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Abstract
Antisense transcription is omnipresent occurring broadly in most 

living organisms. Growing evidence suggests the presence of non-
coding cis-antisense RNA’s that can silence gene expression. Recent 
studies also indicate the role of transcriptional interference in regulating 
expression of neighboring genes arranged in convergent orientation. 
A combination of transcriptional interference and cis-antisense RNA 
interaction has the potential to add multiple-levels of regulation which 
can allow such a system to have a tunable and complex higher-order 
system response to environmental stimuli. This presents an important 
insight into the functional role of antisense transcription. 

Antisense Transcription: A Widespread Occurrence in 
Genomes 

Proteins which regulate gene expression have been studied 
in great detail; however, only recently RNA is coming to light 
as a key regulatory molecule that controls gene expression [1]. 
The many pathways in which RNA can regulate gene expression 
include non-coding RNAs which cause epigenetic modifications 
[2], RNAs which interact with proteins to alter gene expression such 
as the CRISPR (clustered regularly interspaced short palindromic 
repeats)/Cas system [3,4], RNA interference in eukaryotes [5], and 
direct interaction between complementary antisense RNAs [6,7] 
that modify expression of genes participating in various cellular 
processes including physiological responses, housekeeping functions, 
metabolism, and pathogenic processes [1,7,8]. In particular, with the 
recent advent of RNA-sequencing technologies and tiling arrays, 
a large number of sense-antisense RNA transcripts have been 
reported in both prokaryotic [9-15] and eukaryotic genomes [16-19]. 
Approximately thousands of antisense gene pairs have been found in 
the human genome, many thought to be involved in life-threatening 
diseases including breast cancer [20], pancreatic cancer [21,22] and 
HIV [23]. Until recently bulk of bacterial genomes were considered to 
consist of protein-coding regions, however, this picture is changing 
drastically with exponential increase in identification of cis-antisense 
RNA in a range of bacteria and archea, including, Escherichia coli [9], 
Salmonella enterica [24], Mycoplasma pneumonae [14], Synechocystis 
sp. PCC 6803 [25], Lysteria spp. [13], Bacillus subtilis [26], Vibrio 
cholerea [12], Chlamydia trachomatis [27], Psuedomonas aeruginosa 
[28], Psuedomonas syringae [29], Staphylococcus aureus [30],  and 
Sinorhizobium meliloti [31]. Increasing knowledge and information 
of abundance of antisense genes has caused speculation that antisense 
transcription is an important hidden layer of regulation [16,32-34]. 

A pair of genes are said to be antisense to each other, when 
they are present on opposite strands of DNA (one on sense and 
other on the antisense strand), with corresponding promoters 
convergent to each other, such that there is a partial overlap between 
transcripts [Figure 1a-c]. Such convergent transcription results 
in production of complementary transcripts, also known as cis-
encoded sense-antisense transcripts or naturally occurring antisense 
RNAs (asRNAs) [34]. Two main mechanisms have been reported 
to operate among such sense and antisense transcripts, namely, 
transcriptional interference and antisense RNA interactions [1,35,36]. 
Transcriptional interference is defined as the suppressive influence 
of one transcriptional process on an adjacent transcriptional process 
occurring in cis due to RNA polymerase (RNAP) traffic along the 
DNA [35] and has been reported in a number of studies in both 
prokaryotic [32,37-39] and eukaryotic systems [33,40,41]. On the 
other hand, cis-encoded antisense RNAs generated from opposite 
strands of the DNA have the potential to form extensive base-pairing 
interactions with corresponding sense RNAs [42,43] and target 
them for either translational inhibition (Figure 1a), transcriptional 
attenuation (Figure 1b), or RNA degradation (Figure 1c) [36,44-46]. 

Much of the work on antisense transcription focuses either on 
the role of transcriptional interference alone or antisense interaction 
alone. Models have been created to individually characterize the 
effects of antisense interactions [1,7,46] or transcriptional interference 
[38,47,48] but little work has been reported on combined interference 
studies [32]. In this review, we look at both these mechanisms, and 
consider the prospect of higher order system behavior when both of 
these mechanisms occur simultaneously. 

Antisense RNAs and RNA Interaction Mechanisms in 
Bacteria 

cis-Antisense RNA is produced when transcription occurs from 
the DNA strand opposite to a transcriptional unit (Figure 1a-c). cis-
Antisense RNA’s tend to overlap either at the 5′ end (head to head 
overlap), such as the prgQ/prgX gene pair of E. faecalis [32], MgtC/
AmgR sense antisense pair in S. enterica [49], hok/sok toxin-antitoxin 
system in E. coli [50]; or at the 3′ end (tail to tail overlap), such as in 
the case of alr1690, which overlaps the adjacent gene all1691 gene 
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encoding the ferric uptake regulator in Cyanobacterium Anabaena sp. 
PCC 7120 [51] and tpxA/ratA sense-antisense pair in B. subtilis [8]. 
cis-antisense RNAs can exist is various sizes in naturally occurring 
systems, ranging between short antisense RNAs, such as the 69 nt 
Sar RNA of bacteriophage 22 [52], 77 nt SymR RNA of E. coli [53], 
77 nt OOP RNA of bacteriophage λ [54], and 104 nt Anti-Q RNA of 
E. faecalis [32], and long antisense RNA’s, such as the 1200 nt AmgR 
asRNA of S. enterica, 2 kb Anti2095 RNA of Lysteria monocytogenes 
[13], and 7kb MED4 RNA of Prochlorococcus spp. [55]. 

Similar to proteins, in order to be functional RNA molecules 
require specific secondary and tertiary structures [42,46,56,57]. 
Frequently, interaction between two or more RNA molecules is 
catalyzed via single stranded regions such as hairpins, stem loops 
and bulges [58]. Typically, binding of sense/antisense RNA can cause 
three kinds of outcomes: (i) translational inhibition due to blocking 
of the ribosome binding site [53], (ii) RNA degradation due to action 
of RNases (RNAses III, E, etc.) [46,59], and (iii) transcriptional 
attenuation due to structural changes which destabilize RNAP:RNA 

complex and consequently terminate transcription [60]. Translational 
inhibition is exemplified by the regulation of symE mRNA, encoding 
the toxin-like endonuclease SymE in E. coli, by the asRNA symR 
[53]. The symE/symR transcripts overlap at the 5′ end, and include 
the ribosomal binding site (RBS) and start site of symE (Figure 1a). 
The symE/symR duplex results in blocking of the RBS of symE, thus 
preventing translation of symE transcript. Similarly, in S. auerus 
binding of asRNA sprAIAS to the Shine-Delgarno sequence and AUG 
start site of sprAI mRNA prevents the translation of sprAI mRNA, thus 
inhibiting expression of the toxin SprAI [61]. A similar mechanism is 
shared by a number of Type I toxin-antitoxin systems, including hok/
sok gene pair in E. coli, tpxA/ratA gene pair in B. subtilis and RNA I/
RNA II systems in E. faecalis [8]. 

Transcriptional attenuation is exemplified by interaction of 
RNAβ with the fatDCBA mRNA to induce transcriptional termina-
tion after the fatA gene in the fatDCBA-angRT operon in Vibrio an-
guillarum [62] (Figure 1b). This results in high levels of expression of 
fatDCBA mRNA, and consequently low levels of expression of angRT 
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Figure 1: RNA regulatory mechanisms during antisense transcription. Sense and antisense RNA are indicated in black and grey respectively, the black 
block arrows represent protein coding regions/open reading frames (orf), 5′ UTRs are the regions upstream of the orf. Three regulatory mechanisms are shown. 
(a) Translational inhibition: In Escherichia coli, binding of asRNA symR to symE blocks the RBS of symE mRNA, preventing production of toxin-like endonuclease 
SymE. (b) Transcriptional attenuation: In Vibrio anguillarum binding of RNAβ to a nascent fatDCBA-angRT transcript induces premature termination after fatA gene, 
resulting in high expression of fatDCBA mRNA and low expression of angRT mRNA. (c) RNA degradation or cleavage: In Synechocystis sp. PCC 6803, binding of 
asRNA isiR to isiA mRNA induces degradation of the duplex.
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mRNA. In E. faecalis, interaction between the 104 nt short asRNA 
Anti-Q produced from the prgX operon and the complementary prgQ 
mRNA prevents elongation of the nascent prgQ transcript past a pu-
tative terminator, causing premature termination of prgQ transcript 
via inhibition of anti-terminator formation [60]. 

Regulation of RNA stability due to antisense interaction is 
exemplified by the asRNA gadY which binds to polycistronic 
gadXW transcript to induce RNaseIII mediated cleavage and release 
of monocistronic gadX and gadW transcripts [63]. Similarly, the 
77nt OOP RNA of λ phage interacts with CII mRNA and targets it 
for degradation via RNaseIII-dependent cleavage, thus preventing 
production of the CII repressor [54]. The isiA/isiR sense-antisense 
pairs in Synechocystis sp PCC 6803 form a duplex, which causes 
degradation of the isiR mRNA, though via an unknown mechanism 
[64] (Figure 1c). On the other hand, binding of MED4 asRNA to 
polycistronic complementary RNA in fact protects the latter from 
RNaseE mediated cleavage by protecting the RNAseE recognition 
sites, thereby affording stability to the polycistronic mRNA [55]. 
Similarly, in E. faecalis the interaction between QS RNA, produced 
from the prgQ operon, and the complementary prgX transcript, 
causes RNaseIII-dependent cleavage of 5′ UTR of the prgX mRNA 
which in turn enhances translation of the prgX mRNA [65]. 

Transcriptional Interference: Mechanisms and Switch 
Response 

Transcriptional interference occurs when one transcriptional 
process suppresses an adjacent transcriptional process due to RNAP 
traffic along the DNA [35] and has been reported in both prokaryotic 
[37-39] and eukaryotic systems [33,40,41,66]. Transcriptional 
interference utilizes RNAP traffic to control gene expression and 
serves as a short-cut to gene regulation as it can interfere with 
transcriptional initiation, elongation as well as termination [35]. 
Transcriptional interference can occur via four mechanisms: (i) 
RNA polymerase collision, whereby elongating RNA polymerase 
fired from both the promoters collide with each other (Figure 2a), 
(ii) sitting Duck model, in which an elongating RNAP collides with 
a stationary RNAP (Figure 2b), (iii) road block model, where a DNA 
bound protein complex hinders RNAP movement along the DNA 
(Figure 2c), and (iv) occlusion model, where movement or binding 
of RNAP at one of the promoters blocks RNAP from binding at the 
other promoter (Figure 2d), potentially also causing competition for 
activators [35]. 

During convergent transcription for successful transcription to 
occur RNAPs need to traverse the length of overlapping DNA to form a 
full-length transcript. Co-transcription from such a locus either results in 
successful transcription where RNAPs continue elongation in absence of 
converging RNAPs from the opposing promoter, or failed transcription 
when converging RNAPs collide, causing one or both RNAPs to fall-off 
the DNA (Figure 3). While a significant fraction of collided RNAPs fall off 
the DNA, a fraction of collided RNAPs backtrack and resume movement 
along the DNA after a temporary stall [67]. For set of two general 
convergent promoters pX and pY (Figure 3), the frequency of RNAP 
collision due to co-transcription from both the promoters depends on 
multiple factors: (i) relative strengths of promoter pX and pY, (ii) length 
of overlapping DNA between the two promoters (the probability of 

RNAP collisions increases with distance), and (iii) sequence context of 
overlapping DNA. 

Under biologically relevant conditions the relative strengths of 
promoters pX-pY can vary between two states, one in which pX is 
more aggressive than pY promoter, i.e. rate of RNAP firing from pX 
promoter (fX) is higher than that from pY (fY) and other in which pY 
promoter is more aggressive than pX (i.e. fX<fY). In state 1, the RNAPs 
firing from the aggressive promoter pX are more likely to succeed 
in making a successful x transcript and RNAP collision would be 
more fatal for pY promoter with little or no production of successful 
y transcripts (Figure 3). When pX is the aggressive promoter, most 
of the collisions would occur proximal to the weaker promoter pY 
as has been seen for the convergent promoters pR-pL of coliphage 
186 [37] and PQ-PX of pCF10 plasmid in E. faecalis [32,68]. Similarly, 
the opposite holds true for state 2 when pY is the more aggressive 
promoter. RNAP collisions would exert greater suppression on x 
expression in state 2, compared to y expression. This is exemplified by 
studies on the gal7 and gal10 genes of S. cerevisiae, where arranging 
genes in convergent orientation suppresses transcription from this 
region due to increased RNAP collision [40]. 

Although it was first thought that only transcriptional 
interference from strong promoters could affect weak promoters, 
both mathematical modeling [32,47,69,70] and experiments 
[32,37,70] suggest that minor differences in strengths of convergent 
promoters can give rise to significant transcriptional interference. 
Stochastic simulations and experimental analysis of convergent 
transcription in the PR-PRE promoter pair of bacteriophage λ showed 
a 5.5 fold change in expression from the stronger PR promoter due to 
interference from the weaker PRE promoter [38]. This was attributed 
mainly to the presence of RNAP initiation complexes at the weaker 
promoter, which acted as sitting ducks for collision with elongating 
RNAP originating from the stronger promoter, such as that seen in 
the pR-pL promoters of coliphage 186 [37]. 

The probability of RNAP collision depends on the residence 
time of converging RNAPs in the overlapping DNA. If the length of 
the overlapping DNA is short then occlusion effects are more likely 
[71]. For longer overlapping DNA (>>RNAP footprint), occlusion 
effects can be neglected and RNAP collision is the more dominant 
mechanism of transcriptional interference. RNAP collision is also 
more pronounced when the overlapping distance is increased [37] 
or when the velocity of RNAP decreases within the overlapping 
region due to presence of pause sites as reported for PR-PRE promoter 
pair in bacteriophage λ [38]. Both these effects can increase the net 
residence time of RNAP in the overlapping region, thus increasing 
the probability of RNAP collision. 

During antisense transcription, under biologically relevant 
conditions where the relative strengths of promoters pX-pY vary 
between two states, the net effect of transcriptional interference tends 
to amplify the gap between expression levels of full length transcripts 
x and y, compared to a case if the promoters were arranged in tandem. 
In cases where pX and pY drive expression of genes which give rise 
to opposing phenotypes, transcriptional interference can serve as an 
important gene regulatory mechanism that can give rise to switch-like 
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Figure 2: Mechanisms of transcriptional interference. Schematic of a general system of convergent promoters pX and pY is shown. As an example pX 
is considered to be the aggressive promoter. Four modes of transcriptional interference are shown. (a) RNAP collision, converging RNAPs collide within the 
overlapping DNA. (b) Sitting duck collision, an elongating RNAP from pX collides with a stationary RNAP at the weaker pY promoter. (c) Roadblock, DNA bound 
protein complex proximal to pY hinders an elongation complex from pX. (d) Promoter occlusion, binding of RNAP at the pY promoter is hindered by elongation 
complex from pX (or by binding of RNAP at pX when distance between pX-pY is short, not shown here). 
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Figure 3: Regulatory mechanisms during antisense transcription. Schematic of a general system of convergent promoters pX and pY driving the expression 
of genes X and Y respectively, the black and grey block arrows represent protein coding regions/open reading frames (orf). The overlapping DNA between the pX-
pY promoters is indicated by length L. RNAPs fire from pX and pY with frequency fX and fY respectively. Successful transcription results in expression of full length 
transcripts x and y (bold arrows) from pX and pY respectively. During RNAP collision one or both of the elongating RNAP’s fall off the DNA giving rise to different 
sizes of truncated RNA xtrunc and ytrunc (dashed arrows) from pX and pY respectively depending on the loci of RNAP collision. Full-length and truncated RNA share 
extensive base-pairing and potentially exert antisense interactions on each other. 

behavior. This is exemplified by the role of transcriptional interference 
in conferring a bistable genetic-switch behavior to the prgQ/prgX 
operon controlling conjugative transfer of drug-resistance plasmid 
pCF10 between donor and recipient cells in pathogen E. faecalis [32]. It 
was shown that under a “conjugationally-incompetent” or “off” state, 

expression from a repressed PQ promoter (driving prgQ expression) 
decreased 90 fold due to convergent transcription from an equally 
strong PX promoter (driving prgX expression). On the other hand, in a 
“conjugationally-competent” or “on” state, transcription from the PX 
promoter had only marginal effect on the transcription from a 10-fold 
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stronger de-repressed PQ promoter, causing expression of the 530 nt 
QL RNA capable of inducing conjugation-causing genes in the donor 
cell. Transcriptional interference has also been shown to facilitate 
two distinct bistable phenotypes in infectious pathogen Bordetella 
bronchiseptica [72]. The interference causes two populations to exist 
in the lungs: Bvg+ responsible for the in vivo infectious state and Bvg- 
responsible for survival ex vivo. The interference which causes these 
bistable phenotypes allows the infection to thrive in the lungs and 
survive to infect others. 

Wreckage of RNAP collision: A Source of Antisense 
RNA? 

During antisense transcription, collision between converging 
RNAPs results in premature termination of transcriptional progress 
of one or both elongation complexes, thus giving rise to a mixture of 
truncated and full length sense and antisense RNA sequences [32]. 
Depending on the relative firing rates of RNAP and overlapping 
sequence, converging RNAPs may collide at various loci along the 
DNA, thus giving rise to a distribution of different sizes of truncated 
RNA both in the sense and antisense direction (denoted by xtrunc and 
ytrunc in Figure 3). A less explored aspect of transcriptional interference 
relates to the potential regulatory role of such truncated RNA. It is 
plausible that truncated transcripts with a certain minimum size 
possess secondary structures that can cause interaction with antisense 
counter transcripts. Though the sequence of overlapping DNA 
would vary between different systems, the advantage of antisense 
transcription is that it allows for extensive base pairing between 
truncated RNA and the full-length antisense counter transcripts, 
hence enhancing the probability of RNA interaction. Both short 
antisense-RNAs [50,52-54,73,74] and long antisense RNA [49,75-77] 
have been shown to participate in antisense interaction in various 
bacterial systems. Therefore it is possible that the resulting sense, 
antisense RNA hybrid complexes between truncated and full-length 
RNA may be subjected to similar mechanisms of RNA degradation, 
transcriptional attenuation or translational inhibition [6,46]. The 
presence and functional role of truncated RNA produced as a result 
of RNAP collision has been shown for the prgQ/prgX operon of 
pCF10 plasmid in E. faecalis [32]. Under repressed conditions when 
effect of transcriptional interference is more pronounced in prgQ/
prgX locus, truncated PQ and PX transcripts of sizes ranging between 
approximately 100-200 nt and 80-200 nt respectively are observed, 
all of which lie within the overlapping region of 223 bp of prgQ/
prgX genes. Under de-repressed conditions when transcriptional 
interference effects were less pronounced, truncated RNA are less 
abundant. Northern analysis showed that overexpression of a 223 
nt truncated PQ RNA in trans repressed expression of prgX mRNA, 
whereas overexpression of a 104 nt truncated PX RNA in trans 
repressed expression of prgQ mRNA, thus indicating that truncated 
RNA are capable of suppressing the expression of counter transcripts. 
Similarly in the ubiG/mccBA operon of Clostridium acetobutylicum 
truncated RNA of various sizes ranging between 200-700 nt lacking 
Rho-dependent terminator structures at 3′ end were found [78]. The 
expression of the truncated RNA was independent of RNase III and 
RNAse J1/J2 cleavage, which could potentially hint at RNAP collision 
based termination mechanism. Northern analysis of sense-antisense 
transcripts in higher eukaryotes such as mouse, A. thaliana indicate 

presence of shorter transcripts that lack poly-A tail and are nuclear 
localized [33]. These truncated transcripts have been found to be 
richer at 5′ ends compared to 3′ ends (poly A rich), thus indicating 
that these could be an outcome of transcriptional interference or local 
sense, antisense effects. 

With exception of few studies [32,69,78,79], the presence of 
truncated RNA has not yet been vigorously investigated in systems 
with antisense transcription. The plethora of cis-antisense non-
coding RNAs found in bacteria could potentially be the wreckage 
of RNAP collision due to transcription from conditionally activated 
hidden promoters, thus hinting that this could be rather a ubiquitous 
phenomenon. 

Coupled effect of Transcriptional interference and 
Antisense RNA interaction 

The combined effect of transcriptional interference and antisense 
interaction between truncated and full-length sense and antisense 
RNA can further sharpen the switch response compared to when 
only one of these mechanisms exist. Transcriptional interference can 
potentially give rise to two-fold regulation, (i) reduction of full-length 
transcript levels due to RNAP collision, (ii) generation of truncated 
RNA capable of exerting antisense interactions on counter transcripts. 
Four potential combinations of transcriptional interference and 
antisense regulation effects are shown in (Figure 4a-d). The sharpest 
switching response is likely to when both these mechanisms occur 
simultaneously (Figure 4e-f). Depending on the relative strength of 
promoters pX-pY, the loci of collision will shift towards the weaker 
promoter. If we consider pX is the stronger promoter, collisions 
would occur near the pY promoter, thus the truncated RNA from 
pY would be very short and unlikely to interact with sense pX RNA. 
In this case, majority of the truncated sense pX RNA will have nearly 
the length of overlapping region, and hence possess a higher potential 
to interact with a nascent pY transcripts. Therefore, even if a nascent 
pY transcript escapes RNAP collision, it would still be swamped by 
the relatively large pool of truncated sense pX RNA (Figure 4e). The 
relative stoichiometry of sense and antisense would influence the 
final extent of suppression. The situation would be reversed when pY 
becomes the stronger promoter (Figure 4f). 

Antisense transcription can result in complex cellular behavior, 
especially in context of a biological gene network. Since antisense 
transcription can amplify the gap between transcript expression 
between two physiologically different states, such a gene regulatory 
mechanism is capable of showing reciprocal switch like behaviors 
such as bistable switch response in prgQ/prgX operon of E. faecalis 
[32,79,80] and scbA/scbR operon of S. coelicolor [69]. Antisense 
transcription from the prgQ/prgX locus of conjugative plasmid 
pCF10 of E. faecalis, allows for controlling the expression of long 
prgQ mRNA, which induces expression of downstream conjugation-
causing genes. 

Transcriptional interference from downstream PX promoter, as 
well as, antisense RNA interaction exerted by a 104 nt non-coding 
Anti-Q RNA expressed from the PX promoter, causes premature 
termination of a nascent prgQ transcript, thus preventing conjugative 
transfer of pCF10 plasmid. Both experiments and mathematical 
modeling showed that for this system bistable switch behavior 
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Figure 4: Coupled effect of antisense RNA interaction (AI) and transcriptional interference (TI) during antisense transcription.  (a-d) Schematic showing 
four possible combinations of mechanisms of transcriptional interference (TI) and Antisense interaction (AI) regulating expression from pX and pY: None (a), TI only 
(b), AI only (c), both TI and AI (d). (e-f) Steady state levels of full-length RNA x (e) and y (f), expressed from promoters pX and pY respectively, for various ratios 
of fY/fX for the four cases considered in a-d. For a system transitioning from one value of fY/fX to other, maximum switching response occurs when both TI and AI 
effects are present.

was only observed when both mechanisms of transcriptional 
interference and antisense interaction operate simultaneously. Using 
mathematical modeling it was shown that antisense transcription 
confers a bistable switch to the scbA/scbR gene pair of S. coelicolor, 
which allows regulation of expression of scbA mRNA, which encodes 
the key enzyme ScbA involved in synthesis of γ-butyrolactones that 
regulate antibiotic biosynthesis in the S. coelicolor [69]. 

In ubiG/mccBA operon of C. acetobutlyicum, both mechanisms 
of transcriptional interference and RNA interaction confer a genetic 
switch regulating the expression of ubiG operon, which contains genes 
required for conversion of methionine to cysteine [78]. In presence of 
methionine, transcription from the stronger T-box promoter causes 
premature termination of the antisense S-box transcripts. As a result, 
the levels of S-box riboswitch antisense RNA decreases, which in turn 
increases the expression of full length ubiG mRNA, which encodes 
enzymes required for conversion of methionine to cysteine. On the 
other hand, under conditions of high levels of cysteine, transcription 
from the downstream S-box promoter tends to reduce the expression 
of ubiG mRNA. Similarly, antisense transcription from the icsA/
RnaG locus of virulence plasmid pINV of Shigella flexneri, allows 
controlling the expression of icsA mRNA, which encodes an 
invasion protein required for colonization of host by the bacterial 
pathogen [81]. This locus encodes a non-coding antisense RnaG 
RNA, which overlaps with icsA mRNA at the 5’ end, and has been 
shown to cause premature termination of icsA mRNA following a 
transcriptional attenuation mechanism [81]. In addition to antisense 
RNA interaction mediated regulation, the stronger RnaG promoter 
exerts transcriptional interference on the weaker icsA promoter icsA, 
further reducing activity of the latter. 

Outlook: Antisense Transcription a Widespread 
Mechanism of Gene Regulation 

Antisense transcription is omnipresent in bacteria, archaea, 
and eukaryotic genomes. One could argue that shorter prokaryotic 
genomes use antisense transcription for conserving space, however 
presence of thousands of such cis-antisense gene pairs in relatively 
larger eukaryotic genomes [16-19] clearly refutes such an argument 
and points towards potential role of antisense transcription as a 
mechanism of gene regulation conserved over evolution [82]. A 
large fraction of mechanistic studies on antisense transcription have 
been performed in prokaryotic systems which are characterized by 
shorter intergenic distances [32,37-39,46]. There are many systems 
yet to be characterized that hypothetically will exhibit both antisense 
interactions and transcriptional interference. The large number of cis-
oriented promoters found in bacteria, yeast, flies, HIV, and mouse 
[48] may lead one to speculate why these systems are so prevalent 
in nature and what is their role in gene regulation and phenotype 
determination. 

Antisense transcription may have a more pronounced effect 
in systems with a longer overlapping region, found commonly in 
mammalian genomes [16]. It is interesting to note that in a large 
fraction of convergent promoter based gene pairs in mammalian 
genomes, often one out of the two genes tends to express non-coding 
RNA [83], potentially opposing the coding RNA. In many cases 
such convergent transcription gives rise to reciprocally regulated 
switch [33,83]. Bioinformatics techniques are being used to identify 
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cis-antisense pairs in order to characterize more of these systems in 
diverse species. Using bioinformatics, the prevalence of cis-oriented 
genes has been reported to be: 26.3% in humans [17,84,85], 21.9% in 
mice [16,84,86,87], 16.8% in drosophila [18,88], 2.8% in C. elegans, 
15.8% in sea squirt 6.6% in chickens, 4.5% in rats, 4.3% in frogs, 2.2% 
in zebrafish, 3.8% in cows [84], and 8.9% in Arabidopsis [88-90]. 
While bioinformatics has been useful to identify cis-antisense loci, 
the extent of the activity of these non-coding RNAs and the exact 
function of most sense, antisense pairs remains to be determined 
[34,91]. Moreover, a concerted effort is required to examine these 
systems for antisense interactions and transcriptional interference to 
determine their combined role in regulating gene expression levels 
and phenotype determination. 

In this review, we highlight the regulatory advantage that cells 
can achieve via coupled role of transcriptional interference and cis-
asRNA based regulation during antisense transcription. Importantly, 
antisense transcription offers a number of regulatory advantages over 
trans-encoded asRNAs and regulatory proteins. Firstly, cis-antisense 
RNAs share extensive base pairing with their cognate target RNAs 
leading to more effective antisense interactions, compared to trans-
asRNAs which have only partial complementarity with their target 
RNAs. Further, during antisense transcription due to coupled activity 
of both convergent promoters as well as localized RNA expression, 
cis-asRNA are more likely to have a faster kinetic effect compared to 
trans asRNA or regulatory proteins. In general, regulatory proteins 
take a longer time to act since both steps of transcription and 
translation are required for the proteins to be functional, compared 
to asRNA which only require transcription. For trans-asRNA 
based regulation the relative stoichiometry of sense and antisense 
RNA influences the final extent of suppression. In contrast, during 
antisense transcription, regulation via cis-asRNA interactions as well 
repression by transcriptional interference can contribute to the gene 
regulation. Moreover, using a single repressor which acts on one of 
the promoters, antisense transcription can allow for simultaneous 
regulation of target RNA and cis-asRNA expression [32,38,69]. 
Such a coupled effect of transcriptional interference and cis-asRNA 
interaction tends to amplify the gap between sense and antisense 
RNA expression. This allows antisense transcription to act both as 
biological switch and potentially as a noise filter against fluctuating 
environmental signals. Given the plethora of sense, antisense pairs in 
both prokaryotic and eukaryotic genomes, the next obvious question 
to ask is whether sense, antisense pairs are being regulated by both 
transcriptional interference and antisense regulation at a genome 
scale. From a synthetic biology point of view, given that promoter 
strengths, length and sequence of overlapping DNA are highly 
tunable, antisense transcription could be exploited to tweak naturally 
existing networks or create novel networks for obtaining desired 
characteristics. Finally, a closer look at antisense gene pairs is needed 
to understand whether convergent transcription is merely an act of 
serendipity in nature or a well-designed set-up of gene regulation. 
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