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Single Nucleotide Polymorphism 
Detection Using a Biocompatible, 
Fluorogenic and DNA-Templated 
Reaction of  Cyanine Dye 
Formation

Abstract
Water-soluble Peptide Nucleic Acids (PNAs) functionalised with 

fluorogenic cyanine dye precursors (i.e. a Fisher’s base aldehyde and a 
2-methylene indolenine) are employed for detecting single-nucleotide 
polymorphism in vitro under near physiological conditions of salt and 
pH. This quick and versatile fluorogenic system has been designed so 
that fluorescence is formed only upon simultaneous hybridisation of 
both PNAs to a fully complementary DNA strand. The reaction yield 
increased up to around 10% upon addition of the DNA template, even 
in the presence of a large excess of Calf-Thymus competitor DNA.

Introduction
Since the final sequencing of the human genome was completed, 

in 2003, considerable research effort has been devoted to the 
identification and analysis of variations among individual genomes 
[1-4]. Although more than 99.9% of human DNA sequences are the 
same across the population, variations can have a major impact on 
how humans respond to diseases or drug therapies [5,6]. Amongst 
the most common forms of genomic variation, single-nucleotide 
polymorphism (SNP) accounts for over 80% of sequence variants [7-
9]. Current estimates suggest that SNPs occur as frequently as every 
100 to 300 bases and that they are stably inherited, making them a 
unique tool/marker for identifying numerous genetic and inherited 
complex diseases such as cancers and diabetes [7-9]. Therefore, there 
is an increasing need for high throughput technologies suitable for 
rapid and sensitive SNP genotyping [10-12]. So far, methods using 
short oligonucleotides or oligonucleotide mimics as probes to reveal 
the presence of complementary sequences have been successfully 
developed [13,14]. Of particular interest are oligonucleotide-
templated reactions that can be monitored with high sensitivity by 
the appearance/disappearance of a fluorescent signal upon binding to 
the oligonucleotide target [15-17]. Representative examples of such 
technologies include the use of fluorogenic probes (e.g. molecular 
beacons [18,19]), or rely on fluorogenic reactions of chemical ligation 
[20] or primer extension [21]. Most recent reports are based on the 
Staudinger reaction [22-27] diamine-catalysed aldol condensation 
[28] organomercury-activated [29] or SNAr reactions [30]. Among 
these examples, a small proportion only was sucessfully applied for 
the detection of SNPs in vitro. Briefly, two modified oligonucleotides 
(or oligonucleotide analogues) are designed so that they can 
hybridize in a sequence-specific manner to a unique nucleic acid 
template through Watson-Crick base pairing.Upon hybridization 
of the synthetic probes to the complementary DNA strand, both 
fluorogenic moieties are brought in close enough proximity to react 

with each other, thus generating the fluorescent product. In case 
of a partial or uncomplete hybridization of one of the modified 
oligonucleotides (e.g. as a consequence of a SNP), both probes are no 
longer positioned favorably to react with each other, thus leading to a 
significant decrease of reaction efficiency (i.e. a weaker fluorescence). 
Within such systems, genetic information can be directly linked to 
the appearance of a characteristic fluorescence signal. 

Herein, we report a biocompatible and fluorogenic system that 
uses two water-soluble PNAs functionalised at their N- or C- terminus 
with non-fluorescent cyanine dye precursors for SNPs detection. 
Briefly, two 5-mer PNAs were synthesized on solid support that also 
contained two ε-N,N-dimethyl-Lysines to ensure water-solubility and 
were functionalised either at their N- or C-terminus with a Fischer’s 
base aldehyde  and 2-methylene-indolenine, respectively [31,32]. 
Upon simultaneous hybridization of both PNAs to a complementary 
DNA template only, both fluorogenic probes will be orientated 
optimally to react with each other, thus producing irreversibly a 
highly fluorescent symmetrical trimethine cyanine dye (Figure 1).

Materials and Methods
General

DNase- and RNase-free water, potassium phosphate buffer 
and Calf-Thymus DNA were purchased from Sigma-Aldrich. 
PNA monomers were purchased from ASM Research Chemicals 
(Germany) and Rink amide resin for solid phase synthesis from Merck 
Biosciences (UK). DNA oligonucleotides were purchased from Sigma 
and were all HPLC purified (Table 1). Synthesis and Characterisation 
(HR-MALDI) of both purified fluorogenic PNAs (Pna1 and Pna2) 
was recently reported by us [31,32].

Sensing experiments

Stock solutions (50 µM) of Pna1, Pna2 and DNA were prepared 
in water. In a typical experiment, 20 µL of a potassium phosphate 
buffer solution (100 mM, pH = 7.4) and 10 µL of each stock solution 
were transferred into one well to make the final concentrations of 
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10 µM Pna1, 10 µM Pna2, 10 µM DNA and 40 mM buffer.Reaction 
time-courses were determined in a 384-well plate using a SpectraMax 
M5 fluorescence plate reader (Molecular devices, UK). Reactions 
were carried out at 37°C with λexc = 540 nm and λem = 573 nm.

Results and Discussion
The ability of Pna1 and Pna2 to react with each other in the absence 

and in the presence of various DNA sequences used as templates 
was investigated by fluorescence spectroscopy by monitoring the 
formation of a symmetrical trimethine cyanine dye (λexc = 540 nm, 
λem = 573 nm). Reactions were carried out in potassium phosphate 
buffer (40 mM, pH 7.4) at 37 °C using a stoichiometric mixture of 
Pna1, Pna2 and DNA (10 µM each, total volume 50 µL) and the 
efficiency of the fluorogenic reaction was monitored over three hours 
in a fluorescence microplate reader. Importantly, no fluorescence was 
ever detected when incubating Pna1 and Pna2 under such conditions 
of concentration and pH and in the absence of any DNA template 
(Figure 3, grey curve).

We first investigated the influence of the distance (i.e. number of 
nucleotides) between both PNAs on the efficiency of the fluorogenic 
reaction. Five DNA strands (WT0-4, Table 1), all containing both 
sequences complementary to Pna1 and Pna2 but separated by 
a variable number of nucleobases (from 0 to 4), were evaluated as 
potential candidates capable of templating the reaction of cyanine 
dye formation. While short distances between both PNAs (WT0-2) 
proved equally good at templating the fluorogenic reaction, slightly 
more flexible systems (e.g. WT3 where PNA/DNA duplexes formed 
upon hybridisation of Pna1 and Pna2 with the DNA template are 
separated by three nucleotides) appeared more favorable (Figure 
3). This tendency was confirmed when increasing the distance 
even further (up to 7 nucleotides, data not shown), although never 
exceeding the maximum fluorescence observed with a 3 nucleotide 
gap (WT3).

Next, both WT2 and WT3 were selected for a more detailed study. 
The effect of systematic point mutations within the DNA template 
on the reaction efficiency was investigated. In the case of WT3, none 
of the single mutations tested led to a significant change in reaction 
efficiency, regardless of the nature and position of the mutation 
(Figure 4A). Significant inhibition of the fluorogenic reaction was 
observed only when mutating at least two consecutive residues in 
WT3 while near-complete inhibition was obtained when mutating a 

minimum of three residues, hence preventing hybridization of at least 
one of the fluorogenic PNAs (Figure 4B).

Although WT3 seemed optimal for templating the reaction of 
cyanine dye formation, it appeared that a 3-nucleotide gap between 
both PNA complementary sequences was probably making the PNA-
DNA complex too flexible to be responsive to minimal changes such 
as single mutations.

Therefore, and despite the fact that WT2, as a template, was 
not quite as efficient as WT3, we reasoned that a 2-nucleotide gap 
could provide a more rigid environment for the fluorogenic reaction 
so that the correct alignement of both non-fluorescent cyanine dye 
precursors would be more responsive to SNPs. DNA sequences 
derived from WT2 but carrying single nucleotide mutations at 
various positions (Mut1-6, Table 1) were tested for their ability to 
template the fluorogenic reaction. The reaction time-courses were 
determined by fluorescence spectroscopy on a microtiter plate 

Name Sequence Name Sequence

WT0 GCATCTCGGC Mut5 GCATCCTTCGGT

WT1 GCATCTTCGGC Mut6 GCATCCTTCGGC

WT2 GCATCCTTCGGC Mut7 GCATCCTTXCGGCb

WT3 GCATCCTTTCGGC Mut8 GCATXCTTTCGGCb

WT4 GCATCCTTTTCGGC Mut9 GCATCCTTAAGGC

Mut1 GCATCCTXCGGCb Mut10 GCATCCTTAAAGC

Mut2 GCATCCTTTGGC Mut11 GCATACTTACGGC

Mut3 GCATCCTTCTGC Mut12 GCAAACTTAAGGC

Mut4 GCATCCTTCGTC
aUnderlined sequences are that complementary to Pna1 and Pna2;
 bXrepresents A, T, C or G.

Table 1: Oligonucleotide sequences (given from the 5’ to 3’ end)a.

Figure 1: General strategy for SNPs detection using two PNAs functionalised 
with non-fluorescent trimethine cyanine dye precursors.
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Figure 2: Structures and sequences of the fluorogenic PNA probes.
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format and compared to that obtained with the corresponding native 
sequence WT2 (Figure 5).

A significant decrease (up to 5-fold) in fluorescence intensity 
was observed when mutating one nucleotide within the sequence 
of WT2 complementary to Pna2 (Mut1-5, Table 1). As previosuly 
observed by others, the strongest “inhibitory” effects were obtained 
with single mutations located near the indole fluorogenic probe 
(e.g. Mut1 vs Mut5). However, the nature of the mutation had no 
influence on the reaction time-course. For instance, similar time 
courses were obtained for Mut1, regardless of the nature of X (A, 
C or G). Surprisingly, DNA strands carrying mutations within the 
sequence of WT2 complementary to Pna1 (Mut6, Table 1) were 
found to be almost equally efficient templates when compared to the 
native sequence WT2. This is likely due to a greater conformational 
freedom of the Fischer’s base aldehyde allowing its reaction with 
the neighbouring indole even if Pna1 is not fully hybridized to the 
DNA template. Altogether, these results suggest that a constrained 
system in which two 5-mer fluorogenic PNAs can hybridize, 
simultaneously and two nucleotides apart, to a unique DNA strand 
serving as a reaction template, can be used for SNPs detection. Most 
sensitive detection is achieved when the mutation is located opposite 
the indole’s neighbouring nucleobase (Mut1) although the system 
remains sensitive enough for detecting mutations located further 
away in the DNA template (Mut2-4).

Finally, in order to estimate the efficiency of the fluorogenic 
reaction upon addition of complementary DNA, a water-soluble 
analogue of the symmetrical trimethine cyanine dye reaction product 
was synthesized and used as a standard for quantifying the amount 
of dye formed in the absence or presence of various DNA templates. 
Using this external standard, the yield of the reaction templated by 
WT2 was found to be approximately 10 ± 5 % while no fluorescent 
product was ever detectable under similar conditions but in the 
absence of template (Figure 6). Interestingly, addition of a large excess 
(20 µg/mL) of competitor Calf-Thymus DNA in the reaction mixture 
resulted in no significant loss of reaction efficiency (data not shown), 
thus confirming the high specificity of our fluorogenic system.

WT0 GCATCTCGGC
WT1 GCATCCTCGGC
WT2 GCATCCTTCGGC
WT3 GCATCCTTTCGGC
WT4 GCATCCTTTTCGGC

Figure 3: Reaction time-course of a stoichiometric mixture of Pna1 and Pna2 
(10 µM each) in the absence (grey) and in the presence of a stoichiometric 
amount of WT0 (blue), WT1 (red), WT2 (black), WT3 (green) or WT4 (pink). 
Reaction was monitored by fluorescence spectroscopy (λexc = 540 nm, λem 
= 573 nm).

WT3         GCATCCTTTCGGC
Mut7G     GCATCCTTGCGGC
Mut7C     GCATCCTTCCGGC
Mut7A     GCATCCTTACGGC
Mut8G     GCATGCTTTCGGC
Mut8A     GCATACTTTCGGC

A)

WT3         GCATCCTTTCGGC
Mut9       GCATCCTTAAGGC
Mut10     GCATCCTTAAAGC
Mut11     GCATACTTACGGC
Mut12     GCAAACTTAAGGC

B)

Figure 4: Reaction time-course of a stoichiometric mixture of Pna1 and Pna2 
(10 µM each) in the presence of a stoichiometric amount of WT3 (black) or 
one of the mutated sequences Mut7G (red), Mut7C (blue), Mut7A (green), 
Mut8G (pink) or Mut8A (grey) (Fig. 4A), or Mut9 (red), Mut10 (blue), Mut11 
(green) or Mut12 (grey) (Fig. 4B). Reaction was monitored by fluorescence 
spectroscopy (λexc = 540 nm, λem = 573 nm).

WT2 GCATCCTTCGGC
Mut1 GCATCCTACGGC
Mut2 GCATCCTTTGGC
Mut3 GCATCCTTCTGC
Mut4 GCATCCTTCGTC
Mut5 GCATCCTTCGGT

Figure 5: Reaction time-course of a stoichiometric mixture of Pna1 and Pna2 
(10 µM each) in the presence of a stoichiometric amount of WT2 (black), 
Mut1 (red), Mut2 (blue), Mut3 (grey), Mut4 (pink), Mut5 (green). Reaction 
was monitored by fluorescence spectroscopy (λexc = 540 nm, λem = 573 
nm).

Figure 5
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Conclusion
In conclusion, we have reported the use of a fast, versatile, 

biocompatible and fluorogenic DNA-templated reaction of cyanine 
dye formation for the detection of SNPs in vitro. The system offers the 
advantage of a reasonably high sensitivity due to the high absorptivity 
and moderately high fluorescence quantum yield of the cyanine 
dye formed [33] and requires minimal amounts (500 pmol) of both 
DNA and PNA probes when the reaction is carried out in a 384-well 
microtiter plate. The design of optimized (e.g. more rigid, multi-
coloured) systems to further improve the sensitivity of the detection 
is currently underway in our laboratory.
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