scores (MPDS) were calculated as previously described [42]. The 
t-test or the Mann-Whitney Rank Sum test was used for pairwise 
comparisons of the average disease scores and MPDS of groups. 
P-values < 0.05 were deemed significant unless otherwise stated.

Results
Bacterial cell numbers from corneal washes varied from 9 X 105 

to 5 X 106 CFU/ml at 24 hrs post-infection (Figure 1). At 2 and 3 days 
post-infection, bacterial cell numbers in the untreated eyes remained 
in the range of 1 X 106 CFU/ml, whereas bacterial cell numbers in 
the Ciprofloxacin-treated animals were reduced by 3-4 log10. The 
differences in bacterial titer were significant on all days post-infection 
(Rank Sum Test, p < 0.05). 

The scores for the severity of blepharitis, corneal 
neovascularization and stromal keratitis in vehicle and Ciprofloxacin-
treated mice are shown in Figure 2. In untreated mice, the blepharitis 
score was approximately 1.5 on day 1 post-infection and increased 
to 2.0 on day 3 post-infection (Figure 2A). Blepharitis scores for 
Ciprofloxacin-treated mice were approximately 0.75 on both days 
1 and 3 post-infection (Figure 2A) and were significantly lower 
for the Ciprofloxacin-treated animals on day 3 post-infection, p < 
0.05 (Figure 2A). Corneal neovascularization scores in the vehicle-
treated mice were approximately 2.2 on day 1 post-infection and 
decreased to approximately 1.5 on day 3 post-infection (Figure 2B). 
In Ciprofloxacin treated mice, neovascularization scores were 1.0 
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Figure 1: Bacterial titers in eye washes (CFU/ml) on days 1, 2, and 3 post-
infection. All data points are the mean ± SEM per group. *p < 0.05.
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on day 1 post-infection and declined to 0.5 on day 3 post-infection 
(Figure 2B). Stromal keratitis scores in vehicle-treated mice were 
approximately 2.6 on day 1 post-infection and increased to 3.3 on day 
3 post-infection (Figure 2C). In Ciprofloxacin-treated mice, stromal 
keratitis scores were approximately 1.4 on day 1 post-infection and 
increased to 2.0 on day 3 post-infection (Figure 2C). Stromal keratitis 
and corneal vascularization scores were significantly lower for 
Ciprofloxacin-treated animals on days 1 and 3 post-infection, p < 0.05 
(Figures 2B and 2C). Mean peak disease scores (MPDS) are shown in 

Figure 2D. For blepharitis, the MPDS were not significantly different 
but they were lower in the Ciprofloxacin-treated mice. For corneal 
vascularization and stromal keratitis, the MPDS were significantly 
lower for the Ciprofloxacin-treated animals, p < 0.05.

Histopathology
Eyes infected with S. aureus USA300 and treated with vehicle 

displayed marked corneal epithelial intracellular edema associated 
with extensive vascularization of the superficial and mid corneal 
stroma with moderate neutrophilic infiltration, hemorrhage and 
edema (Figures 3C and 3D). There was also marked hyphema and 
neutrophilic infiltration in the anterior chamber, especially lining 
the corneal endothelium and marked infiltration of neutrophils in 
the iris stroma associated with stromal hemorrhage and formation 
of a pre-iridal fibrovascular membrane. Eyes infected with S. aureus 
USA300 and treated with ciprofloxacin had mild corneal epithelial 
keratinization, scant neutrophils dispersed through the superficial 
stroma, rare neutrophils infiltrating the corneal endothelium and 
minimal corneal stromal edema (Figures 3E and 3F). All uninfected 
eyes present a normal microscopic appearance (Figures 3A and 3B). 

Discussion
S. aureus keratitis is a significant cause of blindness and the 

increasing percentage of drug resistant bacteria causing these 
infections is a major concern. Thus, there is a need for additional 
antibacterial agents to treat keratitis. Animal models with validated 
outcome measures are critical for evaluating efficacy at several stages 
in the drug development process. Mouse models are advantageous 
in early stage development because they require smaller amounts 
of test articles than other species commonly used, such as rabbits. 
Two mouse models of S. aureus keratitis were described previously 
[33,34], but one of these studies used an S. aureus strain 8325-4 which 
is a laboratory strain that has lost the natural ability to form biofilms. 
Since bacterial keratitis can involve the conjunctiva and eyelids, and 
corneal neovascularization, these outcomes should be included in 
any scoring system. We therefore expanded on the previous models 
and used S. aureus USA300 LAC strain that forms biofilms, and 
have included disease scores for corneal neovascularization and 
blepharitis. This model should be useful for evaluating the effect 
of novel antibacterials on eyelid inflammation and swelling and 
neovascularization of the cornea.

Several studies have reported that MRSA strains are resistant to 
fluoroquinones, including ciprofloxacin [17,30,32,51]. For example, 
Freidlin et al. reported that only 14.8% of S. aureus isolates were 
susceptible to ciprofloxacin [17]. We chose to use ciprofloxacin as the 
positive treatment control in our study because our S. aureus USA300 
strain is susceptible to the drug. However, other antibiotics could be 
used as controls depending on the resistance profile of the bacterial 
isolate being used in the model. 

In summary, we have expanded on previous mouse models 
of S. aureus keratitis and included scoring of eyelid swelling 
and inflammation (blepharitis) and corneal neovascularization. 
The model should be useful for assessing additional activities of 
potential new antibacterial drugs, combination therapies to reduce 
the pathologic inflammatory response, and in studying additional 
pathologic mechanisms in S. aureus keratitis.
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Figure 2: Ocular disease scores of Ciprofloxacin- and vehicle-treated 
USA300-infected mice and on 1 and 3 days post-infection. A-C represents 
blepharitis, vascularization, and stromal keratitis respectively. All data points 
represent the mean ± SEM per group. D Mean peak disease scores (MPDS) 
for blepharitis, vascularization and stromal keratitis. Scores are the means of 
the highest scores for each mouse in a group ± SEM. *p < 0.05.
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