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Introduction
An increase in the male to female (M/F) ratio at birth supposedly 

under the impact of radiation exposures from nuclear testing 
(worldwide) and Chernobyl fallout (in Europe) has been investigated 
by Victor Grech, professor at the Department of Pediatrics, Mater Dei 
Hospital, Malta [1,2]. The conclusions were that “elevated levels of 
man-made ambient radiation may have reduced total births, affecting 
pregnancies carrying female pregnancies more than those carrying 
male pregnancies, thereby skewing M/T (male live births divided by 
total live births) toward a higher male proportion” and “birth rates 
are greatly reduced and the M/T ratio is skewed upward significantly 
with population exposure to ionizing radiation, even at great distances 
from major nuclear events” [1,2]. However, social factors that could 
have influenced M/F ratios at birth were not analyzed. The natural 
radiation background (NRB) was not mentioned, although additional 
doses due to contamination were often negligible compared the NRB. 
Worldwide annual doses from NRB are generally expected to be 
in the range of 1-10 mSv, with 2.4 mSv being the estimated global 
average [3]. Some national averages are ≥10 mSv [4]. In Europe, mean 
annual doses from NRB are ≥5-7 mSv in several countries [5]. There 
are many places in the world where the dose rate from NRB is 10-100 
times higher than the average e.g. 260 mGy/a in Ramsar, Iran [6], or 
70 mGy/a at certain locations in Kerala, India [7]; yet there are no 
reliable data on shifts of sex ratios at birth in such areas. For example, 
a study based on ≥150,000 consecutive live singleton newborns in 
Kerala did not indicate any impact of elevated NRB on the sex ratio 
[8]. The maximum annual dose from the global fallout due to nuclear 
tests was estimated to be 0.14 mSv in 1963, having decreased by 
almost an order of magnitude by 1979 [3]. According to the United 
Nations Scientific Committee on the Effects of Atomic Radiation 
(UNSCEAR), “as far as whole body doses are concerned, the six 
million residents of the areas of the former Soviet Union (SU) deemed 
contaminated received average effective doses for the period 1986-
2005 of about 9 mSv, whereas for the 98 million people considered in 
the three republics, the average effective dose was 1.3 mSv, a third of 
which was received in 1986. This represents an insignificant increase 
over the dose due to background radiation over the same period (~50 
mSv)” [9]. In other countries, individual doses from the Chernobyl 
fallout were lower: the first year doses after the accident reached 1 
mSv only at singular locations in Central Europe; all country overages 
are ≤1 mSv/a [5,10]. For comparison, a single computed tomographic 
(CT) examination produces a dose within the range 2-20 mSv, while 
doses from interventional diagnostic procedures usually range from 
5 to 70 mSv [11]. Health risks have never been proven for the above-
mentioned doses [12]. Annual individual doses in the vicinity of 

reactors have been in the range 0.001-0.5 mSv [3], so that the above 
dose comparisons pertain also to the reported shift of sex ratios at 
birth in people residing near nuclear facilities [13]. 

Experimental and other relevant research has not been discussed 
in [1,2]. The following studies should be cited in this connection. 
Experiments using 18 generations of exposed mice with the daily 
dose ∼0.29 mGy suggested that low-dose low-rate exposures do not 
affect the sex ratio in mouse litters [14]. No radiation-induced sex 
ratio changes in the offspring of mice were found by other researchers 
[15-19]. On the contrary, a study and review from the year 1968 
concluded that there is a sex ratio shift following spermatogonial 
exposure in rats [20]. It should be commented that doses used in 
animal experiments are much higher than average doses to the 
residents of contaminated territories after the Chernobyl accident. 
These latter doses are generally within “the window for maximum 
adaptive response protection” [21]. According to experimental data, 
this window occurs at doses between 0 and 100 mGy (or higher) from 
a low dose rate, low LET (linear energy transfer) radiation exposure, 
where the risk is expected to be reduced below the spontaneous 
level of cancer risk [21]. In a study from 1958, radiation was found 
to influence the sex ratio of infants born to survivors of the atomic 
bombing [22]; but the association was not seen in later studies, while 
the data on the total number of births in Hiroshima and Nagasaki in 
the period 1956-1962 indicated no significant difference in the sex 
ratio of infants [23]. Male radiologists tended to father even a lower 
proportion of boys compared to the control group [24]. Significance 
of supposedly radiation-related shifts of sex ratios calculated by 
Grech and co-workers has been questioned [25-28]. A comprehensive 
review concluded that “there is little consistent evidence that ionizing 
radiation affects the sex ratio” [29].

data by Victor Grech and co-workers should be viewed taking 
into account possible mechanisms unrelated to radiation. So, except 
for Baltic States, all regions of the former SU showed a significant 
increase in M/T ratio from 1986 on [2]. The highest M/F ratios at 
birth were reported from the South Caucasus (Azerbaijan, Armenia 
and Georgia) [2,30], being explained by the son preference and sex-
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selective abortions [30]. The same is probably true for the North 
Caucasus, where the birth rate has been the highest in Russian 
Federation. Masculinity has traditionally high value in the Caucasus. 
The elevation of the M/T and M/F ratios at birth in the former SU 
coincided with the increasing availability of the prenatal ultrasonic 
gender testing in the late 1980s [2,30]. A relatively high M/T ratio at 
the time of generally unavailable prenatal gender testing (1981-1985) 
in Caucasus [2] might be seen as indication to female neonaticide, 
which is the ancient family planning tool [31-33]. Gender imbalance 
due to the son preference and sex-selective abortions occurs in China, 
India and some neighboring countries [31] as well as among Asian 
immigrants to Europe and the USA [34,35]. On one hand, there are 
many immigrants from the Caucasus in the former SU (except for the 
Baltic States mentioned above); on the other hand, similar tendencies 
of son preference might exist also in other groups of the ex-Soviet 
population favored by manliness propaganda remarkable since 
the early 2000s [36]. Insufficient security coupled with the tolerant 
attitude towards violations of the law might have motivated some 
families to have sons - for protection and more success. All these 
social phenomena in the former SU coincided with the elevation of 
M/F or M/T ratios. Analogously, dynamics of M/T ratio in Central 
Europe [2] could have been influenced by the ongoing immigration 
from countries with son preference and gender imbalance [34].

Conclusion
The conclusions by Victor Grech that “elevated levels of 

man-made ambient radiation may have reduced total births, 
affecting pregnancies carrying female pregnancies more than those 
carrying male pregnancies, thereby skewing M/T toward a higher 
male proportion” [1] and that “the M/T ratio is skewed upward 
significantly with population exposure to ionizing radiation, even 
at great distances from major nuclear events” [2] have not been 
sufficiently corroborated. A significant role of radiation from nuclear 
testing and Chernobyl fallout as a factor modifying the sex ratio at 
birth is improbable. Dose-response relationships at low radiation 
doses should be studied in large-scale animal experiments involving 
different mammal species, comparable doses and dose rates, reliably 
shielded from biases and conflicts of interest.
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