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Positive Impact of  Fish 
Oil on Diabetic and 
Hypercholestrolemic Skin 
Disorders

Abstract
The integumentary system is soft a highly organized structure 

of epidermis and dermis, which is tightly conjugated with each 
other. The epidermis represents the outer covering and is formed of 
epidermal layers, Langerhan, Merkel cell, melanocytes and immune 
cells travestied by hair follicles. Sweat glands are infiltrated throughout 
the integumentary layers, including fibroblast, and mast cells. Hair 
follicles with complex structure, characterized with their complicated 
structures and their internal structure contains immune cells during 
differentiation and possesses sebaceous glands for sebum production-
the antibacterial components. A calcium and potassium ion in close 
association with lipid and cholesterol represents the main elements in 
epidermal permeability. Keratinocytes represent the elementary part 
for cholesterol and lipid formation. Cholesterol overload led to altered 
cell structure, hair follicle formation, integrity of blood vessels and 
dermal collagen. It caused deformation of hair follicles and disrupted 
epidermal structures and keratinocyte formation leading to impairing 
keratinization. Fish oil represents one of the main food additives 
having biomedical importance. Eicosapentaenoic acid (EPA) and 
docosahexaenoic acid (DHA) represent their main components and 
play a great role in promoting permeability, growth and differentiation 
of the stratum corneum and inhibition of proinflammatory cytokines 
(tumor necrosis factor-α, interferon-γ, and interleukin-12 which improve 
the diabetic and hypercholesterolemic complications

Keywords: Skin; Diabetes; Cholesterol overload; Fish oil

Abbreviations
AGEs: Advanced Glycation End Products; BL: Basal Lamina; 
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ED: Epidermal Dermal junction; EPU: Epidermal Proliferative 
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Follicles; (HMG)-CoA: Hydromethylglutaryl Coenzyme A; HDL: 
High Density Lipoprotein; HC: Hair Cortex; IRS: Inner Root Sheath; 
IF: Intermediate Filament; K: Keratinocytes; LDL: Low-Density 
Lipoprotein; LEF1: Lymphoid Enhancer-Binding Factor-1; MC: Mast 
Cells; MMPs: Matrix Metalloproteinases; ORS: Outer Root Sheath; 
UVR: Ultraviolet Radiation; S-CoA: Succinyl-CoA; SC: Stratum 
Corneum; SGl: Sebaceous Gland; SG: Stratum Germinativum; Shh: 
Sonic hedgehog; TRPV3: Transient Receptor Potential Channel; 
TA: Transit Amplifying; TGFβs: Transforming Growth Factors β; 
VCAM-1: Vascular Cell Adhesion Molecule 

Introduction
Normal skin

Human skin cover body surfaces and protects all body organs 

against environmental stress (temperature, electrolyte/fluid balance, 
chemical) and microbial infection [1]. It is composed of epidermis, 
dermis, and subcutaneous tissue. 

Epidermis: The epidermis is a non-vascularized multilayered 
stratified squamous epithelium, renewed throughout the life by 
the cornification and keratinization process. Leukocytes such as 
Langerhans cells and T cells in the epidermis and macrophage and 
mast cells in the dermis are the main components in mouse skin. 
Leukocytes are detected within or around hair follicles (HFs) which 
represent a reservoir of leukocyte populations in the skin [2].

The outermost Stratum corneum is a cornified layer of multilayered 
sheets of soft and hard keratin. The S. granulosum, a 3-5 sheets granular 
layer of keratinocytes producing keratohyalin granules involving in 
keratinization. Keratinocytes maintain epidermal homeostasis [3] as 
well as their cytoplasm is rich in keratohyalin filaments (8-15 nm) 
which form the cytoskeleton elements. Merkel cell and melanocytes 
are main elements within stratum germinativum [4]. Aged and photo-
aged skin exhibited a cholesterol-dominant barrier, while atopic 
dermatitis is associated with ceramide-dominance and a dominance 
of free fatty acids is associated with psoriasis [5]. 

The epidermal-dermal junction is a highly dynamic and complex 
structure that is important in the regulation of cell adhesion, 
differentiation, and motility; in the transmission of extracellular 
signals and growth factors; and in the formation of permeability 
barriers. It is facilitated the proliferative capacity of the epidermis. 
It is composed of four components including the basal cell plasma 
membranes with its hemidesmosomes, electron lucent lamina lucida, 
basal lamina and sub-basal fibrous components [6,7]. The epidermal 
basement membrane is also rich in proteoglycans and other proteins 
that act as molecular sinks for growth factors, such as TGFβs, which 
restrict epidermal proliferation, and TGFα/EGFs and insulin growth 
factors [8].

Dermis: The dermis is located under the epidermis and is 
attached to it by the dermo-epidermal junction that gives skin 

Hassan IH El-Sayyad1*, Mohamed E. Abdraboh1 and 
Ahmad MA Aljebali2

1Department of Zoology, Faculty of Science, Mansoura University, 
Egypt
2Department of Zoology, Faculty of Science, Omar Al Mukhtar 
University, Bayda, Libya

*Address for Correspondence
Hassan IH El-Sayyad, Department of Zoology, Faculty of Science, 
Mansoura University, Mansoura, Egypt, Tel: 0020502254850; E-mail: 
elsayyad@mans.edu.eg

Submission: 19 September, 2015
Accepted: 24 November, 2015
Published: 27 November, 2015

Copyright: © 2015 El-Sayyad et al. This is an open access article 
distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Review ArticleOpen Access

Journal of

Nutrition and 
Health



Citation: El-Sayyad HIH, Abdraboh ME, Aljebali AMA. Positive Impact of Fish Oil on Diabetic and Hypercholestrolemic Skin Disorders. J Nutri Health. 
2015;1(2): 8.

J Nutri Health 1(2): 8 (2015) Page - 02

ISSN: 2469-4185

enhanced mechanical stability and form niches required for activating 
proliferation and differentiation of keratinocyte for healing of skin 
appendages (Figures 1 and 2) [9]. 

Dermal  connective tissue composed of extracellular 
matrix proteins such as collagen, elastic fibers, fibronectin, 
glycosaminoglycans, and proteoglycans [10]. Dermal papillae are 
present at the base of hair follicles forming a dense extracellular 
matrix which undergoes extensive changes in concert the hair cycle. A 
presumptive papilla is one of hair follicle formation and it is probable 
that the component cells have an inductive effects in the genesis of 
hair follicles in the embryo [9,11] (Figure 1).

Hair follicle: Hair follicle morphogenesis begins early in 
embryonic development as dermal cells populate the skin, and 
signals from the epithelium induce the formation of dermal papillae 
(DP), the mesenchymal component of the hair follicle. Epidermal 
invagination form the primordium of hair placode followed by 
differentiation and down growth forming the hair germs (Figure 1) 
and then hair pegs. The follicle cells are highly proliferated especially 
in root region. At birth, the hairs emerged the skin surface, and the 
sebaceous gland (SG) cells become established in the upper segment 
of the root (Figure 2) [9,11].

The hair follicle undergoes cyclic changes and regeneration 
during life. Matrix cells proliferated rapidly during the growth 
(anagen) phase of the cycle but then suddenly undergo apoptosis. 
During anagen, the follicle regenerates, and required a reservoir of 
follicle stem cells [12] (Figure 3). 

Sebaceous glands are present closely to the hair follicles forming 
a pilosebaceous unit. It is located in the upper portion of the hair 

follicle. Human sebum composed of cholesterol, cholesteryl esters, 
squalene, fatty acids, diglycerides and triglycerides, and wax esters 
[13]. The hair follicle (HF) and the sebaceous gland (SG) constitute 
two closely associated integral parts and contributed to biological and 
physiological function of mammalian skin [14].   

Mast cells are important modulators of hair follicle cycling, 
specifically during anagen development. The distribution of mast 
cells in the skin varies in its distribution located mainly close to the 
blood vessels, smooth muscle cells, hair follicles, and nerve ending 
[15]. Mast cells are capable of the synthesis of a large number of 
pro- and anti-inflammatory mediators, including cytokines, growth 
factors and bioproducts of arachidonic acid metabolism[16,17]. The 
number of mast cells in the skin of the rat increases from the 17th day 
of the embryonic period until parturition and especially around the 
hair follicle pulp. The dermal area is rich in blood vessels. Heparin 
was found to release by mast cells at normal concentration modulate 
growth and differentiation of matrix metalloproteinases [18,19]. 

Lipid and cholesterol metabolism: Lipids play a main role in 
the maintenance of skin structure and function. Stratum corneum 
is composed mainly of ceramides, cholesterol, and free fatty acids 
which promote cell permeability [20]. Cholesterol is originated in 
the epidermal keratinocytes, and promotes cornification of stratum 
corneum in the late stages of epidermal differentiation [21]. 

 Role of Diabetes & Hypercholesterolemia on Skin
Diabetes mellitus is a heterogeneous group of disorders 

characterized by chronic hyperglycemia and deficiency in the 
production and secretion or action of insulin, which leads to severe 
complications [22]. Obesity and diabetes are considered chronic 

Figure 1: Photomicrographs of semi thin section of skin during prenatal development of rat. A) 13 d-old prenatal showing primitive epidermis with stratum 
germinativum (SG) and stratum spinosum (Sp) as well as primordium hair peg. B) and C) 15 d-old prenatal showing stages of hair follicles. Stratum granulosum 
(SGr) with keratohyalin granules and keratinocytes. D) 19-d-old prenatal showing development of stratum corneum (SC) and epidermal-dermal junction (EDJ). E) 
and F) 19-d-old prenatal showing stages of hair follicles with keratinization of inner root sheath (HF) and presence of sebaceous glands (SGl). G) 19-d-old prenatal 
showing stages of cross sections of hair follicles characterized by connective tissue sheath (CTS), basal lamina (BL), surface outer root sheath (SOS), Henle´s 
layer (HL) and keratinized inner root sheath (KZ) and hair cortex (HC). H) 19d-old prenatal showing aggregation of mast cells around hair follicle. I) 19 d-old embryo 
showing sebaceous gland (SGl) attached to hair follicles [9,11].
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inflammatory diseases, largely due to the inflammatory cells in 
white adipose tissue -including macrophages [23], B cells [24] and 
eosinophils [25] which promote cell-cell interaction, by releasing cell 
growth factors within adipose tissue. Diabetic rat showed apparent 
thinning of skin epidermis [26] and dermis associated with numerical 
reduction of mast cells [27], as well as decreased extracellular 
components of laminin, fibronectin and collagen [28]. There was a 
marked reduction of basal cell proliferation, epidermal DNA and 
stratum corneum turnover [29].

Perez and Kohn reported several skin disorders in diabetes 
mellitus such as necrobiosis lipoidica, diabetic dermopathy, diabetic 
bullae, yellow skin, eruptive xanthomas and perforating disorders 
[30]. scleredema diabeticorum is a skin complication of diabetes with 
deposits of collagen and aminoglycans in the dermis. Type 1 or II 
diabetes led to the development of scleredema in more than 50% of 
cases [31]. Several studies confirmed that the rates of elevated total 
cholesterol level and low-density lipoprotein (LDL) was reported 
in diabetic patients [32,33] and experimental animals [34]. Diabetic 
patients exhibited 2- to 6-fold increase of atherosclerosis [35] and 
contributed mainly to increase of cholesterol synthesis [36]. Fahien 
and MacDonald reported that succinate esters are potent insulin 
secretagogues through the generation of succinyl-CoA (S-CoA) 
which stimulated the formation of hydromethylglutaryl (HMG)-
CoA, and mevalonate-biosynthetic precursors of cholesterol [37]. 
Several authors have shown that cholesterol absorption is decreased 
and that cholesterol biosynthesis is increased in diabetes [38,39]. 

Following studies the skin of diabetic mice and human patients, 
Bermudez et al. reported down-regulated expression of genes 

involved in collagen synthesis in murine diabetic skin [40]. These 
findings may illustrate the delay of wound healing. Both diabetes 
& atherosclerosis may interfere with skin microcirculation [41]. By 
accelerating vascular permeability [42], alterations in erythrocyte 
velocity [43], sequestration of leukocytes in the microcirculation [44]. 
These alterations are mainly described as the result of hyperglycemia 
and increased accumulation of advanced glycation end products [45].  

Beer et al. reported that diabetes increased vascular complications 
such as increased levels of plasma von Willebrand factor, tissue factor 
pathway inhibitor and the soluble form of thrombomodulin [46,47].

Although hypercholesterolemia represents a major public health 
problem, yet no available studies are concerned with skin disease 
except recently by Pietroleonardo and Ruzicka [48] who mentioned 
that familial hypercholesterolemia was associated with multiple types 
of xanthomas occur, such as tendinous, tuberous, subperiosteal, and 
xanthelasma as well as multiple xanthomas skin lesions in fingers, 
hands, elbows, knee, and feet. The matrix metalloproteinases (MMPs) 
are a family of zinc-binding endopeptidases capable of degrading 
extracellular matrix (ECM) components including collagen and 
proteoglycans [49]. MMPs are also involved in modulation of 
growth factor and cytokine function [50]. In human skin, various 
MMPs are expressed in several dermal diseases or in cutaneous 
wound healing [51,52]. MMP-9 is produced by keratinocytes, 
leukocytes, macrophages, and epithelial tumoral cells [53]. MMP-9 
also contributes to keratinocyte hyperproliferation and progression 
to invasive cancer in a mouse model of oncogene-derived skin 
carcinogenesis [54]. 

Figure 2: Transmission electron micrographs of skin of 19 d-old rat embryo. A) and B) Epidermis showing stratum granulosum and stratum corneum. Stratum 
granulosum showing showing keratinocytes (K) and keratohyalin granules. C) Hair follicles (HF) with grouping macrophages (M). D) showing fibroblasts (F) and 
mast cell (MC) [9,11].
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Hypercholesterolemia exhibited a massive reduction of matrix 
metalloproteinases (MMPs) expression of human skin through ERK 
and JNK-dependent pathway [55]. Fetal skin disease of diabetic and 
hypercholesterolemic mother is a public health important disease 
as a result of widespread of both diseases with different maternal 
complications. The author reported that maternal diabetes or 
hypercholesterolemia enhanced deformations of fetal skin including 
retarded cornification of epidermis and differentiation of hair follicles 
of 15 and 19 days fetuses were following light, scanning (SEM) and 
transmission electron microscopy (TEM). Degeneration of stratum 
granulosum layer in consistent with reduction of keratinocytes was 
observed by reduction of cornification. Stratum germinativum and 
spinosum were altered and associated with massive degeneration 
of hair follicles. TEM illustrated deterioration of keratinocytes with 
apparent reduction of keratohyalin granules, the main element 
of stratum corneum formation as well as dramatically altered the 
differentiation of both stratum germinativum and spinosum cells 
contributed for genesis of hair follicles [56].

Ichthyosis is one of the skin disease resulted from deficiency of 
cholesterol in cell membranes, coupled with the accumulation of 
toxic sterol precursors, which impaired epidermal barrier function 
[57]. Cholesterol crystal embolism or atheroembolism is a disease 
associated with a high mortality and characterized by swelling of the 
venules due to obstruction of blood capillaries [58].  

Mast cells (MCs) are inflammatory cells localized mainly in the 
dermal region where pathogens, allergens, and other environmental 
agents present [59]. 

Fish-Oil and Skin Diseases
Fish oil composed mainly of eicosapentaenoic acid (EPA; 20:5 n-3) 

and docosahexaenoic acid (DHA; 22:6 n-3. Omega-3 and -6 PUFAs 
are important components promoting cell integrity, development, 
maintenance, and function. Docosahexaenoic acid (DHA) showed 
a potent anti-inflammatory properties and high significance role 
in improvement of Alzheimer’s disease, macular degeneration, 
Parkinson’s disease, and other brain disorders [60]. Omega-3 fatty 
acids inhibited arachidonic acid synthesis and incorporation into 
phospholipids, decreased platelet production of thromboxane A, 
(TXA,), a potent vasoconstrictor and inducer of platelet aggregation, 
and increased production by platelets of TXA. EPA is used for 
synthesis of prostaglandin I, (PGI,), a potent vasodilator and inhibitor 
of platelet aggregation [61].

Experimental dogs received 220 mg/kg of a fish oil supplement 
once daily for 30 days revealed increased level of serum n-3 
polyunsaturated fatty acids as well as increased circulating 
concentration of adiponectin in healthy non-obese dogs [62]. 

Dietary fish oil facilitated incorporation of PUFA (Omega-3 fatty 
acids) in epidermal phospholipids and the epidermal levels. Epidermal 
phospholipids are conjugated with eicosapentaenoic acid (EPA) and 
docosahexaenoic acid (DHA) forming 15-hydroxyeicosapentaenoic 
acid (15-HEPE) and 17-hydroxydocosahexaenoic acid (17-HDoHE). 
These components caused apparent inhibition of leukotriene [63,64].  

There were apparent depletion of type I tropocollagen, COL1A1 
mRNA, hyaluronan, and hyaluronan synthase (rhas) 2 mRNA in 
Sprague-Dawley rats fed on high fat diet. These may interfere with 
dermal structure and function [65]. Oral administration of high level 
of omega-3 fatty acids significantly reduced the severity of dermatitis 
and the thickening of epidermis/dermis in a NC/Nga murine atopic 
model via decrease the production of interleukin (IL)-4, IL-5 and IL-
13 in a dose-dependent manner, as well as mRNA expression of their 
genes, in activated MC/9 mast cells and bone marrow-derived mast 
cells [66].

Fish oil administrations were also associated with improvement 
of atopic dermatitis, psoriasis, acne vulgaris, systemic lupus 
erythematosus, non-melanoma skin cancer, and melanoma. Their 
improvements involve promoting of the permeability, maturation 
and differentiation of the stratum corneum and inhibition of 
proinflammatory cytokines (tumor necrosis factor-α, interferon-γ, 
and interleukin-12), inhibition of lipoxygenase and promotion of 
both wound healing, and apoptosis in melanoma cells [67,68].

Dietary intake of fish oil led to marked improvement of cutaneous 
nerve conduction velocity in diabetic rat [69]. Diabetic mice received 
menhaden oil or resolvin D1 (metabolite of docosahexaenoic acid) 
revealed neurite outgrowth of dorsal root ganglion neurons [70] and 
ameliorated innervation and sensitivity of the skin of diabetic rats 
[71]. Dietary intake of vegetable oils, poultry, and fish and seafood 
was associated with improvement of microvasculature of skin of 
healthy subjects [72].

Fish Oil and Leptin and Adiponectin
Adipose tissue secretes a large number of hormone-like 

peptides called adipokines such as leptin and adiponectin [73]. Both 
adiponectin and leptin promote various biological functions and 
could play an important role in lipid and glucose metabolism [74]. 
Leptin, is a 16 kDa anti-obesity hormone containing 167 amino acids, 
produced by adipocytes. Its receptor was expressed in epidermal 
cells of human and mouse skin. Topical administration of leptin 
significantly promoted wound healing, increased angiogenesis in 
dermis and activated proliferation and differentiation of epidermal 
keratinocytes [75]. Leptin protein expression was significantly higher 
in both diabetic and non-diabetic foot ulcers [76].

Adiponectin, recognized as a metabolic mediator of insulin 
sensitivity. Mice with adiponectin deficiency showed severe 
psoriasiform skin inflammation with enhanced infiltration of IL-17-
producing dermal Vγ4+γδ-T cells [77].

Rats fed on fish oil exhibited significant increase of IL-1α and 

Figure 3: Diagrammatic of hair follicle morphogenesis [17].

https://en.wikipedia.org/wiki/Venule
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plasma insulin [78]. Omega-3 fatty acids of marine origin exhibited 
strong hypolipidemic associated with a significant reduction of 
plasma insulin levels without changes in glucose tolerance [79].

Adiponectin is derived from adipose tissue and exhibited anti-
inflammatory and antiatherogenetic effects and improve insulin 
secretion in rodents [80] by increasing hepatic insulin activity 
[81]. Its plasma concentrations are depleted in obese and insulin-
resistant individuals, suggesting that these insulin-sensitizing effects 
may extend to humans [82]. Diet rich in fish oil improved the 
hyperlipidemic profiles and glucose homeostasis of rat fed on either a 
ketogenic diet [83] or fructose-rich diet [84] or sucrose rich diet [85].

Fish oil supplemented long-term rats fed on sucrose-rich diet 
for two improved the depletion of plasma leptin and adiponectin 
levels, insulin secretion, dyslipidemia, and adiposity [86]. Also, 
mice administered fish oil for 15 days possessed increase plasma 
adiponectin concentrations two- to threefold and their plasma level 
remain stable twofold higher for 7 days after replacement fish oil by 
the safflower oil diet [87].

Fish Oil & Reactive Oxygen Species
As we know that type I diabetes is a result of destruction of the 

pancreatic beta cells responsible for producing insulin. In humans, 
B cell destruction is apparently mediated by white cell production 
of active oxygen species. By the way, induced diabetes in animals by 
either the drugs alloxan or streptozotocin; results in the production 
of active oxygen species [88]. Lipid peroxidation and lipid-derived 
oxidized products have been reported in hypercholesterolemia. 
The levels of lipid- and water-soluble antioxidants were decreased 
comparing with increased oxidation of lipid peroxide and LDL [89]. 

Both obese and obese diabetic patients exhibited apparent 
increase of oxidative stress manifested by elevated level of plasma 
MDA (end product of lipid peroxidation) with increased level of 
plasma dicarbonyl comparing with depletion of glutathion and 
super oxide dismutase [90]. Obese and non-obese patients with acne 
vulgaris exhibited apparent increase of serum malonadialdhyde and a 
decrease of β-carotene, vitamins A, E and C and the activity of platelet 
monoamineoxidase [91]. There are several mechanisms by which 
obesity produces oxidative stress. One of it, the role of mitochondrial 
and peroxisomal oxidation of fatty acids, which involved liberation of 
ROS via oxidation reactions, while another is over-consumption of 
oxygen, which generates free radicals in the mitochondrial respiratory 
chain. High fat diets led to liberation of ROS through depletion of the 
activities of the antioxidant enzymes such as superoxide dismutase 
(SOD), catalase (CAT), and glutathione peroxidase (GPx) [92]. ROS 
such as hydrogen peroxide and superoxide are generated within the 
mitochondrial inner membrane, by leakage of the mitochondrial 
electron transport chain and rapidly react with oxygen to form free 
radicals [93].

Fish oil is the major source of omega-3 which composes of 
long-chain eicosapentaenoic (EPA) and docosahexaenoic (DHA) 
fatty acids. FOD significantly decreased the number of Fc receptor-
negative dendritic cells in cytospin-treated islets isolated from 
diabetic mice [94,95].

Eicosapentaenoic and docosahexaenoic acid supplementation 

exhibited increase of the high-density lipoprotein cholesterol and 
depletion of low density lipoprotein in vitro [96] and prevent lipid 
peroxidation [97,98] and increase oxidative defense glutathione 
reductase and glutathione peroxidase activities and blood glutathione 
levels in rabbits [99].

Rabbits fed a high cholesterol diet and fish oil supplementation 
promoted lipid peroxidation via decrease malondialdhyde and 
increased superoxide dismutase, which reflected a reduced free 
radical generation during a short-term coronary occlusion [100]. 
In vitro studies of endothelial cells revealed that Eicosapentaenoic 
acid decreased the glucose-mediated inhibition of nitrous oxide 
production [101]. Dietary omega-3 fatty acids increased SOD activity, 
NO levels and decreased TBARS [102]. 

Immuno staining of neonatal cutaneous sections revealed that 
antioxidant enzymes (catalase, SOD2, gluthatione peroxidase-1 
(GPx)) and ROS are localized predominantly to the epidermis. 
Keratinocyte subpopulations showed the lowest levels of antioxidant 
enzymes [103]. 

Diabetic rats supplemented fish oil elevated arachidonic acid 
(omega-6) in cell membrane phospholipids resulting in a reduction 
in free radicals production [104].

The authors finally concluded that diabetes and or 
hypercholesterolemia altered skin structure and function and fish 
oil-supplementation scavenge the free radicals and skin structure and 
function of rats subjected to diabetes and or hyper cholesterolemia. 
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