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Introduction
After the Chernobyl accident massive screening using initially 

poor equipment, the lack of modern literature and “radiation 
phobia” contributed to an overdiagnosis of malignancies [1-7]. 
The “Chernobyl victim syndrome” (i.e. pressure to be registered 
as a victim) [8] resulted in the registration of patients from non-
contaminated areas as having been exposed to radiation. At the time, 
the exaggeration of Chernobyl’s impact facilitated the financing and 
creation of numerous doctoral theses. Subsequently, deeper motives 
for overestimation have emerged - the accident has been exploited 
for the worldwide strangulation of nuclear energy [9] driven by anti-
nuclear resentments. That said, the attitude of the Green movement 
has been not without merit: nuclear technologies should have been 
prevented from spreading to regions where conflicts and terrorism 
cannot be excluded. Today, there are no alternatives to nuclear 
energy: non-renewable fossil fuels will become more expensive in 
the long term, contributing to increased population growth in oil-
producing countries and global poverty. Therefore it is time to clarify 
some mechanisms, unrelated to radiation, that have contributed 
to the overestimation of medical consequences of the Chernobyl 
accident.

Thyroid Lesions
Thyroid cancer in children and adolescents has been the only 

type of malignancy regarded to have increased significantly due to the 
Chernobyl accident [10], although early reports of a thyroid cancer 
increase after the accident were doubted, as radioiodine was thought 
to have low or no carcinogenicity in humans [11]. The high incidence 
and short latency were regarded as unusual; the number of thyroid 
cancers in children and adolescents exposed to radiation was higher 
than expected [10,12], which led to uncertainty about the accuracy of 
the diagnoses [13].

Another aspect to consider were the differences in diagnostic 
quality before and after Chernobyl. The introduction of 
ultrasonography and fine needle aspiration biopsy (FNAB), 
together with the superficial location of the thyroid, resulted in the 
detection of numerous thyroid nodules, while suboptimal quality of 
specimens (Figures 1-6) and insufficient experience with pediatric 
material contributed to occasional false-positive conclusions about 
malignancy. The availability of children at schools and kindergartens 
for mass screening helps to explain the increase in thyroid cancer 
incidence for this age group. It also accounts for the differences with 
the Fukushima accident in Japan [11], where screening performed 
in young people was less dependent on their age. The Fukushima 
Prefecture program was set up to screen everyone under the age of 
19 at the time of the accident. In contrast with Chernobyl, none of 
the Fukushima thyroid cancer patients were infants at the time of the 

accident, the majority being adolescents [11].

The proportion of residents who underwent screening after the 
Fukushima accident during the first screening round decreased year 
by year: 88% in the 2011 fiscal year, 87% in 2012, and 74% in the 2013 
fiscal year; i.e. the time between the accident and tumor detection was 
around 2 years or less. Accordingly, it was noticed that the incidence 
of thyroid cancer in the Fukushima area increased more rapidly 
than expected [14]. This is not surprising - in both Chernobyl and 
Fukushima, the incidence increased with the screening. The ability 
of screening to significantly enhance the registered incidence of 
thyroid cancer is known [9]. Furthermore, lymph node metastases 
were observed in 40 of 54 thyroid cancer cases after the Fukushima 
accident, i.e. the tumors were “not at a particularly early stage” [14]. 
This can be explained by the detection of cases from the “the latent 
prevalence pool” of undiagnosed cancers [14], which can reasonably 
be assumed to have been smaller in Japan compared to the former 
SU due to better coverage of the population by medical check-ups. 
Note that in areas of poor coverage, some cancers may also remain 
undiagnosed post mortem. However, the registered childhood thyroid 
cancer incidence in Japan is low compared to other developed nations 
[15], suggesting the presence of a sizable pool of undiagnosed thyroid 
cancers in the population, hence the efficiency of the screening. Given 
this, the following argument is not convincing: a “clear increase… 
of thyroid cancer incidence was observed in the second round 
screening among cases who were screened and cancer free in the 
first round. This result cannot be explained by the screening effect 
because most occult thyroid cancer cases would have been harvested 
in the first round screening” [14]. Note that undiagnosed or occult 
cancers are not necessarily dormant and could have grown between 
the screening rounds. In both the Chernobyl and Fukushima areas, 
differences between the registered thyroid cancer incidence rates in 
more and less contaminated districts can be explained by differences 
in screening intensity, participation rate and dose-dependent 
differences in behavior. People living in more contaminated areas 
or with knowledge of their higher dose estimates would generally be 
more motivated to undergo examinations (self-selection bias), and 
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Figure 1: Both images from [38] are designated as follicular carcinoma of the thyroid. No tumor capsule shown. The images might be conducive to false positivity 
as they are compatible with atypical thyroid adenoma.

Figure 2: From the caption: Small developing papillary urothelial carcinoma with severe dysplasia (G-L). Comment: The nuclei are insufficiently stained. A small 
papilloma cannot be excluded.
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Figure 3: From the caption [45]: dysplasia (A-D) and small papillary urothelial carcinoma (E-G). Comment: mild to moderate atypia might be present in A-D; but 
no severe dysplasia is recognizable. Figure E: nuclei are poorly stained probably due to an electrocoagulation artefect. All the slides are obviously too thick for 
reliable diagnostics.

Figure 4: One and the same figure (top left and bottom right) was used in the articles [51,52]. According to the caption, it must be a bladder leukoplakia with 
invasion. The quality of the images and probably of the specimens is poor; invasive growth is not clearly recognizable.
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at the same time would be given more attention. The self-selection 
phenomenon has been noticed in populations exposed to radiation 
[16,17]. 

The registered incidence of pediatric thyroid cancer in the 
former SU before the accident was low compared to other developed 
countries, which was likely caused by differences in diagnostic 
quality and coverage of the population by medical checkups. In 
Belarus, during 1981-1985, the absolute number of thyroid cancers 
diagnosed in children less than 15 years of age was 3, with 0.3 being 
the corresponding annual rate per million children under 15 years. 
For Ukraine, overall there were 25 thyroid cancers diagnosed in 
children aged 15 years and below, or 0.5 per million. For the northern 
regions of Ukraine contaminated after the Chernobyl accident these 
figures were 1.0 and 0.1 [18]. Thyroid cancer is the most frequent 
malignancy of endocrine glands in children and adolescents, and the 
above incidence rates are relatively low. Based on the cases diagnosed 
during 2000-2004, the cancer registry Surveillance, Epidemiology 
and End Results (SEER) reported an annual age-adjusted incidence 
rate of 8.5 per 100,000, with approximately 2.1% of the cases being 
diagnosed in patients under the age of 20, which corresponds to the 
annual incidence rate in the 0-20 age group of around 1.8 cases per 
million [19]. Corresponding data from a tumor registry in Germany 
shows an age-adjusted incidence rate of 2.0 per million for patients 
aged under 20 years [19]. The United Nations Scientific Committee 

on the Effects of Atomic Radiation (UNSCEAR) compared the level 
of enhanced thyroid cancer incidence after the Chernobyl accident 
not with the pre-accident level, but with the years 1986-1990, when 
it had already increased up to ~ 5 cases/million. In particular, it was 
stated that “The background rate of TC among children under the 
age 10 years is approximately 2 to 4 cases per million per year” [20]. 
This is much higher than the pre-accident rates discussed above [18].

Considering the low incidence of thyroid cancer prior to the 
accident, it seems likely that there was a pool of undiagnosed cancers 
in the population. The percentage of more advanced, histologically 
less differentiated thyroid cancers was negatively associated with the 
time between the accident and surgery [21-23], probably due to the 
gradual exhaustion by the screening of the pool of advanced cases 
accumulated in the population. Morphologically, thyroid cancers 
from contaminated territories were reported to be more aggressive 
than usual [24]. Correlations between radiation doses to the thyroid, 
tumor invasiveness and a solid-follicular (i.e. a less differentiated) 
pattern were reported [22,23], but the time factor was not taken into 
account [22]. Cases with higher doses were probably diagnosed earlier 
on average, when the pool of neglected cancers was still untapped. As 
a result, a weak negative correlation between the latency (time from 
exposure to surgery) and the thyroid dose was found [23]; although 
“latency” is not an appropriate term if the cause-effect relationship 
is unproven [25]. The increased incidence of thyroid cancer after 
the accident was additionally favored by an iodine deficiency in 
the contaminated territories and an increase of goiter and thyroid 
nodules [26,27], found by screening, which in turn provided more 
opportunities for false-positivity.

There were several predisposing factors to a false-positive diagnosis 
of thyroid carcinoma. During the 1990s, histopathological laboratory 
equipment was old and primitive [28], with the excessive thickness of 
histological sections (Figures 1-6) hindering the reliable assessment 
of histological criteria. Gross dissection of surgical specimens was 
often made with blunt autopsy or kitchen knives, without washing 
instruments and cutting boards, and often without access to flowing 
water, all of which can result in tissue deformation and contamination 
of the cut surface by cells thus imitating malignancy criteria. This 
explains the high frequency of tumor cells found in vascular lumina 
(45%) in post-Chernobyl pediatric thyroid carcinoma [29]. Celloidin 
embedding was still broadly used, where all nuclei appear somewhat 
cleared compared to conventional paraffin-embedded specimens, 
which can be misinterpreted as a sign of papillary carcinoma. The 
tendency to over-classify the nuclear features of follicular growth-

Figure 5: A microphotograph from the bladder mucosa. Translation of the 
caption: Carcinoma in situ. Magnification x100. Comment: No clear signs 
of neoplasia or dysplasia are visible in this image. There are somewhat 
hyperplastic von Brunn’s nests at the bottom.

Figure 6: Translation of the caption [37]: Moderately differentiated transitional 
cell carcinoma, grade III. Comment: The section may be tangential. There is 
no marked atypia, which must be awaited in a grade III carcinoma.

Figure 7: A microphotograph of testicular tissue. Hypospermatogenesis 
according to the caption [54]. The histological picture is compatible with the 
norm.
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patterned lesions as nuclei of papillary carcinoma-type is known to 
practitioners, resulting in overdiagnosis of the follicular variant of 
papillary carcinoma, even in modern laboratories [30]. Pathologists 
in Russia, who had worked with thyroid tumors from contaminated 
areas, have pointed out the poor quality of histological specimens 
interfering with the nuclei assessment [31].

A false-positive diagnosis of thyroid cancer was not excluded 
after cytological and histological examinations. If a thyroid nodule is 
found by the screening, a FNAB is performed. Thyroid cytology has a 
certain percentage of indeterminate results (the so-called gray zone): 
figures of around 10-20% were reported from modern institutions 
[32]; but in the former SU the percentage was certainly higher, one 
of the causes being a shortage of modern literature. Information 
regarding the sensitivity of FNAB cytology as applied to the pediatric 
thyroid specimens from contaminated territories was reported: “In a 
definite or presumptive form, diagnosis of carcinoma was established 
in 161 from 238 cases”, while papillary carcinoma was diagnosed 
correctly by cytology in 69.5% of cases and follicular subtype of 
papillary carcinoma in only 36.5% of all cases [33]. After receiving 
a cytological report in a presumptive form (“atypical cells” or 
“suspicion of carcinoma”), a lobectomy or thyroidectomy (discussed 
below) was performed and the surgical specimen sent for histological 
examination. After the radical removal of a presumed carcinoma, 
pathologists sometimes also confirmed malignancy in cases with 
doubtful histology, thus influencing the statistics. Some histological 
criteria were hardly known as they were not mentioned by Russian-
language literature of that time [34,35]. One of the most significant 
diagnostic terms pertaining to papillary carcinoma - ground-glass 
or cleared nuclei - was mistranslated as “watch-glass nuclei” and 
presented by the most widely used handbook of tumor pathology of 
that time [35] as a feature not only of papillary, but also of follicular 
carcinoma, which is misleading. Nuclear features, characteristic 
for papillary carcinoma, are not visible in the illustrations of this 
handbook [35], which has been reproduced and commented on [36]. 
In the widely-used Atlas of Tumor Histopathology [37], the following 
passages on thyroid nodules can be encountered: “In severe dysplasia 
there appear cell groups with clearly visible atypia. Therefore, 3rd grade 
dysplasia is considered as an obligate pre-cancer, which histologically 
is hardly distinguishable from carcinoma in situ”. Accordingly, 
diagnoses such as “follicular thyroid carcinoma without invasion” or 
“follicular carcinoma in situ”, suggestive of false-positivity, could be 
encountered [33]. Note that nuclear atypia is not generally regarded 
as a malignancy criterion of follicular thyroid nodules/tumors, and 
the terms “carcinoma in situ” and “dysplasia” are not generally 
applied to them [30]. Images in handbooks designated as follicular 
thyroid carcinoma, displaying various degrees of cellular and nuclear 
atypia [38] without stressing the necessity to search for capsular and 
vascular invasion (Figure 1), may be conducive to overdiagnosis of 
thyroid carcinoma, and such cases are known from practice. The 
tumor capsule should be visible while Hematoxylin-Eosin-Saffron 
(HES) staining may be convenient for that purpose. Today, with the 
forthcoming development of molecular markers, the role of cellular 
characteristics may increase, but until then, images such as Figure 
1 in atlases and handbooks may be conducive to false-positivity. 
Results of verification by expert panels provided further evidence 
of false-positivity: “As a result of histopathological verification, a 

diagnosis of thyroid cancer was confirmed in 79.1% of cases (federal 
level of verification - 354 cases) and 77.9% (international level - 280 
cases)” [33]. False-positive cases, not covered by verifications, have 
remained undisclosed, a situation exacerbated by many archives 
of histological specimens being in disarray [28]. The retrospective 
correction of false-positive diagnoses and their prevention in future 
are suggested due to the risk of possible over-treatment and over-
manipulation. The following treatment was recommended for 
children with supposed radiogenic thyroid cancer: “Radical thyroid 
surgery including total thyroidectomy combined with neck dissection 
followed by radioiodine ablation” [39]; “Thyroidectomy and lymph 
node dissection. Careful and complete removal of the lymph nodes 
is of great clinical relevance” [40]. Five years after the accident, total 
thyroidectomy predominated, with hemithyroidectomy utilized only 
for cancers below 3-5 mm, i.e. microcarcinoma [29].

Some special features of Chernobyl-related pediatric thyroid 
cancer should be noted. It is known that almost all of them were 
of papillary type, while solid and follicular (i.e. less differentiated 
patterns) often predominated [12]. For a pathologist who practiced 
during Soviet times, the reason is evident. A diagnosis of follicular 
carcinoma often requires a large number of thin histological sections 
from the capsular area of a nodule, to search for capsular and 
vascular invasions. This was not always done for technical reasons 
and because of insufficient awareness of the minimally invasive 
follicular carcinoma, absent in Russian-language handbooks of 
that time [34,35,37]. Therefore, papillary cancer tended to be over-
diagnosed, while follicular carcinoma was under-diagnosed. This 
known tendency [30] must have been increased in conditions of thick 
slides and insufficient experience with pediatric material. As for the 
less differentiated histological patterns, their high prevalence was 
likely caused by the late diagnostics of malignancy. 

Urinary Bladder Lesions
Chromosomal rearrangements in the Chernobyl-related thyroid 

cancer, providing further evidence in favor of the late diagnostics 
rather than radiogenic nature of the tumors, have previously been 
discussed [41]. Remarkable figures were reported about thyroid 
adenoma. The RET/PTC rearrangements were found in 57.1% of the 
adenomas in patients from non-contaminated areas of Ukraine, but 
in no cases of thyroid adenomas from France [42]. An explanation 
can be found in the same article. On re-examination, in 8 of the 14 
thyroid adenomas from Ukraine, but in none from France, groups of 
cells with “limited nuclear features of papillary cancers” were found 
[42], which sounds unusual in practical pathology and is indicative of 
diagnostic uncertainty. 

Diagnostic uncertainty also explains another paradox. In 
different groups of men (with benign prostatic hyperplasia) and 
women (with chronic cystitis) from contaminated areas and Kiev, 
severe urothelial dysplasia and carcinoma in situ (CIS) were found 
via bladder biopsy in 56-92% of all randomly selected cases [43-
47]. The following was observed in patients with benign prostatic 
hyperplasia studied by bladder biopsy: “Irradiation cystitis with 
multiple foci of severe urothelial dysplasia/CIS and some invasive 
transitional cell carcinoma were observed in 96/66, 76/56 and 56/8% 
of patients in groups I, II and III respectively”. The group III was from 
non-contaminated areas [46]. In the Handout by the same authors, 
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distributed at the XXIII International Congress of the International 
Academy of Pathology (IAP) on 15-20 October 2000 in Nagoya, 
Japan, the following was written: “Histologically the different forms 
of proliferative cystitis, which were frequently combined and had 
features of irradiation cystitis with multiple areas of severe dysplasia 
and carcinoma in situ (CIS), sometimes associated with small 
transitional-cell carcinoma, occurred in 97% of patients from the 
radio-contaminated areas of Ukraine”. Such a high prevalence of 
severe dysplasia and CIS in randomly selected cases is obviously not 
verisimilar and indicative of false-positivity. Note that over-diagnosis 
of premalignant and malignant bladder lesions entails over-treatment 
and over-manipulation, including cystoscopies and biopsies [43-47] 
which can contribute to the transmission of viral hepatitis [48,49] and 
other infections. Apparently, “irradiation cystitis” [45,50], reportedly 
characterized not only by urothelial dysplasia and CIS but also by 
“reactive epithelial proliferation associated with hemorrhage, fibrin 
deposits, fibrinoid vascular changes, and multinuclear stromal cells” 
[50] was caused (at least in part) by repeated cystoscopies, “mapping” 
biopsies, electrocoagulation etc. Accordingly, it can be reasonably 
assumed that some of the biomarkers, especially those associated 
with inflammation and cell proliferation (TGF-β1, mitogen-activated 
protein kinases, growth factors, etc.), as well as the “marked activation 
of angiogenesis” [45], partly reflected iatrogenic inflammation and 
repair.

In studies of bladder lesions [43-47], described histological 
differences between the exposed and unexposed cohorts may have 
been related to the quality of specimens and their assessment. In this 
regard, the images from [45] should be noted (Figures 2 and 3). Some 
images from [45] and [47] published 9 years apart, are identical. The 
same is true for earlier articles involving the same scientists [51,52]. 
Apparently, over-diagnosis of dysplastic and neoplastic bladder 
lesions had also occurred previously - both articles [51,52] used the 
same image of bladder leukoplakia with invasion according to the 
caption but invasive growth is not clearly recognizable (Figure 4).

Typical radiation-induced changes of squamous and transitional 
epithelium, known from biopsies after therapeutic irradiation, are 
absent in these and other images, which was commented in the 
article: “Classic descriptions of acute and chronic radiation effects on 
the urinary bladder do not coincide with the pathogenesis of human 
urinary bladder injury after long-term, low-dose exposure to ionizing 
radiation” [45]. Histological images of the bladder mucosa and 
thyroid, potentially conductive to the over-diagnosis of malignancy, 
can be seen in widely-used editions [34,35] on tumor histopathology 
(Figures 5 and 6).

The mean activity concentration of cesium-137 in urine in the most 
exposed group of patients was 6.47 Bq/liter [44,45]. For comparison, 
the guidance level for cesium-137 in drinking water is 10 Bq/liter [53], 
but it would be higher in urine due to renal concentration. Possible 
radiation doses resulting from such concentration were discussed 
previously [5]: the doses would be too low to cause any increase in 
bladder malignancy or the “radiation induced chronic proliferative 
atypical cystitis,” reportedly characterized by multiple areas of severe 
dysplasia and CIS [45]. 

Discussing urological concerns, one more study [54] should be 
mentioned: in 75.6% of testicles randomly sampled post mortem 

(forensic cases, residents of Kaluga province in Russia partly 
belonging to the contaminated territories [7,10] in comparison with 
controls from non-contaminated areas) was found paucity or absence 
of germ cells, affecting more than 10% of spermatic tubules, which 
was explained by radiation exposure. Considering that the individual 
radiation doses in Kaluga area remained within the limits of natural 
radiation background (additional dose for the period 1986-95 was 
about 4 mSv [10], the global average annual dose from the natural 
radiation background - 2.4 mSv), the cause-effect relationship with 
radiation is improbable. This is similar to many other publications 
on Chernobyl consequences, where various structural derangements, 
sometimes compatible with the norm (Figure 7), were a priori 
considered as radiogenic, overviewed in [5,55,56]. 

Renal Tumors
Poorly substantiated information was also published on other 

alleged radiation-related conditions; the statement that “during the 
25-year period subsequent to the Chernobyl accident, the morbidity 
of malignant renal tumors in Ukraine has increased from 4.7 to 10.7 
per 100,000 of the total population” [57] was supported by a reference 
to a report by Ukraine’s Ministry of Health. Despite this however, 
the incidence increase of renal cell carcinoma due to the Chernobyl 
fallout has not been scientifically proven, while some of the increase 
may have been caused by improved diagnostics and coverage of the 
population by medical checkups [58]. The statement -“recent studies 
of our group have shown that increases in morbidity, aggressiveness, 
and proliferative activity of renal cell carcinomas, especially clear-cell 
carcinoma, in Ukrainian patients that have continuously inhabited the 
radio-contaminated areas, might be explained by specific molecular 
events, influenced by chronic persistent low-dose ionizing radiation 
exposure” [57] was supported by self-references [59,60]. In these, 
it was claimed that “The strong significant differences between the 
Ukrainian and Spanish groups were found in tumoral nuclear grade” 
[59] and, “Our data showed in the majority of Ukrainian patients a 
radiation sclerosing proliferative atypical nephropathy in association 
with an increase in the incidences of tubular epithelial nuclear 
atypia and carcinoma in situ” [60]. It was reported that in 73% of 
renal cancer patients from contaminated territories and 72% of those 
from non-contaminated areas of Ukraine, the tumor displayed a 
high level of microvessel density - the average level in the combined 
Ukrainian groups was 1.65 times higher than in the Spanish control 
group [57]. Radiation exposure was connected with the elevation 
of microvessel density and a higher histological grade, sarcomatoid 
transformation and intratumoral necrosis [57] i.e. histological signs 
of de-differentiation. An association of microvessel density with 
the cancer grade is acknowledged [61] but the difference in the 
histological grade can be explained by the averagely earlier detection 
of malignancies in Spain when compared to Ukraine. Accordingly, 
the higher microvessel density in renal cancers from Ukraine, as well 
as the higher grade of Chernobyl-related cancers in general [24], were 
caused by detection of neglected cases after the accident. Morphologic 
and molecular-genetic differences between renal cell carcinoma from 
Ukraine and Spain [57,59,60] were caused by the earlier detection of 
malignancies in Spain; as discussed in [58,62]. 

Considering the above, the results of some studies are interpretable 
but would benefit from re-evaluation. For example, the following 
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has been reported: “These findings do not allow us to consider the 
immunohistochemical expression of ubiquitylation and sumoylation 
as valuable markers for discriminating the effects of long-term, low-
dose ionizing radiation exposure in conventional renal cell carcinoma 
carcinogenesis” [63]. Considering that cancers from Ukraine were 
generally more advanced than the controls from Spain, the results 
of this study suggest that ubiquitylation and sumoylation are not 
associated with the progression of renal cell carcinoma. 

Conclusion
The above and previously published [1-6] arguments question 

the generally accepted cause-effect relationship between ionizing 
radiation and cancer incidence increase after the Chernobyl accident. 
With regard to Chernobyl-related pediatric thyroid cancer, this cause-
effect relationship cannot be excluded, but the registered increase in 
incidence can be largely attributed to factors other than radiation. 
Accordingly, some studies searching for markers of radiogenic cancer, 
e.g. [64], were probably based on the unproven premise that all or a 
majority of malignancies in the contaminated areas had been caused 
or influenced by ionizing radiation. Another important point in this 
discussion is that many tumors detected during the first decade after 
the accident, whether due to improved screening and diagnostics, or 
in patients being brought from non-contaminated areas and falsely 
registered as Chernobyl victims, were already advanced cancers: 
“The tumors were randomly selected (successive cases) from the 
laboratories of Kiev and Valencia... [The cancers were] clearly more 
aggressive in the Ukrainian population in comparison with the 
Valencian cases” [65]. This phenomenon can however be explained 
due to the (on average) earlier diagnostics of malignancies in Western 
Europe. In conclusion, the exaggeration of Chernobyl’s consequences 
could lead to the overestimation of the carcinogenicity of certain 
radionuclides. This result may potentially be detrimental to research, 
medical practice and economic advancements.
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