Evaluation of Bone Mineral Density and Biochemical Parameters of Bone Metabolism after Treatment with Biofield Energy Treated Vitamin D₃ in MG-63 Cells

Abstract

The aim of this study was to examine the potential of Consciousness Energy Healing based vitamin D₃ and DMEM medium on bone health parameters. The test items (viz. vitamin D₃ and DMEM), were divided into two parts. One part of each test item was received the Biofield Treatment by Jagdish Singh and those samples were labeled as Biofield Treated (BT) samples, while other parts of each sample were denoted as Untreated Test Items (UT). The test samples were found as safe in tested concentrations by MTT assay. ALP was significantly increased by 130.51%, 84.39%, and 67.51% in UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + UT-Test item, respectively at 1 µg/mL than UT-DMEM + UT-Test item group. Moreover, level of collagen was also significantly enhanced by 117.37% in BT-DMEM + UT-Test item at 100 µg/mL than untreated. Other parameter like collagen was significantly increased by 171.30%, 168.51%, and 110.48% in UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 50 µg/mL as compared to untreated. Additionally, level of collagen also elevated by 88.49%, 280.08%, and 63.28% in UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 100 µg/mL, compared to untreated. Overall, Biofield Treated vitamin D₃ was significantly improved bone health parameters and it could be a powerful alternative nutraceutical supplement to combat vitamin D₃ deficiency and fight against various bone related problems including rickets, osteomalacia, osteoporosis, osteogenesis imperfecta, bone fractures, osteonecrosis, chondrodystrophia fetalis, stress management and prevention, autoimmune and inflammatory diseases, and anti-aging by improving overall health.

Keywords: The Trivedi Effect; Biofield energy healing treatment; Osteosarcoma cells (MG-63); Collagen; Bone mineralization; Vitamin D₃ deficiency

Introduction

Vitamin D has multiple effects, which regulate the functions in different organs viz. brain, liver, lungs, heart, kidneys, skeletal, immune and reproductive systems. Moreover, it has significant anti-inflammatory, anti-aging, anti-stress, anti-arthritis, anti-osteoporosis, anti-apoptotic, wound healing, anti-cancer, anti-psychotic and anti-fibrotic actions [1]. Vitamin D receptors are widely distributed in most of the body organs viz. brain, liver, heart, lungs, kidney, pancreas, small and large intestines, muscles, reproductive, nervous system, etc. Vitamin D receptors influence cell-to-cell communication, normal cell growth, cell differentiation, cell cycling and proliferation, hormonal balance, neurotransmission process, skin health, immune and cardiovascular functions. In any living vertebrates, vitamin D plays an important role in maintaining a healthy skeletal structure and is essential for bone health. Naturally, it is synthesized in the presence of sunlight in the skin [2]. Most foods do not contain any vitamin D, additionally now-a-days due to aging, use of sunscreen, and change of zenith angle of sun the production of vitamin D₃ has reduced [3]. Increasing age is not only related to a decrease in bone marrow depression and muscle strength but is also associated with marked changes in the immune and inflammatory responses [4]. Deficiency of vitamin D₃ causes metabolic bone diseases like osteomalacia and exacerbates osteoporosis, etc. [5]. The quality of life for menopausal women is one of the most critical health problems in the today world. Metabolic bone disorders like osteoporosis are mainly prevalent in post-menopausal women. Hormonal factors and rapid bone loss in post-menopausal women leads to an increased risk of fractures [6]. Hence, the serum calcium and Alkaline Phosphatase (ALP) levels in post-menopausal women are the main two vital biochemical markers of bone metabolism. However, bone-specific ALP is the most important marker for osteoblast differentiation [7]. Further, it is generally accepted that an increased calcium intake along with an adequate source of vitamin D is important for maintaining good bone health. Vitamin D also plays an important role in maintaining an adequate level of serum calcium and phosphorus. Therefore, vitamin D has a great impact in forming and maintaining strong bones [8,9]. Bone strength depends on the quality, geometry, shape, micro architecture, turnover, mineral content, and the collagen content. Collagen is the major structural protein responsible for bone calcification. In the aging state, the mechanical properties of the bones become impaired and the bones

Abbreviations

MG-63: Human Bone Osteosarcoma Cells; ALP: Alkaline phosphatase; CAM: Complementary and alternative medicine; NHIS: National Health Interview Survey; NCCIH: National Center of Complementary and Integrative Health; DMEM: Dulbecco’s Modified Eagle’s Medium; FBS: Fetal Bovine Serum; ATCC: American Type Culture Collection; UT: Untreated; BT: Biofield Energy Treated; TI: Test Item

get fragile, that causes various clinical disorders associated with bone collagen abnormalities and bone fragility, such as osteogenesis imperfecta and osteoporosis [10,11].

In recent years, several scientific reports and clinical trials have revealed the useful effects of Biofield Energy Treatments, which have shown to enhance immune function in cases of cervical cancer patients via therapeutic touch [12], massage therapy [13], etc. Complementary and Alternative Medicine (CAM) therapies are now rising as preferred models of treatment, among which Biofield Therapy (or Healing Modalities) is one approach that has been reported to have several benefits to enhance physical, mental and emotional human wellness. However, as per the data of 2012 from the National Health Interview Survey (NHIS), which indicated that the highest percentage (17.7%) of the Americans used dietary supplements as a complementary health approach as compared with other practices in past years. The National Center of Complementary and Integrative Health (NCCIH) has recognized and accepted Biofield Energy Healing as a CAM health care approach in addition to other therapies, medicines and practices such as natural products, deep breathing, yoga, Tai Chi, Qi Gong, chiropractic/osseopathic manipulation, meditation, massage, special diets, homeopathy, progressive relaxation, guided imagery, acupressure, acupuncture, relaxation techniques, hypnotherapy, healing touch, movement therapy, pilates, Rolfing structural integration, mindfulness, Ayurvedic medicine, traditional Chinese herbs and medicines, naturopathy, essential oils, aromatherapy, Reiki, and cranial sacral therapy. Human Biofield Energy has subtle energy that has the capacity to work in an effective manner [14]. CAM therapies have been practiced worldwide with reported clinical benefits in different health disease profiles [15]. This energy can be harnessed and transmitted by the experts into living and non-living things via the process of Biofield Energy Healing. Biofield Energy Treatment (The Trivedi Effect) has been published in numerous peer-reviewed science journals with significant outcomes in many scientific fields such as cancer research [16,17], microbiology [18-21], biotechnology [22,23], pharmaceutical science [24-27], agricultural science [28-31], materials science [32-35], nutraceuticals [36,37], skin health, human health and wellness.

Based on the literature information and importance of vitamin D₃ on bone health, the authors sought to evaluate the impact of the Biofield Energy Treatment (The Trivedi Effect) on the test samples (vitamin D₃ and DMEM medium) for bone health activity with respect to the assessment of different bone health parameters like ALP, collagen content, and bone mineralization using standard assays in MG-63 cells.

Materials and Methods

Chemicals and reagents

Antibiotic solution (penicillin-streptomycin) was procured from HiMedia, India, while 3-(4,5-dimethyl-2-thiazoyl)-2,5-diphenyl-2H-tetrazolium (MTT), Direct Red 80, and Ethylenediaminetetraacetic acid (EDTA) were purchased from Sigma, USA. Fetal Bovine Serum (FBS) and Dulbecco’s Modified Eagle’s Medium (DMEM) were purchased from Life Technology, USA. Rutin hydrate was purchased from TCI, Japan, while vitamin D₃ (denoted as test item) and L-ascorbic acid were obtained from Sigma-Aldrich, USA. All the other chemicals used in this experiment were analytical grade procured from India.

Cell culture

The human bone osteosarcoma cells (MG-63) were used as the test system in the current study. The MG-63 cells were maintained under the DMEM growth medium for routine culture and supplemented with 10% FBS. Growth conditions were maintained as 37 °C, 5% CO₂ and 95% humidity and sub-cultured by trypsinisation followed by splitting the cell suspension into fresh flasks and supplementing with fresh cell growth medium. Three days before the start of the study (i.e., day -3), the growth medium of near-confluent cells was replaced with fresh phenol-free DMEM, supplemented with 10% charcoal dextran stripped FBS (CD-FBS) and 1% penicillin-streptomyacin [38].

Experimental design

The experimental groups consisted of cells in baseline control (untreated cells), vehicle control groups (0.05% DMSO with Biofield Energy Treated and untreated DMEM), a positive control group (rutin hydrate) and experimental test groups. The experimental groups included the combination of the Biofield Energy Treated and untreated vitamin D₃/DMEM. It consisted of four major treatment groups on specified cells with UT-DMEM + UT-Test item, UT-DMEM + Biofield Energy Treated test item (BT-Test item), BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item.

Consciousness energy healing treatment strategies

The test item (vitamin D₃) and DMEM were divided into two parts. One part each of the test item and DMEM were treated with the Biofield Energy (also known as The Trivedi Effect) and coded as the Biofield Energy Treated items, while the second part did not receive any sort of treatment and was defined as the untreated samples. This Biofield Energy Healing Treatment was provided by Jagdish Singh, who participated in this study and performed the Biofield Energy Healing Treatment remotely for ~5 minutes. Biofield Energy Healer was remotely located in the USA, while the test samples were located in the research laboratory of Dabur Research Foundation, New Delhi, India. The Biofield Energy Treatment was administered for 5 minutes through the healer’s unique Energy Transmission process remotely to the test samples under laboratory conditions. Biofield Energy Healer (Jagdish Singh) in this study never visited the laboratory in person, nor had any contact with the Test item and medium. Further, the control group was treated with a sham healer for comparative purposes. The sham healer did not have any knowledge about the Biofield Energy Treatment. After that, the Biofield Energy Treated and untreated samples were kept in similar sealed conditions for experimental study.

Determination of non-cytotoxic concentration

The cell viability test was performed by MTT assay in the human bone osteosarcoma cell line (MG-63). The cells were counted and plated in 96-well plates at the density corresponding to 5 X 10⁴ to 10 X 10⁴ cells/well/180 µL of cell growth medium. The above cells were incubated overnight under growth conditions and allowed cell recovery and exponential growth, and then they were subjected to serum stripping or starvation. The cells were treated with the testitem, DMEM, and the positive control. The untreated cells served as baseline control. The cells in the above plate (s) were incubated for a time point ranging from 24 to 72 hours in CO₂ incubator at 37 °C, 5% CO₂, and 95% humidity. Following incubation, the plates were
taken out and 20 µL of 5 mg/mL of MTT solution was added to all the wells followed by an additional incubation for 3 hours at 37 °C. The supernatant was aspirated and 150 µL of DMSO was added to each well to dissolve formazan crystals. The absorbance of each well was read at 540 nm using a Synergy HT micro plate reader, BioTek, USA. The percentage cytotoxicity at each tested concentration of the test substances was calculated using the following Equation 1:

\[\% \text{ Cytotoxicity} = \left(\frac{1 - X}{R} \right) \times 100 \]

Where, \(X \) = Absorbance of treated cells; \(R \) = Absorbance of untreated cells

The percentage cell viability corresponding to each treatment was then being obtained using the following Equation 2:

\[\% \text{ Cell Viability} = 100 - \% \text{ Cytotoxicity} \]

The concentrations exhibiting ≥70% Cell viability was considered as non-cytotoxic [39].

Assessment of Alkaline Phosphatase (ALP) activity

The cells were counted using a hemocytometer and plated in a 24-well plate at the density corresponding to 1 x 10⁴ cells/well in phenol free DMEM supplemented with 10% CD-FBS. Following the respective treatments, the cells in the above plate were incubated for 48 hours in CO₂ incubator at 37 °C, 5% CO₂ and 95% humidity. After 48 hours of incubation, the plates were taken out and processed for the measurement of ALP enzyme activity. The cells were washed with 1X PBS and lysed by freeze thaw method i.e., incubation at -80 °C for 20 minutes followed by incubation at 37 °C for 10 minutes. To the lysed cells, 50 µL of substrate solution i.e., 5 mM of p-Nitrophenyl Phosphate (pNPP) in 1M diethanolamine and 0.24 mM magnesium chloride (MgCl₂) solution (pH 10.4) was added to all the wells followed by incubation for 1 hour at 37 °C. The absorbance of the above solution was read at 405 nm using Synergy HT micro plate reader (Biotek, USA). The absorbance values obtained were normalized with substrate blank (pNPP solution alone) absorbance values. The percentage increase in ALP enzyme activity with respect to the untreated cells (baseline group) was calculated using Equation 3:

\[\% \text{ Increase in ALP} = \left(\frac{X - R}{R} \right) \times 100 \]

Where, \(X \) = Absorbance of cells corresponding to positive control and test groups; \(R \) = Absorbance of cells corresponding to baseline group (untreated cells)

Assessment of collagen synthesis

The MG-63 cells were counted using a hemocytometer and plated in 24-well plate at the density corresponding to 1 x 10⁴ cells/well in phenol free DMEM supplemented with 10% CD-FBS. Following the respective treatments, the cells in the above plate were incubated for 48 hours in CO₂ incubator at 37 °C, 5% CO₂ and 95% humidity. After 48 hours of incubation, the plate was taken out and the amount of collagen accumulated in MG-63 cells corresponding to each treatment was measured by Direct Sirius red dye binding assay. In brief, the cell layers were washed with PBS and fixed in Bouin’s solution (5% acetic acid, 9% formaldehyde and 0.9% picric acid) for 1 hour at Room Temperature (RT). After 1 hour of incubation, the above wells were washed with mille Q water and air dried. The cells were then stained with Sirius red dye solution for 1 hour at RT followed by washing with 0.01 N HCl to remove unbound dye. The collagen dye complex obtained in the above step was dissolved in 0.1 N NaOH and absorbance was read at 540 nm using Biotek Synergy HT micro plate reader. The level of collagen was extrapolated using standard curve obtained from purified Collagen Bornstein and Traub Type I (Sigma Type III). The percentage increase in collagen level with respect to the untreated cells (baseline group) was calculated using Equation 4:

\[\% \text{ Increase in collagen levels} = \left(\frac{X - R}{R} \right) \times 100 \]

Where, \(X \) = Collagen levels in cells corresponding to positive control and test groups; \(R \) = Collagen levels in cells corresponding to baseline group (untreated cells)

Assessment of bone mineralization by alizarin red s Staining

The MG-63 cells were counted using a hemocytometer and plated in 24-well plate at the density corresponding to 10 x10³ cells/well in phenol free DMEM supplemented with 10% CD-FBS. Following the respective treatments, the cells in the above plate were incubated for 48 hours in CO₂ incubator at 37 °C, 5% CO₂ and 95% humidity to allow cell recovery and exponential growth. Following overnight incubation, the above cells were subjected to serum stripping for 24 hours. The cells were then treated with non-cytotoxic concentrations of the test samples and positive control. After 3 to 7 days of incubation with the test samples and positive control, the plates were taken out, cell layers processed further by staining with Alizarin Red S dye. The cells were then fixed in 70% ethanol for 1 hour, after which Alizarin Red solution (40 µm; pH 4.2) was added to the samples for 20 minutes with shaking. The cells were washed with distilled water to remove unbound dye. For quantitative analysis by absorbance evaluation, nodules were solubilized with 10% cetylpyridinium chloride for 15 minutes with shaking. Absorbance was measured at 562 nm using Biotek Synergy HT micro plate reader. The percentage increase in bone mineralization with respect to the untreated cells (baseline group) was calculated using the following Equation 5:

\[\% \text{ Increase} = \left(\frac{X - R}{R} \right) \times 100 \]

Where, \(X \) = Absorbance in cells corresponding to positive control or test groups; \(R \) = Absorbance in cells corresponding to untreated cells

Statistical analysis

All the values were represented as percentage of the respective parameters. For statistical analysis Sigma-Plot (version 11.0) was used as a statistical tool. Statistically significant values were set at the level of \(p \leq 0.05 \).

Results and Discussion

MTT assay

Cell-based assays are used for the assessment of cell proliferation or cytotoxicity [40,41]. The MTT tetrazolium assay has been widely...
The effect of the test samples on Alkaline Phosphatase (ALP) activity in MG-63 cells is shown in Figure 2. The level of ALP was increased by 20.50% in the Vehicle Control (VC) group compared to the untreated cells group. The ALP activity was increased by 38.78%, 43.61%, and 80.92% in the positive control group at the concentration of 0.01, 0.1, and 1 µg/mL, respectively in a dose-dependent manner compared to the untreated cells group. The level of ALP was significantly increased by 26.44%, 52.83%, and 84.39% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 50 µg/mL compared to the UT-DMEM + UT-Test item group. Moreover, the level of ALP was significantly increased by 130.51%, 84.39%, and 67.51% in the UT-DMEM + BT-Test item, UT-DMEM + UT-Test item group, and BT-DMEM + BT-Test item groups, respectively at 10 µg/mL, compared to the UT-DMEM + UT-Test item group. Additionally, the level of ALP was significantly increased by 13.37%, 17.81%, and 42.01% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 50 µg/mL compared to the UT-DMEM + UT-Test item group. At higher concentration (100 µg/mL), the level of ALP was also significantly increased by 117.37% and 12.29% in the BT-DMEM + UT-Test item and BT-DMEM + BT-Test item groups, respectively than untreated group (Figure 2). Overall, the Consciousness Energy Healing Treated (The Trivedi Effect) test item group (i.e., vitamin D₃) showed an improved synthesis of ALP level in the human osteosarcoma cells with respect to the untreated item groups at 50 µg/mL. The ALP activity is essential for the bone mineralization and considered a useful biochemical marker for bone formation [43]. Here, it was revealed that the Consciousness Energy Healing Treated vitamin D₃ significantly increased the level of ALP expression, which might be very helpful to the patients suffering from various bone-related disorders.

Assessment of collagen activity

The effect of the test samples on the collagen activity in MG-63 cell line is shown in Figure 3. The Vehicle Control group (VC) showed the level of collagen activity as 2.2% compared to the untreated cells group. The synthesis of collagen was significantly increased by 24%, 50.29%, and 47.71% at 0.01, 0.1, and 1 µg/mL, respectively in the positive control (rutin) group compared to the untreated cells group. The collagen synthesis was significantly increased by 95.03% and 43.97% in the BT-DMEM + UT-Test item and BT-DMEM + BT-Test item groups, respectively at 10 µg/mL, compared to the UT-DMEM + UT-Test item group. Moreover, the level of collagen was significantly increased by 171.30%, 168.51%, and 110.48% in the UT-DMEM + UT-Test item group. At higher concentration (100 µg/mL), the level of collagen was significantly increased by 13.37%, 17.81%, and 42.01% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 50 µg/mL compared to the UT-DMEM + UT-Test item group. Additionally, at 100 µg/mL collagen concentration was significantly elevated by 88.49%, 280.08%, and 63.28% in the in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively, compared to the UT-DMEM + UT-Test item group (Figure 3).

Altogether, the Consciousness Energy Healing based test item group (i.e., vitamin D₃) showed an improved synthesis of collagen content in the human osteosarcoma cells with respect to all the treatment groups. Type I collagen is the major structural protein in extra cellular matrix component responsible for bone calcification.
and also promoting osteoblast differentiation [44]. Here, the Biofield Energy Treated vitamin D₃ significantly improved the level of collagen which could be beneficial to maintain a healthy bone. Overall, The Trivedi Effect - Consciousness Energy Healing Treatment modality showed a significant improvement of the collagen level in human osteosarcoma cells. Thus, it is assumed that The Trivedi effect has the potential to improve the bone health in various skeletal disorders.

Bone mineralization

Reduction of bone properties and an increased risk of bone fracture is due to deficiency of vitamin-D and calcium [45]. Moreover, vitamin D co-regulates calcium homeostasis by influencing intestinal calcium absorption, renal calcium reabsorption and bone resorption by osteoclasts [46,47]. The effect of test items on bone mineralization in MG-63 cells is shown in Figure 4. The vehicle control group showed 19.4% increased bone mineralization as compared to the untreated cells group. The positive control (rutin) showed 50.46%, 86.16%, and 130.60% increased of percent bone mineralization at 5, 10 and 25 μg/mL, respectively compared to the untreated cells group in a concentration-dependent manner. The percent bone mineralization was significantly raised by 31.62%, 19.89%, and 16.32% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item group, respectively at 10 μg/mL compared to the UT-DMEM + UT-Test item group. Further, a noticeably increased the percentage of bone mineralization was observed by 30.07%, 27.95%, and 6.78% in the UT-DMEM + BT-Test item, BT-DMEM + UT-Test item, and BT-DMEM + BT-Test item groups, respectively at 50 μg/mL with respect to the UT-DMEM + BT-Test item group, respectively compared to the untreated cells group at 100 μg/mL.

Further it also is useful in various inflammatory disorders such as Asthma, Ulcerative Colitis, Alzheimer’s disease, Atherosclerosis, Dermatitis, Diverticulitis, Hepatitis, and Irritable Bowel Syndrome. Additionally, Trivedi’s proprietary Therapy would be very effective as an anti-stress, anti-arthritic, anti-osteoporosis, anti-apoptotic, wound healing, anti-cancer, anti-psychoct and anti-fibrotic actions stress management and prevention, and anti-aging by improving overall health, Parkinson’s Disease and stress etc. to modulate the immune system by improving overall health.

References

