A Modern Comparative and Comprehensive Experimental Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation

Image Article

In the current study, we have experimentally and comparatively investigated and compared malignant human cancer cells and tissues before and after irradiating of synchrotron radiation using Fourier Transform Infrared (FTIR) Spectroscopy, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Micro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy, Macro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy, Two-Dimensional Infrared Correlation Spectroscopy, Linear Two-Dimensional Infrared Spectroscopy, Non-Linear Two-Dimensional Infrared Spectroscopy, Atomic Force Microscopy Based Infrared (AFM-IR) Spectroscopy, Infrared Photodissociation Spectroscopy, Infrared Correlation Table Spectroscopy, Near-Infrared Spectroscopy (NIRS), Mid-Infrared Spectroscopy (MIRS), Nuclear Resonance Vibrational Spectroscopy, Thermal Infrared Spectroscopy and Photothermal Infrared Spectroscopy.

It is clear that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figures 1-15) [1-124].

It can be concluded that malignant human cancer cells and tissues have gradually and clearly transformed to benign human cancer cells under synchrotron radiation with the passage of time (Figures 1-15) [1-124]. It should be noted that in all of the figures y-axis shows intensity and also x-axis shows energy (keV). In addition, malignant human cancer cells and tissues were exposed under white synchrotron radiation for 30 days. Furthermore, there is a shift of the spectrum in all of spectra after irradiating of synchrotron radiation that it is because of the malignant human cancer cells and tissues shrink post white synchrotron irradiation with the passage of time. Moreover, all of the figures are related to the same human cancer cells and tissues (Figures 1-15) [1-124].
Figure 3: Micro-Attenuated Total Reflectance Fourier Transform Infrared (Micro-ATR-FTIR) Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-124].

Figure 4: Macro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-124].

Figure 5: Two-Dimensional Infrared Correlation Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-124].

Figure 6: Linear Two-Dimensional Infrared Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-124].

Figure 7: Non-Linear Two-Dimensional Infrared Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-124].

Figure 8: Atomic Force Microscopy Based Infrared (AFM-IR) Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-124].
Figure 9: Infrared Photodissociation Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-124].

Figure 10: Infrared Correlation Table Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-124].

Figure 11: Near-Infrared Spectroscopy (NIRS) analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-124].

Figure 12: Mid-Infrared Spectroscopy (MIRS) analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-124].

Figure 13: Nuclear Resonance Vibrational Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-124].

Figure 14: Thermal Infrared Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-124].
References

7. Heidari A (2016) "Study of irradiations to enhance the induces the dissociation of hydrogen bonds between peptide chains and transition from helix structure to random coil structure using ATR-FTIR, raman and 1HNMIR spectroscopies". J Biomed Mol Ther 5: e146.

18. Heidari A (2016) “Measurement the amount of vitamin D2 (Ergocalciferol), vitamin D3 (Cholecalciferol) and absorbable calcium (Ca2+), magnesium (Mg2+), phosphate (PO4-) and zinc (Zn2+) in apricot using high-performance liquid chromatography (HPLC) and spectroscopic techniques". J Biomol Sci 7: 292.

19. Heidari A (2016) “Biospectroscopy and quantum mechanics of the helium dimer (He2+), Neon Dimer (Ne2+), argon dimer (Ar2+), krypton dimer (Kr2+), xenon dimer (Xe2+), radon dimer (Rn2+) and unununium dimer (Uuu2+) molecular cations". Chem Sci J 7: e112.

30. Heidari A (2016) “Ab initio and density functional theory (DFT) studies of dynamic mnr shielding tensors and vibrational frequencies of dnapma and

Figure 15: Photothermal Infrared Spectroscopy analysis of malignant cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-124].
Citation: Heidari A, A Modern Comparative and Comprehensive Experimental Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. J Analyst Molec Tech 2018;3(1): 8.

68. Heidari A (2017) “Electronic coupling among the five nanomolecules shuts down quantum tunneling in the presence and absence of an applied magnetic field for indication of the dimer or other provide different influences on the magnetic behavior of Single Molecular Magnets (SMMs) as Qubits for Quantum Computing”. Glob J Res Rev 4: 2.

69. Heidari A (2017) “Polyorphism in Nano-Sized Graphene Ligand-Induced Transformation of Au38-xAgxxCux(SPh-tBu)x/y24 to Au36-xAgxxCux(SPh-tBu)x/y24 (x = 1-12) Nanomolecules for Synthesis of Au144-xAgxxCux(SP)x/y60, (SC)x/y60, (SC)x/y60, (PET)x/y60, (p-MBA)x/y60, (F)x/y60, (Cl)x/y60, (Br)x/y60, (I)x/y60, (Au)x/y60, (Uus)x/y60 and (SCBH13)x/y60 Nano Clusters as Anti-Cancer Nano Drugs”. J Nanomater Mol Technol 6: 3.

70. Heidari A (2017) “Biomedical resource oncology and data mining to enable resource discovery in medical, medicinal, clinical, pharmaceutical, chemical and translational research and their applications in cancer research”. Int J Biomed Data Min 1: e103.

Citation: Heidari A, A Modern Comparative and Comprehensive Experimental Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. J Analyt Molec Tech 2018;3(1): 8.