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Overview of  Congenital, Senile 
and Metabolic Cataract 

Introduction
The lens is avascular biconvex ellipsoid transparent tissue, present 

in front of the anterior chamber of the eye; just behind the cornea. It 
is an ectodermal organ, developed at the 25th day of gestation. By the 
second month of intra-uterine growth, the spherical criteria structure 
of the lens is developed with characteristic anterior and posterior pole 
and dorsally outlined by lens epithelium. The lens fibers developed 
and matured after birth with subsequent formation of crystalline 
protein especially in adult state [1]. 

The cornea is affected by continues light exposure which may be 
reflected in the structure of the lens with age. The lens comprises three 
main regions; capsule, lens epithelium, and lens fibers. The capsule is 
made up of dense connective tissue. The lens epithelium; lined the 
surface and it comprises a simple cuboidal epithelium. It possesses 
a vital function by regulating the homeostatic functions allowing the 
permeability of ions, nutrients, and osmolarity to the aqueous humor. 
It develops earlier during utero life in the 5th-6th week of gestation 
and maintains its normal integrity throughout [2]. The entire body of 
the lens is composed of concentric layers of tightly backed lens fibers 
interdigitated with each other by a ball and socket. Glucose represents 
the primary energy source of the lens tissues [3]. Sodium/potassium 
adenosine triphosphatase and calcium adenosine triphosphatase 
promote the osmolarity of the lens fibers [4]. 

Damage of the lens fibres lead to the formation of clouding in the 
lens and scattering of light, the predictor of cataract. It increases with 
age with a prevalence of about 50% in over 80 years old individuals 
[5]. There are different forms of cataracts; namely congenital [6] age-
related cataract [7] and metabolic cataract [8].

Congenital & Senile Cataract
Cataract is a clouding of the eye’s natural lens which causes visual 

impairment. More than 17 million people are blind due to cataract 
and 2800 new cases are known throughout the world daily [5].

Congenital cataract are developed during intra-uterine growth 
as a result of environmental and genetic factors and observed after 
parturition. Approximately half of all congenital cataracts are 

idiopathic [9] and particularly, a cause for unilateral cataract is rarely 
found [10].

Congenital cataracts are of different genetic type, and more than 
25 loci and genes on different chromosomes are involved in the 
disease [11]. Rahi and Dezateux reported a similar genotype in 27% 
of children with bilateral congenital cataract [12].

In age related cataract, many changes have been found to have 
occurred in the lens structure which facilitated the opacities of 
lens fibres. The epithelia of nuclear, posterior subcapsular, mature, 
mixed, hypermature, and black cataracts of male and female patients 
revealed that the 56% superimposed epithelial cells are probably the 
source of increased and altered cell activity. Senile cataract is classified 
into; mature or immature, nuclear cortical and posterior subcapsular 
cataract [13]. Investigation of 233 cataractous patients, revealed 
apparent increased incidence of nuclear, cortical, and posterior 
subcapsular cataract in older patients. These were correlated with 
lower expression of SIRT1 in patients [14].

Mechanism of Cataract Formation
Metabolic diseases were found to be associated with the activation 

of the sorbitol pathway [15] that enhanced the progress of cataract 
formation. Liberation of free radicals is more common as a result 
of these diseases. In vivo and in vitro studies revealed that hydrogen 
peroxide (H2O2) is related to the accumulation of Aβ in the lenses of 
rats and causes lens opacification [16]. The incidence of cataractous 
lenses was markedly increased among patients with metabolic diseases 
such as hypertension [15] and diabetes [17]. Hypertensive patients 
showed significantly higher nitrite levels in their cataractous lenses 
were detected in 26 (44.1%) especially that of posterior subcapsular 
cataracts [18,19].

Moncaster et al. reported increased amyloid accumulation 
and supranuclear cataracts in the ocular lenses of patients with 
Alzheimer’s disease [20]. 

There are different pathways for the formation of cataract (Figure 
1), they include:
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Abstract

Opacity of the lens is a major public health problem of unknown 
causes and impaired vision of a large number of peoples. There are 
different forms of cataractous lenses including congenital, senile 
and metabolic associated ones. Although the congenital and senile 
cataractous lenses were markedly different in its origin, developmental 
aspects and genes involved, the patho-physiological pathways 
seemed to be similar. The present review summarized the causes of 
cataractous lenses such as genetic and abnormal conformational 
changes of glycation end products. The alterations of proteins, lipids, 
minerals and antioxidants defense were illustrated and discussed.  
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Polyol pathway

In diabetic cataractous lens, there was a marked increase of 
damaging lens epithelium [21] associated with over production of 
free radicals and decreased capacity of antioxidant defense system. 
These were associated with a depletion of the activities of aldose 
reductase and sorbitol dehydrogenase while G6PD and glutathione 
system enzyme activities were found to be lower in cataractous lenses 
from diabetes [22]. Aldose Reductase is a key enzyme involved the 
reduction of glucose into sugar alcohol sorbitol, which is metabolized 
to fructose by sorbitol dehydrogenase. Sorbitol was found to 
accumulate in lens cells causing osmolysis, leakage of glutathione, 
myo-inositol, the generation of free radicals which contributed to 
diabetic complication such as cataract [23,24]. The enzyme is more 
active in diabetes and implicated in cataractous lenses [25,26]. 

Sugar cataract formation was found to have resulted from 
lenticular sorbitol accumulation. In the lens, increase of aldose 
reductase is contradicted with a decrease of the activity of sorbitol 
dehydrogenase [27]; it increases the accumulation of sorbitol rapidly 
than it is converted to fructose [28] which induces apoptosis of 
lenticular epithelial cells and subsequent cataracts [29]. Diabetes 
was found to express poly(ADP-ribose) polymerase(PARP) in lens 
[30] which in turn led to NAD+ depletion and energy failure and also 
contributed to necrosis and apoptosis [31]. 

Intracellular accumulation of sorbitol is associated with marked 
increase of oxidative stress in the endoplasmic reticulum (ER), the 
principal site of protein synthesis, it initiates the liberation of free 
radicals and also involved in the breakdown of lens fibers [32,33]. 

Over-expression of aldose reductase also enhanced the expression 
of both extracellular signal-regulated kinase (ERK1/2) and c-Jun 
N-terminal (JNK1/2), which are involved in apoptosis [34].

In sugar cataracts, the initial swelling brought about by polyol 
accumulation leads to an imbalance in the pump-leak equilibrium, 
increasing sodium and chlorine content. Genetic mouse cataract 
was found to exhibit the imbalance of the pump-leak system which 
appeared to be initiated by a deficiency of Na-K ATPase which 
facilitates sodium retention and osmotic swelling [35].

Nagai et al. reported a decrease in the activity of Ca2+-ATPase 
in the lenses of Shumiya cataract rat (SCR) and Ihara cataract rat 
(ICR), which is concurrent with the development of cataract [36]. 
The expression of cytochrome c oxidase (CCO)-1 mRNA and CCO 
activity in UPLR lenses was found to have decreased during cataract 
development. Both nitric oxide (NO) and lipid peroxide were 
markedly increased in the lenses of UPLR, SCR and ICR with opaque 
lenses. Increased liberation of NO may enhance lipid peroxidation 
resulting in the inhibition of Ca(2+)-ATPase and elevation in lens 
Ca(2+), leading to lens opacification in ICR/f rats. 

Glycation end product (AGE): AGE is a non-enzymatic glycation 
of lens proteins by reducing sugars (glucose, galactose etc) resulting 
in the formation of protein aggregates that precipitate in the lens 
[37,38] and represent a causative factor of damaging lens epithelial 
cells (LECs), the promoter of cataract formation [39]. The receptor 
for advanced glycation end-products (RAGE) and proliferating cell 
nuclear agents (PCNA) are over-expressed in old-age and diabetes 
which is involved in cataract formation [40,41]. Advanced glycation 
end products (AGEs) including carboxymethyl lysine (CML) was 
found to be increased in diabetic and senile cataractous lenses [42].

The urea-insoluble fraction, showed the highest levels of AGEs 
[43]. Pentosidine, CML, and imidazolone were markedly increased 
in cataractous lenses [44]. In vitro and in vivo studies revealed 
AGE induced apparent apoptosis of LECs through enhancement of 
accumulation of argpyrimidine and nuclear factor- kappaB (NF-κB). 
The ratio of Bax to Bcl-2 protein levels was also increased [39].

Cataractous lenses were markedly higher in women especially 
those with diabetes [45]. In cataractous lens of 21-week-old male ZDF 
rats, increased apoptosis of LECs was correlated with upregulated 
expression of iNOS mRNA and protein, causing the accumulation 
of glycated proteins in their cytoplasm, meanwhile activated NF-
kappaB was mainly detected within their nuclei [46]. 

Genetic Role of Cataract Formation
There are multifactorial agents that contribute in the development 

of cataractous lenses as well as between congenital and age-related 
cataracts. Congenital cataract affects childhood, and different 
intrauterine factors are involved (Figure 2). The genetic incidence 
accounts for 8.3 and 25% cataract. Congenital cataracts may result 
from chromosomal abnormalities such as neurofibromatosis type 2 
or homeobox gene PITX3 [47,48] classified congenital abnormalities 
into mature, polar (anterior or posterior), zonular (nuclear, or 
lamellar), and capsular or membranous.

Zhu et al. attributed the congenital cataract to the mutation 

Figure 1: Chart illustrates the mechanism of cataract formation. 
Abbreviations: CE: Corneal Epithelium; CO: Ciliary Organ; E: Endothelium; 
LC: Lens Capsule; LE: Lens Epithelium; LF: Lens Fiber; LN: Lens Nucleus; 
St: Stroma.
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of connexin 50 of a valine residue with alanine at codon 44 [49]. 
In cataract lenses of KO-Dp71 mice and wild-type (wt), Fort et al. 
reported increased incidence of cataracts with subsequent lack of 
Dp71 (dystrophin gene of Duchenne muscular dystrophy) [50]. 

Khan et al. observed posterior cortical lenticular opacities with 
over-expression of a novel missense mutation in KCNJ13 in 12-year-
old Saudi Arabian girl with nystagmus [51].

CF1/b mouse strain (an outbred colony) reared at Osaka 
Prefecture University was found to develop cataracts at 14 d old in the 
form of vacuolated lens epithelial cells, swollen lens fibers, pyknotic 
nuclei, and vacuolation of the lens cortex. Cataractous lens was 
found to result from autosomal recessive mutation genes in mouse 
chromosome 16 between D16Mit5 and D16Mit92 and between 
D16Mit92 and D16Mit201 [52]. 

Lens syntaxin 3 gene interfered with lens protein structure 
and function. Mutation of this gene results in the development of 
autosomal recessive congenital cataract [53]. Inherited forms of 
cataract are characterized by mutation in the gene of cation channel 
and member-3 (TRPM3, melastatin-2). Genome-wide linkage 
analysis mapped the ocular disease locus to the pericentric region of 
human chromosome 9 [54].

Although congenital cataracts may alter vision; sparse individuals 

are affected, age-related cataracts are responsible for blinding 17 
million people worldwide [55].

In age related cataract, many changes had been found to have 
occurred in the structure of the lens which facilitated the opacities 
of lens fibres. Telomerase represents one of the genetic factors. It is 
a naturally occurring enzyme that maintains telomeres and prevents 
them from shortening during cell division. Telomerase consists of at 
least two components: an RNA template (hTR), which binds to the 
telomere and a catalytic subunit (hTERT) with reverse transcriptase 
activity, which adds a specific DNA sequence to the chromosome ends. 
During the formation of cataract, telomeres attained a considerable 
atrophy in lens epithelial cells due to increased oxidative stress of the 
lens cell membranes and biomolecules [56,57]. Cataractous patients 
possessed the presence of a large number of micronuclei (MN) in 
their epithelia, manifesting epithelial damage [58].

MicroRNA-125b (miR-125b) is responsible for lens epithelial cell 
apoptosis. In vitro studies of miR-125b revealed increased incidence 
of human lens epithelial cell apoptosis through assessments of p53. In 
age-related cataract, there was an inverse relationship between miR-
125b and p53 expression [59]. Oxidative stress and DNA damage 
contributed to the pathogenesis of age-related cataract (ARC) [60]. 

Oxidative stress represents the main factor responsible for 
lenticular cataract. Glutathione-S-transferase (GST) catalyses the 
nucleophilic addition of the thiol of GSH to electrophilic acceptors, it 
is important for protecting tissues from oxidative damage. In humans, 
GSTT1 and GSTM1 deletion genotypes are associated with a variety 
of ophthalmic diseases. The frequency of GSTM1 affected individuals 
was markedly increased in MT cataracts followed by NC, CC and PSC 
types [61].

Peroxiredoxin 6 (Prdx6) is a new family of antioxidants which 
regulates gene expression and function by scavenging reactive oxygen 
species and protects lens epithelial cells of rat. Oxidative stress was 
found to have contributed in the formation of nuclear or cortical 
cataract through a decrease of Prdx6 in cataractous lenses especially 
during aging [62].

Nuclear transcriptional factor, NF-E2-related factor 2 (Nrf2), 
plays an integral role against oxidative stresses by promoting 20 
different antioxidative enzymes. Kelch-like ECH associated protein 
1 (Keap1) targets and binds to Nrf2 for proteosomal degradation. 
Palsamy et al. detected significant levels of demethylated DNA in 
the Keap1 promoter in the diabetic cataractous lenses [63]. Human 
lens epithelial cell lines (HLECs) treated with a demethylation agent, 
5-aza-2’deoxycytidine (5-Aza), showed 10-fold higher levels of Keap1 
mRNA, 3-fold increased levels of Keap1 protein, which enhanced the 
liberation of free radicals and increased cell death. Decreased Nrf2 
activity depleted the transcription of many antioxidant enzyme genes 
and altered the redox-balance towards lens oxidation. During aging-
related cataract, there was a considerable reduction of protein and 
gene expression level of nuclear transcriptional factor, NF-E2-related 
factor 2 (Nrf2) in lenses. Over-expressed Keap1 protein is responsible 
for decreasing Nrf2 by proteasomal degradation, thereby suppressing 
Nrf2-dependent stress protection. Therefore, decreased activity of 
Nrf2 restrained the transcription of its downstream antioxidant 
enzyme and led to the failure of the antioxidant system; ultimately 

Figure 2: Diagrammatic representation the incidence and genetic role in 
congenital and senile cataract formation.
Abbreviations: CE: Corneal Epithelium; CO: Ciliary Organ; E: Endothelium; 
LC: Lens Capsule; LE: Lens Epithelium; LF: Lens Fiber; LN: Lens Nucleus; 
St: Stroma.
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leading to the formation of ARCs [64,65].

In experimental animals, different pathways are involved. 
Transgenic mice were found to express ectopic Col4a3 and Col4a4 
genes in the lens which have the capability of activating IRE1, 
ATF6, and PERK associated with the expansion of the endoplasmic 
reticulum and attenuated protein translation. These were associated 
with damaging lens epithelium and accumulate terminally unfolded 
proteins [66]. Following the study of three mice lens epithelial cells 
(LECs) 17EM15, 21EM15 and αTN4, Terrell et al. reported that the 
expressed genes Foxe3, Pax6, Anxa4 and Mcm4 were up-regulated 
in lens epithelial cell lines (LEC), compared to lens fiber cells [67]. 
All the three LECs exhibited down-regulation of fiber cell-expressed 
genes Crybb1, Mip and Prox1 as well as over-expressed cataract-
associated genes, such as Dkk3, Epha2, Hsf4, Jag1, Mab21l1, Meis1, 
Pknox1, Pou2f1, Sfrp1, Sparc, Tdrd7 and Trpm3.

Lipid and Cataracts
Lipids are of functional importance to lens. About 172 lipid species 

were identified mainly as sphingomyelins, phosphatidylcholines, 
and phosphatidylethanolamines. Also, 20 phosphatidylcholines, 
6 phosphatidylethanolamines, and 4 phosphatidic acids were also 
detected [68]. The lens transmit light through thousands of cellular 
membranes rich in phospholipids especially dihydrosphingomyelin. 
Most of the lipids are associated with proteins. Sphingolipids 
represent 60% of human lens and represents the main integral part 
in its transparency. Lens glycolipids are composed of 4-sphingenine 
(sphingosine) to which carbohydrates are bound [69] and represents 
1% of the total human lens lipid but are of valuable importance for 
differentiation of lens epithelial cells to lens fibers [70]. 

Lipids represent the main structural components of the lens 
membranes and have profound effect on its fluidity. Cataractous lens 
involves protein aggregation as a result of losing stability in protein 
conformation. Age-related changes in lipid composition could be a 
contributing factor for altered protein-lipid interaction leading to 
protein aggregation and cataract formation [71]. The lens membranes 
exhibited three distinct lipids such as the bulk, nuclear, and trapped 
lipid domain. The cholesterol bilayer was detected in the cortical and 
nuclear lens lipid membranes, and missing in the intact membranes. 
The amount of lipids combine proteins was increased in the nuclear 
than in cortical membranes facilitating rigidity of nuclear membranes 
and increasing permeability in the cortical ones [72].

Cataractous lenses were found to exhibit membrane derangement, 
widespread of vacuoles and clusters of highly undulating membranes. 
Damage of the lens fiber cell membranes impairs vision and interferes 
with light-scattering which causes lens opacity. Phospholipid 
molecules modified by oxygen accumulate in the lipid bilayer, they 
have been found to change their geometry and impair lipid-lipid and 
protein-lipid interactions in the lenticular fiber membranes [73]. 
Human cataractous lenses contain the long chain base glycolipids 
(C18a sphingosine (sphinganine). The major fatty acids were C160, 
C24:l and C24:0, and monounsaturated fatty acids accounted for 40-
55% the total fatty acids [74]. Siddique et al. reported alterations of 
phospholipid and protein moieties in lens fibers, disrupting function 
and leading to cataract formation (Figure 3) [75]. 

The content of palmitic acid showed apparent increase in 

cataractous lens when compared with marked depletion of oleic acid, 
linolenic acid and docosahexaenoic acid [76].

Huang et al. detected increased amount of sphingolipids 
(dihydrosphingomyelin and sphingomyelin) compared with 
apparent depletion of glycerolipids (phosphatidylcholine and two 
phosphatidylethanolamine) in cataractous lens [77].

Lipid peroxidation (LPO) is a pathogenic factor in cataract. It 
includes diene conjugates, lipid hydroperoxides, oxy-derivatives of 
phospholipid fatty acids and present in the lipid moieties of aqueous 
humour and lenses of senile patients [73]. Plasma membranes of the 
ocular lens are rich in fiber junctions which in turn have 20-40% of 
total lipid content compared with that of the total plasma membrane. 
In the bovine nucleus, the cholesterol/phospholipid molar ratio was 
markedly increased in the fiber junctional-enriched membrane than 
in the total plasma membrane, suggesting a special association of 
cholesterol with bovine nuclear fiber junctions [78]. In cataractous 
human lenses, the ratio of cholesterol to phospholipid (Chol/PL) 
attained a considerable increase in lens membranes. 

Exposure of membranes isolated from transparent human 
lenses to the free radical generator were found to produce 7 alpha-
hydroxycholesterol (6%), 7 beta-hydroxycholesterol (19%), 5 alpha, 
6 alpha-epoxycholestanol (1%) and 7-ketocholesterol (74%) as 

Figure 3: Diagrammatic representation the role of lipids in senile cataract 
formation. 
Abbreviations: CE: Corneal Epithelium; CO: Ciliary Organ; E: Endothelium; 
LC: Lens Capsule; LE: Lens Epithelium; LF: Lens Fiber; LN: Lens Nucleus; 
St: Stroma.
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major oxidation products. Cataractous lenses possessed moderate 
amounts of 7 beta-hydroxycholesterol, 7-ketocholesterol, 5 alpha, 
6 alpha-epoxycholestanol, 20 alpha-hydroxycholesterol and 
25-hydroxycholesterol compared with no-detectable amounts in 
clear lenses [79]. Studies have shown that cholesterol contributes 
to the impermeability of oxygen across the lens membranes [80]. 
Maintaining low levels of oxygen is important to the lens to prevent 
oxidation and cataract formation. One of the main function of the 
mitochondria, present in the epithelium and outer cortical fibers [81] 
is to degrade oxygen [82]. The cholesterol-related impermeability 
of the membranes to oxygen may help to keep oxygen in the outer 
regions of the lens long enough for the mitochondria to degrade it.

The etiology of lipids in cataract formation led Deeley et al. 
to investigate the variation of eye lipid contents in humans and 
experimental animals [83]. The authors found that the most 
abundant phospholipids in all the lenses examined were choline-
containing phospholipids. Human lens showed wide variations 
of lens lipid components compared with rat, mouse, sheep, cow, 
pig and chicken. Sixty six percent (66%) of the total phospholipid 
in Homo sapiens was sphingomyelin (dihydrosphingomyelins). 
The abundant glycerophospholipids in human lenses were 
phosphatidylethanolamines and phosphatidylserines. Experimental 
and domestic animals showed abundant phosphatidylcholines in their 
lenses. Several neutral and acidic glycosphingolipids were observed 
in rat lens epithelia, cortex and nucleus. Immunohistochemical 
staining revealed apparent concentration of gangliosides GM3 and 
GM1 in the anterior lens epithelial cells and the cortex, with gradual 
decrease toward the lens nucleus. GD3 appeared more intense in the 
lens nucleus than in epithelial cells [84]. Adult rat lens were found 
to have a complex ganglioside consisting of six major components 
identified as GM3, GD3, GD1a, GD1b, GT1b, and GQ1b based on 
their reactivity to anti-GM1. The relative concentration of GT3 
in total gangliosides of the eye lens was highest among neural and 
extra-neural tissues examined. Administration of streptozotocin to 
rats caused a severe reduction in the GD3 content in the eye lenses 
within three days prior to other gangliosides alterations [85]. Emory 
mouse cataracts undergo protein oxidation by the formation of 
hydrazone with 2, 4-dinitrophenyl hydrazine. The lipid oxidation 
was observed from a depletion of oleic acid and over-expression of 
ketoacids [86]. The relative and absolute amount of sphingolipids, 
including dihydrosphingomyelin and sphingomyelin, increased with 
age parallel with the development of cataractous lenses. Increased 
membrane stiffness led to light-scattering, reduced calcium pump 
activity, altered protein-lipid interactions, and decreased fiber cell 
elongation [77].

Protein and Cataracts
The lens protein attained nearly 33% of its net weight. Crystallins 

are the main protein components in the lens reaching up to 90% of total 
soluble protein. Other proteins form the cytoskeletal and membrane 
structure such as actin, filensin and spectrin, transporters and channel 
proteins and junctional proteins. There are three distinct forms of 
crystallins; α-, β- and γ-crystallins. α- and β-crystallins are present in 
oligomers, compared with the monomer form of γ-crystallin [87]. In 
adults, the nucleus represents the major part of the lens. The nucleus 
is concerned with cell communication and many enzymes involved in 

metabolism, protein synthesis and degradation [88].

In old age, there is a marked disruption of lens disulphide protein 
aggregates and conformation which is unique to cataract. In cataracts, 
60% of the methionine is bounded to the lens membrane. Most of the 
disulfide amino acids bind with glutathione to form α-crystallin via 
oxidative changes [89]. Homozygous alpha alanine-cysteine mutant 
mice, possessed apparent characteristic loss of cytological structure of 
lens epithelial and fiber cells such as actin filaments and mitochondria 
(alpha, beta, and gamma classes) [90]. Alpha-A crystallin represents 
the major protein of the lens and is composed of a mixture of cysteine 
sulfhydryl and half-cysteine disulfide groups. Oxidation of cysteine 
sulfhydryl groups may be involved in opacification of lens [91].

Crystallins are categorized in three forms α, β, and γ. The 
β-crystallins remain the most elusive form due to their greater 
number of subunits and possible oligomer formations and changes 
during aging. Deamidation of β-crystallins occurred during aging in 
cataractous lenses and α-crystallin chaperone impaired the cataractous 
changes [92]. The cysteine is characterized by having disulfide bond 
with the low molecular weight thiol in the lens. The appearance of 
gamma-Glu-Cys may be coincident with biochemical abnormalities 
preceding cataract formation. This protein modification may result 
from changes in the GSH biosynthetic pathway within the lens 
[93,94]. In cataractous patients with or without diabetes, there were 
marked aggregations of two types, soluble and insoluble proteins. 
Higher levels of m-Tyr, o-Tyr, DOPA and Phe/protein ratio were 

Figure 4: Diagrammatic representation the role of protein in senile cataract 
formation. 
Abbreviations: CE: Corneal Epithelium; CO: Ciliary Organ; E: Endothelium; 
LC: Lens Capsule; LE: Lens Epithelium; LF: Lens Fiber; LN: Lens Nucleus; 
St: Stroma.
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markedly detected in cataract formation (Figure 4) [95]. 

Opacification of the ICR/f mutant lenses was found to be 
accompanied by changes in crystallin structure and composition, 
including several deletions of the N-terminals of beta-crystallins and 
low molecular weight alpha-crystallins [96]. 

Cataractous lens proteins exhibited apparent decrease in gamma-, 
betaB1-, betaA3-, and betaA4-crystallin content, accompanied with 
some increase in alpha-crystallin (or its aggregate). Higher molecular 
weight proteins were also observed in the form of cross-linked dimers 
(43 to 55 kDa) of beta-crystallins [97]. Deletions of the N-terminals 
of beta-crystallins and low molecular weight alpha-crystallins were 
detected in cataractous ICR/f mutant lenses [96]. Aggregation of 
chromophores and insoluble crystallin led to the formation of a 
brown nuclear cataract while cortical type resulted from impairing of 
membrane permeability and altered enzyme function [88].

Linetsky et al. stated that ascorbic acid, but not glucose, fructose, 
ribose or erythrulose, facilitated the aggregation and glycation of calf 
lens crystallins [98]. Dipeptidyl peptidase III was markedly increased 
in cataractous lens to an apparent 45.5-fold over that of the original 
aqueous extract [99]. There are two forms of cataractous lenses, one 
with a low internal sodium and calcium content which behaves in a 
manner similar to normal lenses. Elevated level of sodium ion was 
found to be involved in alterations of amino acid accumulation, 
however calcium ions seem to play a critical role in the disturbance of 
lens protein synthesis [100]. Water-insoluble, high molecular weight 
protein represents the major component of human nuclear cataracts 
[101].

AGEs formation resulted from oxidation reaction between 
reducing sugars and protein which caused lens opacification. Diabetes 
showed more glycation in patients suffering from diabetes compared 
with non-diabetic. Pyrraline is an advanced Maillard reaction formed 
by oxidation of glucose with lysine residues on proteins. This reaction 
involves an intermediate metabolite, 3-deoxyglucosone which is 
markedly increased in diabetic lenses [38,102].

 Lens proteins possessed the higher levels of dideoxyosones 
(DDOs): intermediates in the synthesis of advanced glycation 
endproducts (AGEs), such as pentosidine and glucosepane [103]. 
Deamidation of glutamine and asparagine residues was observed in 
older lenses [104]. 

One of the possible roles of inducing lenticular diabetic cataract is 
the capability of glycated proteins producing reactive oxygen species 
(ROS), which oxidized tryptophan (Trp) into kynurenines [105,106]. 
There were marked differences in the amounts of oxindolealanine 
(OIA, tryptophan oxidation product) in the nucleus versus the cortex 
in human cataractous lenses [107]. Lenticular levels of Indoleamine 
2, 3-dioxygenase (IDO) activity, IDO mRNA, IFN-gamma mRNA, 
oxidize tryptophan (Trp) and kynurenic acid (KYNA) increased 
significantly in 60 days diabetic rats [106]. Histidinoalanine and 
lanthionine were the most abundant dehydroalanine crosslinks in 
both water-soluble and -insoluble lens proteins in cataractous lenses 
of Indian patients [108]. 

Another view of cataract formation is believed to have resulted 
from a decrease in the antioxidant defense of the lens, particularly 

the vitamin C concentration. Upon oxidation, vitamin C was found 
to have combined with glucose to form protein glycation. The lens 
vitamin C concentration significantly decreased with cataract severity, 
especially in severe brown cataracts. The peptide tryptophan content 
was stable but the tryptophan to tyrosine ratio decreased and was 
highly correlated to the ascorbic acid concentration [109]. Taurine 
and total protein were detected in cataractous lenses and involved in 
altering the structural integrity and permeability of lens membrane to 
protein and amino acids [110]. Taurine showed antioxidant capacity 
and was markedly depleted in diabetic cataract. The culture of lenses 
in high glucose medium increased the weight and opacity of the 
lenses due to increase of carbonylated protein level, and decrease of 
glutathione (GSH) content [111].

Minerals and Cataract
Sodium & potassium

Electrolyte balance is of vital importance to the lens transparency 
in mammals including humans. Its permeability depends on different 
ion channels such as potassium, sodium, chloride, and calcium 
channels. The ions may move across a number of electrical silent system 
such as Na+ /H+, Na+ /Ca2+ HCO3-/Cl- exchange mechanisms as well 
as active transporters such as Na-K-ATPase [112,113]. Na, K-ATPase 
activity plays an important role in maintaining the functional activity 
in lens. Two apparent roles of the enzyme activity were observed more 
in the epithelium than in the lens fibers. During aging, oxidation and 
glycation of lens fibers may decrease Na, K-ATPase activity which is 
markedly detected in the nuclear region [114,115]. There is a close 
association between abnormal elevation of lens sodium and the 
opacification of the human lens cortex [116]. Aging has also led to 
alteration of Na/K permeability toward the center of the lens as well 
as impairing the functional activity of the Na-K-ATPase to hydrolyze 
adenosine triphosphate [117]. Increasing extracellular K+ was found 
to depolarize the lens potential, reducing and reversing the magnitude 
of the net current densities around the lens [118]. 

There are two forms of cataractous lenses, one with a low internal 
sodium and calcium content behaving in a similar manner to normal 
lenses, and the other with high sodium and calcium contents which 
showed a markedly reduced ability to accumulate amino acid and 
synthesized low molecular weight protein. Sodium ion was found 
to be involved in alterations of amino acid accumulation, however 
calcium ions seems to play a critical role in the disturbance of lens 
protein synthesis and also protein-protein interaction [119]. 

Magnesium

 Magnesium represents one of the main elements in regulating 
the lens function. It maintains the function of more than 350 enzymes 
by regulating the intracellular ionic environment of the body ATPase. 
Its deficiency led to impairments of ATPase functions leading to 
marked increased of intracellular calcium and sodium and decrease 
intracellular potassium concentration and development of cataract. 
Consequently, magnesium deficiency has also contributed to the 
increase of oxidative stress and inducible NOS stimulation that can 
initiate the progress of cataract, glaucoma and diabetic retinopathy 
[120,121].

Zinc
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Zinc plays an integral role in maintaining normal ocular function. 
The zinc content of human lenses was significantly elevated in mature 
cataracts compared to cortico-nuclear cataracts. The increase of the 
lens zinc content was markedly increased with the change in lens 
coloration from light to dark brown colouration. Diabetic patients 
were found to show both increased zinc and iron contents in the lens. 
Zinc and iron were markedly increased in cataractous lenses [122]. 

Lens opacification in diabetic patient was found to possess 
increased level of Cu content than Zn and Fe content [123]. Patients 
with either pseudoexfoliative or senile cataract showed increased 
serum level of both iron and copper [124].

α-Crystallin, is a member of the small heat shock protein 
family present in the mammalian lens. The stability of α-crystallin 
is increased in the presence of Zn(2+). H79, H107 and H115 of αA-
crystallin and H104, H111 and H119 of αB-crystallin are identified 
as the Zn(2+) binding residues [125]. Development of lens opacities 
was associated with lack of copper-zinc superoxide dismutase which 
participated in an antioxidant capacity [126]. 

There is a close association between mineral and antioxidant 
defense. Cataractous lens possessed a decrease of Cu/Zn- and Mn-
SOD activity and Cu/Zn-SOD transcript. The decrease of superoxide 
dismutase activity in cataractous lenses was associated with the 
decreased level of mRNA transcripts and their protein expression 
[127].

Iron

Iron (Fe) is an essential trace element for ocular homeostasis. 
It was found to play a great role in regulating L-cystine uptake and 
consequently promoting the activity of aconitase in production of 
glutathione in lens epithelium and retinal pigmented epithelium 
that led to elevation of the antioxidative capacity against oxidative 
stress [128]. During the development of lens epithelial cells into 
lens fiber, both ferritin H and L chains were altered with increase 
in the mass of lens fiber [129]. Iron pathway may occurred through 
different mechanisms; (i) iron is actively transmitted from the retina 
to the aqueous humor by a ferroportin/ferroxidase-mediated process 
through Müller cells, (ii) binding of iron with vitreal transferrin and 
then diffusing towards the lens, (iii) Incorporation of iron/ transferrin 
complex with lens extracellular space and infiltrated into the 
epithelial-fiber interface, (iv) iron/transferrin complex is endocytosed 
by epithelial cells and drained with the aqueous humor into systemic 
blood circulation for recycling [130].

Transferrin and Fe concentrations were found to be increased in the 
intraocular fluids during inflammation and pathological conditions. 
There was a close relationship between the amount of Fe-transferrin 
and development of cataractous lenses [131]. The ferritin levels in the 
cataractous lens nuclei appeared to be markedly increased than that of 
the cortex due to the presence of ferritin within an insoluble protein 
fraction of the homogenized lenses. Both nuclei and cortices showed 
heavily redox-active metals staining [132]. Hyperferritinemia cataract 
formation was found to result from a mutation in the L-ferritin gene 
(C33T) which interferes with function of the L-ferritin transcript in 
an RNA gel shift assay [133]. 

Cu and Fe lacking a non protein-binding condition, initiate the 
liberation of reactive oxygen species, thereby affecting tissue and 

cell structures [134]. Abnormal metabolism of Zn, Cu and Fe may 
be influenced in diabetic complications [134], especially Cu which 
reached a high peak in the blood of diabetic patients [135] compared 
with low peak of zinc [136,137] and iron [138]. 

Iron was found to have contributed in ocular diseases, including 
glaucoma, cataract, AMD, and intraocular hemorrhage [139]. 
Numerous genes encoding proteins involved in iron transport and 
homeostasis are promoted by hypoxia inducible factor. Low oxygen 
level was found to stimulate the lens epithelial cells (LEC) to trap the 
cytosolic iron and increased the risk of iron inducing the formation of 
reactive oxygen species (ROS) and oxidative cell damage [140].

Diabetic cataractous lenses of rats were found to possess increased 
level of Zn and Fe and decreased level of K [141]. In senile cataractous 
lenses, Fe, Al, Zn and Ca levels were markedly increased. The calcium/
phosphorous ratio was 50 times (1:0.02) greater than in clear lenses 
[142]. Senile cataractous lenses were found to possess elevated level of 
nickel and iron with concomitant depletion of chromium, manganese 
and aluminum, the promoter of cataract formation [143]. Li et al. 
detected degenerated lens fibers in nuclear cataract associated with 
aggregation of gamma-crystallin in lens fibers lacking actin filaments 
and increased calcium concentration of homozygous mutant mouse 
[144]. 

Calcium

Calcium plays a great role in large numbers of cellular regulatory 
pathways. The transmembrane influx of Ca(2+) through Ca(v) 
channels has contributed to the biological function of human lens 
epithelium [145]. 

Ca(2+)-ATPase activity was approximately 50% less in membranes 
prepared from cataractous lenses in comparison to clear lenses [146]. 
Marian et al. reported that the increased calcium concentration in 
cataractous lens was attributed to the increase of calcium-ATPase 
expression in its plasma membrane [147]. Activation of Ca-dependent 
enzymes may cause irreversible breakdown of structural proteins and 
apparent cell death of lens cells [148]. 

Excessive levels of Ca2+ in human lenses with cortical cataract 
have been found to play a major role in the opacification process. Ca2 
attained 10,000 fold increase in human aqueous humour inwardly 
directed gradient across the plasma membrane and these are needed 
to maintain reduction. Both Na/Ca2 exchanger (NCX) and plasma 
membrane Ca2-ATPase (PMCA) actively remove Ca2 from the 
cells, whereas in endoplasmic reticulum, the Ca2-ATPase (SERCA) 
facilitated the storage of Ca++. Adenosine triphosphatase was found to 
be more active in lens epithelial cells compared with that of NCX in 
fiber cells. Activation of these channels may lead to a rapid increase 
in pathological calcium overload which facilitates the formation of 
cataract [149]. Plasma membrane calcium ATPase (PMCA) mRNA 
and protein levels attained a considerable higher level in cataractous 
lens which might be a compensatory mechanism to overcome 
increased intracellular calcium levels [147]. Chen et al. observed ATP-
binding cassette protein (ABCA3) in human lens capsule, choroid-
retinal pigment epithelium and retinal pigment epithelial cells [150]. 
Mutation of ABCA3 protein was found to be associated with cataract-
microcornea syndrome.

 Lenticular copper, lead, cadmium and calcium levels were 
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markedly increased in cataractous human lenses especially in 
males. Cataract formation in diabetic patients possessed a higher 
concentration of copper which coincides with copper-containing 
superoxide dismutase and liberation of free radicals. Increased copper 
ions were attributed to its release from copper-containing enzymes 
affected by oxidative stress of hyperglycaemia and free radicals [151]. 

Maintenance of calcium homeostasis is important for the clarity 
of the lens. Ca(2+)-ATPase play a great role for the removal of cytosolic 
calcium, either across the plasma membrane or through intracellular 
organelles such as the endoplasmic reticulum. The activity of Ca(2+)-
ATPase reached approximately 50% in membranes prepared from 
nuclear subcapsular, nuclear and brunescent cataracts [146]. 

The lenticular Ca2+ was found to be maintained by either plasma 
membrane Ca2+ pumps [152], or plasma membrane Na+:Ca2+ 
exchangers [153], and endoplasmic reticulum Ca2+ pumps [152]. 
Cataractous lenses as a result of increased calcium concentration 
were observed in 14 out of 406 affected human lenses [154]. Odeigah 
and Patmore detected epithelial hyperplasia in cataractous lens of 
HY-1 genotype chick lenses and attributed it to the increased calcium 
binding capacity and elevated sialic acid [155]. Kuck and Kuck 
mentioned that mouse cataract was different from human senile 
cataracts due to invariable accumulation of calcium depending on the 
severity of cataract formation [156].

Cataractous lenses possessed abnormal intracellular ionic 
environment associated with increased levels of calcium (Ca2+), 
sodium (Na+), magnesium (Mg2+) and potassium (K+), Mg2+ deficiency 
was found to enhances nitrous oxide production via inducible nitric 
oxide synthase in the lens and accelerate the progression of lens 
opacification [157,158]. Increased calcium ions in cataract [159], may 
activate calpain and transglutaminase, the markers of cataracts [160]. 

Lenticular cataracts were found to exhibit abnormal intracellular 
ions including increased level of calcium and sodium and depletion 
of magnesium and potassium. These were associated with a decrease 
of ATP and adenosine triphosphatase activity as well as increase of 
nitrous oxide production [158]. 

Depletion of Cu, Zn-SOD and catalase (CAT) activities associated 
with increase of malodialdhyde were detected in diabetic and senile 
cataractous patients [161]. 

Increase zinc, copper, and calcium; and a decrease in potassium 
concentration have a great role in cataractous lenses [162]. Copper 
ions attained a higher concentration in cataractous lenses of diabetic 
patients due to decrease in the reactivity of the copper-containing 
enzyme superoxide dismutase and an increase in hydrogen peroxide 
concentration [151].

Antioxidant defense

Ocular tissues contain antioxidants that protect it from oxidative 
stress of free radicals such as redox antioxidant enzymes (catalase, 
superoxide dismutase, GSH peroxidase, glutathione S-transferase), 
ascorbic acid, glutathione, amino acids (cysteine and tyrosine) etc., 
[163,164] that scavenge free radicals. The antioxidant redox system 
was detected in the epithelial layer and outer cortical regions. 

Fecondo and Augusteyn reported a marked depletion of 

superoxide dismutase and glutathione peroxidase in the nuclear 
cataract of human, calf, rabbit and rat lenses [165]. Cataract formation 
is believed to be attributed to oxidative stress and reduction of the 
antioxidant defense, especially vitamin C concentration. Vitamin C 
was found to initiate glucose to protein glycation. Lens vitamin C 
concentration attained marked depletion in severe brown cataracts 
(88 mumol/100 g lens in mild cataracts, and 50 mumol/100 g in dark 
brown lenses) [109].

There was a detected reduction of the blood antioxidant redox 
chain and increase of thiobarbituric acid was found to be indicator 
of cataractous lenses in diabetic [166] and senile cataractous patients 
[167-169]. Jain and Bulakh confirmed similar findings of depletion 
in glutathione peroxidase and increase of thiobarbituric acid in 
cataractous lenses [170].

Lipid peroxidation (LPO) represent the main cause of cataract 
formation, initiated by enhanced production of oxygen free radicals 
in the eye fluids and tissues and inhibited antioxidant enzymatic 
and non-enzymatic defenses of the lens. The LPO products (diene 
conjugates, lipid hydroperoxides) and end products of fluorescent 
LPO were markedly detected in the aqueous humor samples of 
cataractous patients [171]. Lipid peroxidation led to degradation of 
the double bonds of unsaturated membrane hydrocarbon and altered 
the carbonyl and phosphate-oxygen sites of the fiber cell membranes 
[172]. These oxidative damages initiated in the absence of antioxidant 
defense [173].

The formation of cataract is believed to have resulted from an 
oxidative insult which decreases the antioxidant defense of the lens, 
especially vitamin C. The lens vitamin C concentration significantly 
decreased with cataract severity, but mostly in severe brown cataracts 
[109]. 

The authors finally concluded that both congenital and senile 
cataractous lenses resulted from multifactorial agents included 
genetic, biochemical transformations and alterations in antioxidant 
defences
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