Do the Current Campylobacter Detection Methods in Poultry Carcass Fail To Include Viable But Non-Culturable (VNBC) Cells?

Campylobacter, a microaerophilic, spiral-shaped, Gram-negative bacterium, is a major cause of bacterial gastroenteritis worldwide. *Campylobacter* genus includes 12 species and *C. jejuni* and *C. coli* are the most common isolates and involved in human gastrointestinal infection [1]. Centers for Disease Control and Prevention estimated that *C. jejuni* causes 2.4 million cases in the United States each year and is the causative agent for 5-14% of overall diarrheal diseases worldwide. Campylobacteriosis with *C. jejuni*, is characterized by the rapid onset of fever, abdominal cramps, and bloody diarrhea. Sporadic cases are most common and are often associated with handling and consumption of undercooked poultry and poultry products as *C. jejuni* is part of the normal intestinal flora of chicken. The presence of *C. jejuni* in processed chicken carcasses offered for retail sale was determined by both conventional bacteriological cultural techniques and polymerase chain reaction (PCR). The PCR base identification methods were able to detect and identify higher percentage of Campylobacter spp. in various type of the specimens including foods, fecal and clinical samples [2-5] but the current PCR base methods used to detect Campylobacter failed to differentiate the vegetative and viable but non-culturable (VNBC). On the other hand, the bacteriological culture method represents only vegetative cells those grow on conventional culture agar plates.

It has been reported that effects of temperature, aeration and presence of chemicals as well as storage duration can cause the transition of *C. jejuni* cells from a vegetative state to a VNBC state [6]. Alternatively, it has been found that dormant state of *C. jejuni* cells can be resuscitated in *in vivo* culture condition [7-9]. A recent study has shown that quorum-sensing autoinducers play vital role in reviving VNBC cells in *Vibrio cholera* [10]. Similarly, resuscitation-promoting factors were reported to be responsible for the growth of non-culturable *Mycobacterium tuberculosis* [11,12]. However, the exact molecular mechanisms behind the activation of VNBC cells or resuscitation into planktonic condition in *Campylobacter* are still unknown. Current methodologies used in surveillance and microbiological quality control only focus on vegetative *C. jejuni* cells. Morphology transition from spiral cells in logarithmic phase to predominantly coccoïd cells and its role in human infections have been reported [13,14]. That information indicates that there is a gap between the colony count techniques used in quality control/ surveillance assay and real number of *C. jejuni* cells present in the poultry and poultry products.

Recently, U.S. food and drug administration (FDA) has introduced this bacterial pathogen in addition to *Salmonella* for routine analysis in retail poultry and poultry products. Currently, very little is known about the survival and recontamination to other product and processing environment that are required to make safer products in the processing plant. It is essential to determine potential threat of vegetative and VNBC *C. jejuni* contamination and their survival ability in various conditions in poultry carcass and treatment system, and develop the precise processing and molecular methods to improve their detection. In recent years, several molecular techniques including PCR (polymerase chain reaction) and sequencing have been tested and recommended for routine use for surveillance of environmental samples and microbiological quality control. However, methods capable of detecting VNBC *Campylobacter* are scarce. Jøsøsen et al. [15] proposed a technique for detecting both viable and VNBC *Campylobacter* cells using real time PCR and propidium monoazide, but further validation of the technique is required. More research is also required to evaluate the survivability of *Campylobacter* across the poultry carcass and treatment system. Some possible ways to improve the system are as follows:

i) Develop technology for rapid identification of vegetative and VNBC *C. jejuni* cells;

ii) Develop a statistical framework necessary to evaluate the potential health risks with this bacterial pathogen in both vegetative and VNBC forms;

iii) Determine the most effective intervention points to control the vegetative and VNBC *C. jejuni* in chicken carcass and processing environment;

iv) Develop risk monitoring techniques to detect potential hazards of vegetative and VNBC *C. jejuni* cells in the distribution chain;

v) Develop, complement and maintain an aggressive technology transfer system that effectively communicates the work of the processing industry.

References


